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A general construction approach for a class of detached-eddy simulation (DES) methods with the 
turbulent length-scale equation is presented in this study. It supports the rationality of the construction 
and provides a theoretical estimation of the model coefficients in DES simulation. By using the 
construction approach, a differential Reynolds-stress model (RSM), referred to as Speziale-Sarkar-Gatski 
(SSG)/Launder–Reece–Rodi (LRR)-ω RSM, is built into the improved delayed DES (IDDES) method. After 
calibration of the model parameters in the IDDES method and basic validation for decaying isotropic 
turbulence, the RSM-based IDDES approach is then applied to simulate the massively separated flows 
around the tandem cylinders and the transonic buffet flow over a hammerhead launch vehicle. The 
simulations are validated by the available experimental data, and the performance is evaluated by means 
of instantaneous, statistical, spectral analysis of the numerical data. It is found that the RSM-based IDDES 
method shows better performance comparing with the k-ω shear-stress transport (SST)-based IDDES 
method, especially for predicting the development of massively separated flows behind the bluff body.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Flows around the bluff bodies are widespread in the engineer-
ing applications [1], such as the flow past an aircraft, a space-
craft, or an express train. Normally, the flow behind the bluff body 
undergoes periodic vortex shedding, causing structural vibrations, 
acoustic noise [2], and significant increases in the mean drag and 
lift fluctuations. In particular, when the object is located in the 
wake of a bluff body, for example, the vertical tail in the wake of 
the wing [3], the booster behind the payload fairing of the rocket 
[4], and the slat inner surface of multi-element airfoil [5], etc., buf-
feting will occur due to the vortex shedding from the bluff body. 
Considering the above-mentioned flow phenomena, various mea-
sures such as noise reduction, optimization of lift and drag charac-
teristics, and accurate prediction of buffeting are widely concerned 
in engineering. The studies on the flow past the bluff body have 
high engineering application value. Moreover, for the flows at high 
Reynolds number (Re), the bluff wake is almost a massively sepa-
rated turbulent flow with the generation and evolution of various 
scale vortex structures. Therefore, it is challenging to simulate in 
detail and is often used to test the potential of turbulence models.
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In the industrial community, the hybrid Reynolds-averaged 
Navier-Stokes/large eddy simulation (RANS/LES) methods are con-
sidered promising in massive separation flows at high Re due 
to the high efficiency of the RANS combined with the fine 
resolution of the LES. Several hybrid RANS/LES strategies were 
suggested, which includes the partially averaged Navier-Stokes 
method (PANS) [6], the partially integrated transport model (PITM) 
[7], the detached-eddy simulation (DES) [8], the zonal detached-
eddy simulation (ZDES) [9], etc., where the DES-type method is the 
most widely known. In the last two decades, noticeable progress 
has been reached in building the DES-type method thanks to the 
joint efforts of many scholars and researchers [10]. The DES-type 
methods and its variant of delayed DES (DDES) [11], improved de-
layed DES (IDDES) [12], and extended DDES [13], have become 
increasingly popular in the industrial community [14]. The original 
concept of DES presented by Spalart et al. in 1997 was based on 
the Spalart–Allmaras (SA) one-equation turbulence model [8]. In-
spired by the success of Spalart, some other RANS turbulence mod-
els were built into the DES methods. Strelets [15] proposed another 
DES, which is based on the k-ω shear-stress transport (SST) model. 
Xiao [16] applied the weakly nonlinear k–ω turbulence model to 
the DDES method. Solkeun [17] also developed a DES method 
based on the k-ε-v2-f turbulence model. The capability of these 
DES methods and their variants has been demonstrated in many 
test cases. Some representative works are as follows. Xiao and 
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Zhang [18] have assessed the performance of the SST-based IDDES 
(SST-IDDES) in simulating both attached and separated flows. The 
results showed a good agreement with experiments, and the “grey 
area” was alleviated by using the shear-layer-adapted subgrid 
length scale. Chen [19] used the SA-based DDES method (SA-DDES) 
to investigate the massively separated flow around the tandem 
cylinders. The results showed a good agreement with experiments. 
Liu and Wang [20] performed SA-DDES in simulations around a 
hammerhead launch vehicle to investigate the flow mechanism of 
the hammerhead configuration during transonic buffeting, and the 
features of buffet flow reported in the experiment have been re-
produced. Mirzaei and Sohankar [21] have evaluated the capacity 
of the k-ω-v2-f-based DDES method on the plane channel flow, 
wavy channel flow, and two side-by-side square cylinders. A good 
agreement between the results of the DDES and the LES was 
obtained for all flow configurations employed. He and Liu [22]
proposed a dynamic DDES method to study the wall heat transfer 
in impinging jets. In their study, the DDES model was improved by 
dynamically computing the model coefficients. The mean and fluc-
tuating velocity fields are reasonably captured. These works apply 
various RANS models to the DES method, thereby rapidly promot-
ing the development of the DES method. In addition, the extensive 
applications of the DES method in massively separation flows have 
contributed to the verification and validation of the DES method.

Mockett [23] pointed out that the sensitivity of DES to the 
underlying RANS model cannot be negligible for separation flow 
and elucidated the importance of RANS modeling in a DES con-
text. However, most DES-type methods are based on the one-
equation model or two-equation model that invoke the eddy-
viscosity assumption for modeling the Reynolds stress. Therefore, 
a DES based on the model other than the one-equation model or 
two-equation model is desirable to provide a simulation method 
for “problem” flow where eddy viscosity model may fail to pre-
dict separation accurately. The Reynolds-stress model (RSM) is the 
most elaborate type of RANS turbulence model. Abandoning the 
isotropic eddy-viscosity hypothesis, the RSM closes the Reynolds-
averaged Navier-Stokes equations by solving transport equations 
for the Reynolds stress. Recently, some RANS simulation studies 
[24–27] have shown that the RSM model is better than the eddy 
viscosity model in accounting for more detailed representation 
of the flow physics, such as the effects of streamline curvature 
and rapid changes in strain rate, etc. To investigate the poten-
tial of the RSM model in the hybrid RANS/LES method for sep-
arated flows, a few recent studies have been conducted. Probst 
and Radespiel [28] applied the εh-RSM [29] model to the DDES 
method to simulate the flow over the backward-facing step and the 
HGR-01 airfoil. Zhuchkov and Utkina [30] used the enhanced DES 
[31] method based on the Speziale-Sarkar-Gatski (SSG)/Launder–
Reece–Rodi (LRR)-ω RSM [32] model to simulate the flow over the 
axisymmetric SMC000 nozzle. The RSM-based DES-type method 
presented by Probst is based on the εh-RSM model which is suit-
able for the low Reynolds number flows, and the DES-type method 
presented by Zhuchkov is based on enhanced DES which is nor-
mally used for jet flow simulation. The need for accuracy of the 
RANS model in DES is no less than in pure RANS, and some studies 
[33–35] have shown that the SSG/LRR-ω RSM model performs well 
in the simulation of high Reynolds number flows. In addition, since 
the IDDES method can avoid Grid Induced Separation (GIS) and 
Logarithmic Layers Mismatched (LLM) problems to a certain ex-
tent, it is more adaptable to the complex bluff body configurations. 
Therefore, considering the strong requirement of simulating flow 
around a bluff body with the high Reynolds number in engineer-
ing, the SSG/LRR-ω RSM model is applied to the IDDES method 
(RSM-IDDES) by a relatively general DES construction approach in 
this study.
2

In this work, we have proposed a novel construction approach 
that provides an idea for the introduction of a large class of RANS 
models to the DES method. It supports the rationality of the con-
struction and presents a theoretical estimation of the DES param-
eters CDES to provide a reference for its calibration. By using the 
construction approach, a RSM-based IDDES method has been built 
and implemented in an in-house code. The decaying isotropic tur-
bulence (DIT) flow is used to calibrate the RSM-IDDES method pre-
sented here, and tandem cylinders and a transonic hammerhead 
launch vehicle are simulated to validate the RSM-IDDES method. 
The arrangement of the paper is as follows. In Section 2, the 
numerical methods and the turbulence modeling including the 
SSG/LRR-ω RSM model and the construction approach of DES are 
presented. Furthermore, the calibration and validation of the RSM-
IDDES method are given in Section 3. In Section 3.1, the param-
eter CDES is calibrated through the DIT flow. In Section 3.2 and 
3.3, the simulation results of two configurations obtained by the 
RSM-IDDES method are presented and discussed. The RSM-IDDES 
method is validated by comparing the results with available ex-
perimental data. Its ability for simulating the massively separated 
flows around the bluff body is examined by comparing the re-
sults with the SST-IDDES simulations. Finally, several concluding 
remarks are given in the last section.

2. Turbulence modeling and numerical methods

2.1. Numerical methods

In the present work, an in-house CFD solver HUNS3D [36], 
which has the functionality of simulating both steady and unsteady 
viscous flows, is used as the baseline flow solver. In the HUNS3D 
flow solver, the fluid motion is governed by the time-dependent 
Navier-Stokes equations for the ideal gas, which are expressed by 
the conservation of mass, momentum, and energy for the com-
pressible fluid with the absence of external forces. The equations 
expressed in integral form for a bounded domain � with boundary 
∂� are given below.

∂

∂t

˚

�

Q d� +
¨

∂�

F ( Q ) · nds

=
¨

∂�

G( Q ) · nds +
¨

∂�

G turb( Q ) · nds (1)

Where, Q = [ρ, ρu, ρv, ρw, ρE]T , F ( Q ) · nds and G( Q ) · nds
respectively represent convective and viscous flux terms (further 
details are given in Ref. [36]). G turb( Q ) · nds represents turbu-
lent viscous flux contributed by the Reynolds stress on the RANS 
branch, and the subgrid-scale stress on the LES branch. The govern-
ing equations are discretized with the cell-centered finite volume 
method on unstructured hybrid meshes composed of hexahedrons, 
prisms, tetrahedrons, and pyramids. The discretized convective 
flux term is computed with the second-order Roe discretization 
scheme, and the discretized viscous flux term is obtained by the 
reconstructed central scheme. For the Roe scheme, the modulus of 
the eigenvalues is modified using Harten’s entropy correction [37], 
and the second-order accuracy is achieved by reconstructing the 
solution following Barth’s interpolation method [38]. The LU-SGS 
relaxation-based implicit backward-Euler scheme is implemented 
for steady flow simulation and the corresponding second-order full 
implicit dual time scheme is adopted for unsteady flow case. An 
adaptive local time-stepping method was developed to eliminate 
the adverse influence of some poor-quality grids on solution stabil-
ity and convergence speed. In addition, a form of locally adaptive 
flux blending [39,40] has been implemented in the Roe scheme, 
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ensuring the dominance of low dissipation in the LES region and 
more stability in the RANS region. The details of the adaptive dis-
sipation Roe scheme are listed in Appendix A.

2.2. SSG/LRR-ω Reynolds-stress model

The SSG/LRR-ω RSM model [24], developed by the DLR, is a 
combination of the Speziale–Sarkar–Gatski model and the Launder-
Reece-Rodi model. It directly solves for the Reynolds stress ρ R̃ i j =
ρu′′

i u′′
j . Here the hat represents the Favre average and ρ is the 

Reynolds-averaged density. The Reynolds stress transport equation 
is given by

∂

∂t
(ρ R̃ i j) + ∂

∂xk
(ρŨk R̃i j) = ρ Pij + ρ�i j − ρεi j + ρDij + ρMij

(2)

Where the production term ρPij is calculated by average quanti-
ties exactly

ρ Pij = −[Ũ i,kρ R̃kj + Ũ j,kρ R̃ki] (3)

Where the Ũ i,k denotes the gradient of mean velocity Ũ i,k = ∂ Ũ i
∂xk

. 
The dissipation ρεi j is modeled by an isotropic tensor with the 
components

ρεi j = 2

3
ρεδi j (4)

All other terms on the right-hand side of Eq. (2) require model-
ing. The details of these terms are not shown here and could be 
found in Ref. [24]. To close the Reynolds stress transport equa-
tions, an additional turbulent length-scale transport equation is 
required for providing a measure of the isotropic dissipation rate 
ε. The SSG/LRR-ω model follows Menter’s approach, and the so-
called baseline (BSL) ω equation is used to estimate ε (ε = Cμk̃ω, 
where k̃ = ρu′′

k u′′
k /2ρ is turbulent kinetic energy (TKE), Cμ = 0.09). 

It reads as follows:

∂

∂t
(ρω) + ∂

∂xk
(ρŨkω)

= ρ P (ω) + ρD(ω) + ∂

∂xk

[(
μ + σω

ρk̃

ω

)
∂ω

∂xk

]
+ ρC D (5)

The details of the terms and constants in Eq. (5) are also provided 
in Ref. [24]. The numerical solution of the turbulence equation (2)
and Eq. (5) is similar to the mainstream equation (1) except that 
its convective flux adopts the first-order Roe scheme.

2.3. The construction approach of DES-type method

The key point of the hybrid RANS/LES method is how to bridge 
the RANS and LES methodologies. For the DES-type method, the 
establishment of the bridge is mostly based on the RANS tur-
bulence equation with certain modifications to obtain a subgrid-
scale simulation in the LES region. Due to the above characteristics 
of the DES-type method, the subgrid-scale quantities in the LES 
region of the DES-type method all adopt the corresponding tur-
bulence model equations as their transport equations except for 
the modified terms. Usually, the Smagorinsky subgrid-scale stress 
model, which is a simple and widely used model, is assumed in 
the LES region. Since the underlying RANS equation is generally 
a differential equation, it cannot strictly satisfy the Smagorinsky 
subgrid model in the LES region for most flows, but holds only 
in some special cases. Apply the equilibrium assumption in the 
3

following derivation, the assumption is also adopted into the SA-
based and SST-based DES-type method [8,15]. The Smagorinsky 
subgrid-scale stress model reads as follows.

υt = (C S�)2 |̃Sij| (6)

Where υt is the subgrid-scale eddy viscosity, C S is the Smagorin-
sky coefficient (recommended value is 0.18), � is the grid length 
scale which is proportional to the implicit filter scale, and |̃Sij | =√

2̃Sij S̃ i j denotes the modulus of average strain rate tensor. By 
a simple dimensional analysis, υt can be expressed as υt = �V , 
where V is the subgrid-scale velocity scale and � is the subgrid 
length scale. V is usually taken as the square root of subgrid-scale 
kinetic energy 

√
k̃. Considering the incompressible turbulence and 

under the assumption of Boussinesq eddy viscosity, the subgrid-
scale stress is expressed as RSGS

i j = 2ρυt S̃ i j − (2/3)ρk̃δi j . The fol-
lowing equation can be obtained by the double-dot product of 
strain rate tensor and subgrid stress.

RSGS
i j S̃ i j = ρυt |̃Sij|2 − (2/3)ρk̃ S̃ ii (7)

Eq. (7) can be further simplified by the definition of strain rate 
tensor (̃Sij = (Ũ i, j + Ũ j,i)/2).

RSGS
i j Ũ i, j = ρυt |̃Sij|2 (8)

And then, Eq. (9) can be obtained by υt = �V and Eq. (6)

ρ(�

√
k̃)3/(C S�)4 = RSGS

i j Ũ i, j (9)

In fact, RSGS
i j Ũ i, j in Eq. (9) is equal to the production of subgrid-

scale kinetic energy k̃. Therefore, under the assumption of equilib-
rium turbulence which means that the production is equal to the 
dissipation, the expression of subgrid-scale kinetic energy dissipa-
tion ρε can be obtained from Eq. (9).

ρε = ρ(�

√
k̃)3/(C S�)4 (10)

� is the subgrid length scale that depends on the turbulent length-
scale variable φ (e.g., ε, ω, etc.) which is taken to close the equa-

tion and further defined as � = C�k̃
m
n + 3

2 φ− 1
n . Where C� is a scale 

factor, m and n respectively depend on the definition of φ which 
is mostly written as φ = C−1

μ k̃mεn . E.g., for k-ω turbulence model, 
those parameters are specified as φ = ω, m = −1, n = 1, Cμ = 0.09, 
and C� = 1; For k-ε turbulence model, those parameters are spec-
ified as φ = ε, m = 0, n = 1, Cμ = 1, and C� = 0.09. In fact, � is 
proportional to the grid scale �, a rigorous proof will be given 
and the expression of proportional factor related to DES parame-
ter CDES will also be determined below. The transport equation of 
turbulence variable φ is mostly obtained from the k-equation and 
ε-equation.

Dφ

Dt
= m

φ

k̃

Dk̃

Dt
+ n

φ

ε

Dε

Dt
(11)

Where the operator D represents the material derivative. Ac-
cording to Ref. [41], in homogeneous turbulence, the k-equation 
and ε-equation can be simplified to Dk̃

Dt = υt |̃Sij|2 − ε and Dε
Dt =

Cε1
ε

k̃
υt |̃Sij|2 − Cε2

ε2

k̃
respectively. Then, substituting the above two 

equations into Eq. (11), the transport equation of turbulence vari-
able φ can be expressed as

Dφ = Cφ1
φ

υt |̃Sij|2 − Cφ2
φ

ε (12)

Dt k̃ k̃
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Where Cφ1 and Cφ2 are model factors of φ-equation. It is neces-
sary to explain that Cφ1 = m + nCε1 and Cφ2 = m + nCε2, where 
Cε1 and Cε2 are the model factors of ε-equation, for the standard 
φ-equation (11). But there is a certain difference between actual 
model factors and values calculated from the previous two equa-
tions since the actual φ-equation is obtained by modifying or dis-
carding certain terms in Eq. (11). Furthermore, in equilibrium tur-
bulence, Eq. (12) can be simplified to Cφ1υt |̃Sij|2 = Cφ2ε. Where, 
the ε is obtained from the length scale definition � = C�εk̃

3
2 ε−1

and the eddy viscosity coefficient expression υt =
√

k̃�. That is 
ε = C�ευ

3
t /�4. Then the following equation can be obtained

υt = √
Cφ1/(C�εCφ2)�

2 |̃Sij| (13)

Where C�ε = 0.09 is C� of ε. Thus, the proposition that � is pro-
portional to � is confirmed by comparing with Eq. (6).

� = [
Cφ1/(C�εCφ2)

]−1/4
C S� (14)

Substituting Eq. (14) into Eq. (10), the subgrid-scale kinetic energy 
dissipation can be expressed as

ρε = ρk̃1.5/
[
C S

[
Cφ1/(C�εCφ2)

]3/4
�

]
(15)

The coefficient of � is denoted by CDES , and then CDES� is denoted 
by lLES . Considering that ρε returns to the original model in the 
RANS region, lRANS is defined as (1/C1/n

μ C�)�. Then the bridge be-
tween RANS and LES is established by the turbulent kinetic energy 
dissipation, which ensures that the original model is returned in 
the RANS region and the Smagorinsky subgrid-scale stress model 
is obtained under the assumption of equilibrium turbulence in the 
LES region.

ρε =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

LES region:
ρk̃1.5

lLES
= ρk̃1.5

CDES�
, CDES = C S

[
Cφ1/(C�εCφ2)

]3/4

RANS region:
ρk̃1.5

lRANS
= ρk̃1.5

(1/C1/n
μ C�)�

, � = C�k̃
m
n + 3

2 φ− 1
n

(16)

Eq. (16) presents the construction approach, which only needs to 
modify the dissipation of turbulent kinetic energy with Eq. (16), for 
a large class of DES methods (the turbulent length-scale equation 
is contained in turbulence model) and the theoretical estimation 
of the DES parameter CDES . However, in numerical simulation, CDES

is different from the theoretical value due to numerical dissipa-
tion. Therefore, the theoretical estimation of CDES only provides 
a reference, and the basic turbulent flow (e.g., decaying isotropic 
turbulence) is required for CDES calibration in actual applications. 
It can be obtained from Eq. (16) that the value of CDES indirectly 
affects the Smagorinsky coefficient C S in the LES region, so the 
dynamic determination of CDES can obtain a dynamic Smagorinsky 
model in the LES region of DES simulation. He and Liu [42] pre-
sented the dynamic SST-DDES method, and applied it to the sim-
ulation of periodic hills and impinging jet. The dynamic SST-DDES 
method achieved a better performance than the original SST-DDES 
method.

For the k-ω SST-based DES-type model, the turbulent length-
scale variable is defined as φ = ω, therefore m = −1, n = 1, 
Cμ = 0.09 and C� = 1. Therefore, the RANS length scale can be 
constructed from Eq. (16) as

lRANS =
√

k̃/(Cμω) (17)
4

And the LES length scale as lLES = CDES�, where CDES is obtained 
by the weighted average of CDES,k−ω and CDES,k−ε through the 
Menter’s blending function F1 [43].

CDES = F1CDES,k−� + (1 − F1)CDES,k−ε (18)

The theoretical estimation of CDES,k−ω is 0.805 (C S = 0.18, Cφ1 =
0.55, Cφ2 = 0.83) and CDES,k−ε is 0.630 (C S = 0.18, Cφ1 = 0.44, 
Cφ2 = 0.92), with calibration values of 0.78 and 0.61, respectively.

For the SSG/LRR-ω RSM DES-type model, the dissipation term 
of Reynolds stress Eq. (4) is modified by Eq. (16). The RANS length 
scale in Eq. (16) is also defined by Eq. (17) due to the turbulent 
length-scale equation of SSG/LRR-ω RSM model is the same as k-ω
SST model. The turbulent kinetic energy k̃ in Eq. (17) is obtained 
with half trace of Reynolds stress tensor.

k̃ = Rii/2 (19)

The LES length scale defined as lLES = CDES�, where CDES is sim-
ilar with SST based DES-type method that is obtained by the 
weighted average of CDES,LRR and CDES,SSG through F1. The theoreti-
cal estimation of CDES,LRR and CDES,SSG in SSG/LRR-ω RSM-DES type 
model is the same as the k-ω SST-DES type model CDES,SSG = 0.630
and CDES,LRR = 0.805, since the theoretical estimation of CDES is 
only related to some coefficients in the length-scale equation and 
Smagorinsky coefficient C S . Additionally, the CDES of RSM-DES type 
model in actual applications is calibrated in Section 3.1.

2.4. Improved delayed DES (IDDES) method

In the previous section, only the formulation of the model in 
the RANS region and LES region was presented, but the conver-
sion rule between the two regions was not given. For the DES 
method, the conversion mechanism is seamless and automatic, 
which switches the length scale of the RANS and LES regions 
automatically by introducing a mixing length in the dissipation 
term, e.g., k-ω SST-DES: ρε = ρk̃1.5/lDES; SSG/LRR-ω RSM-DES: 
ρεi j = 2

3 (ρk̃1.5/lDES)δi j . The definition of the mixing length is de-
termined by different DES-type methods (e.g., DES97, DDES, IDDES, 
etc.). The IDDES method is selected in this study as it avoids GIS 
and LLM problems to a certain extent. The IDDES mixing length is 
given by

lIDDES = f d(1 + fe)lRANS + (1 − f d)lLES (20)

Where lRANS and lLES were defined in the previous section, respec-
tively, and the definition of blending function f d , elevating func-
tion fe in Eq. (20) are given in Ref. [12]. In addition, the grid scale 
of IDDES is redefined as � = min[max(C wd, C w�max, dwn), �max]. 
Where C w is an empirical constant (recommended value is 0.15), 
and d is the distance to the wall, dwn is the grid step in the wall-
normal direction, and �max is defined as the maximum local grid 
spacing �max = max(�x, �y, �z).

3. Results and discussions

3.1. Decay of isotropic turbulence (DIT)

The first case in this section is dedicated to the calibration of 
the computational procedure for the DES model, whereby the re-
sults for the RSM-IDDES variant are shown and discussed. Constant 
values calibrated form the basis for all further results obtained in 
this section. This calibration process is considered as an essential 
prerequisite for a DES computation. Decaying isotropic turbulence 
(DIT) represents the simplest realization of turbulent flow and is 
therefore a fundamental test case for the new turbulence model-
ing. For this purpose, DIT computations are conducted with various 
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Fig. 1. Effect of different CDES-constants in RSM-IDDES on the energy spectrum in the DIT case, t∗ = 2.0 (a. SSG branch, b. LRR branch).

Fig. 2. Baseline computational grid for tandem cylinder configuration (a: the boundary conditions, b: the grid near the wall).
values for CDES. The grid employed consists of 643 rectangular and 
equidistant control volumes. The physical domain is a rectangular 
box of edge length 2π for which the lowest and highest resolved 
wavenumbers are therefore 1 and N/2, respectively. Since the flow 
over tandem cylinders and payload fairing are conducted with the 
adaptive dissipation Roe scheme, the calibration of CDES is also 
performed with this scheme. The formulation of the adaptive dissi-
pation Roe scheme is given in Appendix A. We have also performed 
the DIT simulations with the Roe scheme. The results are shown in 
Appendix B.

Simulations of DIT are performed in a cubic computational do-
main with three pairs of periodic boundary conditions in each 
spatial direction. The second-order full implicit dual time-stepping 
scheme is adopted, with time step of 0.001 non-dimensional units 
for each case. The velocity field for the solution initialization was 
obtained from inverse Fourier transform of the experimental spec-
tra presented by Comte-Bellot and Corrsin [44], which is referred 
to as CBC data in many studies. The underlying RANS model in 
current DES methods contains SSG and LRR branches, and the fi-
nal CDES is blended by the function F1. Therefore, CDES can be 
calibrated separately. The calibration process mainly requires two 
elements, the initial value of the calibration and the variation 
trend of the energy spectrum with the change of CDES. First, the 
analysis in Section 2.3 shows that the theoretical estimation of 
CDES for RSM-IDDES is equal to SST-IDDES, so the initial calibra-
tion values of CDES,SSG and CDES,LRR are taken as the values of 
CDES,k−ε and CDES,k−ω calibrated by Menter as, CDES,k−ε = 0.61
and CDES,k−ω = 0.78. In addition, considering the relationship be-
tween the Smagorinsky constant CS and the Kolmogorov constant 
5

CK (C S ≈ C−1
� (1.5C K )−3/4 [45]) and Eq. (16), it can be seen that 

CDES should be reduced when the energy intercept of inertial zone 
energy spectrum (ln C K + (2/3) lnε, Kolmogorov’s 1941 theory) is 
smaller than the experimental value during the calibration process, 
and vice versa. Fig. 1 shows the resulting normalized energy spec-
tra over the normalized wavenumber for different CDES values at 
t∗ = 2.0(t∗ = t · V∞/Lref .). Results obtained from CDES,SSG = 0.3 and 
CDES,LRR = 0.5 agree well with the measured spectra. Other values 
yield too much dissipation in the small turbulent scales.

3.2. Tandem cylinders

The second case is the flow past a tandem cylinder configura-
tion (L=3.7D) at Ma=0.1285 and ReD = 1.6 × 105. Experimental 
data presented by Jenkins [46] and Neuhart et al. [47] is used to 
assess the performance of the RSM-IDDES method. This case was 
known to associate with the complex flow, such as the separa-
tion of turbulent boundary layer, free shear layer instability [48], 
the interaction of unsteady wake of the front cylinder with the 
downstream one [49], and unsteady flow with massive separa-
tion between cylinders [50], and so on. It is also the standard test 
case in the European Seventh Framework Project Advanced Turbu-
lence Simulation for Aerodynamic Application Challenges project 
(ATAAC) [51]. The computational grid is obtained by extending the 
two-dimensional grid provided by ATAAC (as shown in Fig. 2b), 
which is widely used in the simulation of the tandem cylinders 
[52–54]. The counts of cells in the two-dimensional domain are 
92,500 and 120 layers are arranged in the spanwise direction, re-
sulting in 11.1 million cells in total. Computations are conducted 
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Fig. 3. Iso-surfaces of the Q-criterion colored with the velocity magnitude (Q =
0.5(�i j�i j − Sij Si j), Q iso = 0.5). (For interpretation of the colors in the figures, the 
reader is referred to the web version of this article.)

with pressure far field (PFF) and no-slip wall conditions, as well as 
periodic conditions applied in the spanwise direction.

The turbulent structures of the flow are illustrated by plotting 
iso-surfaces of the Q-invariant (Q = 0.5(�i j�i j − Sij Si j)), where 
�i j and Sij denote the antisymmetric and symmetric components 
of ∇u, respectively. Fig. 3 shows the iso-surfaces of the Q-criterion 
(Q iso = 0.5) obtained by applying the RSM-IDDES method to the 
flow past a tandem cylinder configuration. The complex nature 
of the flow arising from this configuration is clearly observed. 
The vortex shedding and development are well captured by RSM-
IDDES. A sequence of vortexes rolling up in the shear layer from 
the front cylinder is being convected downstream that grows in 
size and ultimately impinges on the rear cylinder.

The distributions of mean pressure coefficient Cp for the up-
stream and downstream cylinder are compared with the experi-
ment in Fig. 4. It shows that the mean Cp distributions on both 
cylinders are almost identical and in good agreement with the ex-
perimental measurements. The root-mean-square (RMS) pressure 
coefficient for both cylinders is compared with the experiment in 
Fig. 5. On the upstream cylinder, the peaks associated with flow 
separation are well predicted. On the downstream cylinder, the 
Cprms peaks located at 45◦ to 315◦ represent the vortex impinge-
ment from the upstream cylinder. It is observed that these peak 
values are slightly overpredicted by the SST-IDDES method. The 
results obtained by the RSM-IDDES method show better agree-
ment with the experiment. Besides, on the downstream cylinder, 
the overall curve and flow separation (i.e., at θ ≈ 110O and 250O) 
obtained from RSM-IDDES are in better agreement with the experi-
mental measurements. Fig. 6 compares the instantaneous spanwise 
vorticity contours in the mid-section plane predicted by both the 
SST-IDDES method and the RSM-IDDES method. The experimental 
data extracted from PIV measurements are also shown for com-
parison. In order to compare with the experimental result, the 
instantaneous flow fields at the same time are extracted. The time 
is determined at the instantaneous that the flow topology by simu-
lations is the most similar with that of experiment. The SST-IDDES 
method predicts a delayed onset of shear layer instability, while 
RSM-IDDES predicts a shorter shear layer and more small-scale 
structures similar to the measurement.

The power spectral densities (PSD) of the surface pressure at 
different angles θ on the upstream and downstream cylinders are 
shown in Fig. 7. The primary vortex shedding frequency and the 
corresponding magnitudes are listed in Table 1. It shows that the 
frequency of the fluctuating pressure at sample A is similar to 
sample B. Compared with experimental data (180 Hz), the pri-
mary vortex shedding frequency is picked up better by RSM-IDDES 
6

(176 Hz), compared with the frequency provided by SST-IDDES is 
172 Hz. The magnitude of the pressure fluctuation is captured well 
by both DDES within 1.8% error margin.

3.3. Hammerhead launch vehicle configuration

The basic geometry used in this investigation was the Model 11 
hammerhead launch vehicle configuration (hereby mentioned as 
hammerhead configuration) from NASA report [55]. It is a simple 
axisymmetric launch vehicle shape with a payload section larger 
than the second-stage diameter. Experimental investigations were 
conducted by Ames research centers. The computational conditions 
selected correspond to the wind tunnel test conditions. The Mach 
number is Ma=0.81, the Reynolds number based on the diame-
ter of the first stage booster (Dref = 12 inches) is Re = 4.2 × 106

and the angle of attack (AOA) is set as 0 degrees. An O–H topology 
grid (as shown in Fig. 8a) is generated for numerical calculation, 
the first layer spacing was chosen using the approach of Cum-
mings et al. [56], such that the average y+ < 0.5, the growth rate 
in the boundary layer is 1.21. To reduce the amount of compu-
tational grid, symmetric boundary condition, as shown in Fig. 8b, 
is applied to the half-model calculation. The detailed grid division 
refers to Ref. [20], which has discussed the grid sensitivity, and fur-
ther refinement is performed here based on the high-density grid 
in Ref. [20]. The grid is locally refined in the separation and shock 
motion areas, particularly, close to the payload section to properly 
model the shear layer instability, as shown in Fig. 8a. In detail, the 
azimuthal direction grid in the refined zone starting from the top 
of the fairing cylinder as shown in Fig. 8a is 140 points and the 
streamwise direction grid is 470 points. The total cell counts are 
approximately 18.5 million. The unsteady time step is 0.01, which 
is nondimensionalized by the sound speed of free-stream and unit 
one meter. SST-IDDES simulation with the same grid and settings 
is performed for comparison.

Fig. 9a shows the instantaneous contour of the density gradient 
on the cross-section through the generatrix of the hammerhead 
configuration obtained by RSM-IDDES and SST-IDDES. The evolu-
tion process of the free shear layer is illustrated from Fig. 9a. It 
develops from the extending boundary layer of the trailing edge 
of the fairing cylinder and gradually loses stability after a period 
of extension. After the free shear layer loses stability (known as 
the Kelvin–Helmholtz instability process, termed by K-H instabil-
ity), it breaks into various scales vortices and finally strikes on 
the second stage of the hammerhead configuration. Additionally, 
it can also be roughly seen that the shear layer instability simu-
lated by the RSM-IDDES method is earlier than SST-IDDES, and the 
vortex structures after breaking are smaller. Fig. 10 shows the sub-
grid stress distribution calculated by the two models, and it can be 
seen that the components of the subgrid stress calculated by the 
RSM-IDDES method are all smaller than those obtained by the SST-
IDDES method in each region (shear layer extension region, shear 
layer broken region). For shear layer extension region, according 
to the views presented by Spalart in Ref. [31], the smaller subgrid 
stress calculated by the RSM-IDDES method is beneficial to unlock 
the occurrence of K-H instability, thereby speeding up the instabil-
ity of the shear layer. In the separation bubble, the smaller subgrid 
stress means that the modeled turbulence energy by RSM-IDDES is 
smaller such that a finer vortex structure is resolved. Fig. 9b dis-
plays the iso-surfaces of the Q-criterion obtained by applying the 
RSM-IDDES method to the hammerhead configuration, displaying 
the evolution process of the vortex structures flowing through the 
hammerhead configuration. The flow around the hammerhead con-
figuration can be regarded as an axisymmetric back-step flow [57], 
and a series of quasi-two-dimensional toroidal vortices are rolled 
up after the trailing edge of the fairing cylinder, which is similar 
to the two-dimensional backward-facing step flow. With the oc-
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Fig. 4. Mean pressure coefficients on the tandem cylinder surfaces compared with experiment (a: upstream, b: downstream).

Fig. 5. The RMS of pressure coefficients on the tandem cylinder surfaces compared with experiment (a: upstream, b: downstream).

Fig. 6. Contours of instantaneous spanwise vorticity in the mid-section plane (a: RSM-IDDES, b: SST-IDDES, c: experiment).

Table 1
Primary frequency and the corresponding SPL predicted by different methods.

Item Frequency at A, 
Hz

SPL at sample A, 
dB

Frequency at B, 
Hz

SPL at sample B, 
dB

SST-IDDES 172 115.6 172 137.6
RSM-IDDES 176 114.3 176 136.8
Experiment 179 116.5 180 138.6
currence of K-H instability, the toroidal vortices gradually bend, 
break, pair, and ultimately impinge on the second stage. In the 
reattachment zone, the vortices gradually evolve into the hairpin-
like structure and longitudinal vortices.

The computed Cpavg (averaged pressure) and Cprms (root-mean-
square of fluctuation pressure) distributions of the two models are 
plotted with experimental data in Fig. 11. The experimental data 
presented by Coe and Nute was band-pass filtered (10-800 Hz). 
Therefore, to compare with the experimental data, the computed 
7

Cpavg and Cprms in Fig. 11 are also filtered. The comparison be-
tween the experimental data and computed Cpavg is plotted in 
Fig. 11a. As can be seen from the figure, the results of the two 
models are both in good agreement with the experimental data, 
especially the RSM-IDDES method is more consistent than the SST-
IDDES method in the recirculation region downstream of the faring 
boat tail, 0.35<x<0.65. Fig. 12a intuitively shows the discrepancy 
between the two models in Cpavg from the perspective of the spa-
tial mean flow regime. It can be seen from the figure that the 
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Fig. 7. PSD of pressure at A and B (a: the location of A and B, b: PSD of pressure at A, c: PSD of pressure at B).

Fig. 8. Computational grid for half-body configuration: (a) Topology of the grid in the vicinity of the payload faring. (b) The Far field and symmetric boundary conditions. (c) 
Surface grids in a side view. (d) Part names of hammerhead launch vehicle configuration.
streamline flowing out of the trailing edge of the fairing cylinder 
gradually bends away from the main flow and finally attaches to 
the second stage of the hammerhead configuration forming a sep-
aration bubble. The flow in the separation bubble is recirculated 
from the attachment point to upstream. As illustrated from the 
contour of the wall friction coefficient, in the recirculation zone, 
there is a section of the attached flow which corresponds to the in-
creasing section, 0.5<x<0.7, of Cpavg in Fig. 11a. And then the flow 
separates from the wall surface as the recirculation flow gradually 
approaches the faring boat tail. The size of the separation bubble 
formed by the impact of the free shear layer on the wall affects 
the position of the reattachment zone, which in turn affects Cpavg
distribution.
8

The comparison between the experimental data and computed 
Cprms is plotted in Fig. 11b. First, considering the peak position of 
Cprms , the position can be estimated at x=0.58 from the exper-
imental data, which are mostly consistent with the result calcu-
lated by the RSM-IDDES method, but there is some discrepancy 
when calculated with SST-IDDES method and the position is near 
x=0.62. The discrepancy of Cprms on the wall can be explained by 
the spatial distribution. Fig. 12b shows the distribution of Cprms on 
the cross-section along the generatrix and the wall surface calcu-
lated by the two models. Considering Fig. 9a, the mechanism for 
distribution of Cprms in Fig. 12b can be analyzed. After the free 
shear layer flowing out from the trailing edge of the fairing cylin-
der has undergone an extension process, it begins to lose stability 
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Fig. 9. a: Instantaneous density gradient contour obtained from SST-IDDES and RSM-IDDES; b: Iso-surface of Q-criterion obtained by the RSM-IDDES simulation at Ma=0.81.

Fig. 10. The instantaneous subgrid stress contour obtained from SST-IDDES and RSM-IDDES (a. the normal stress; b. the shear stress).

Fig. 11. Cpavg and Cprms distribution obtained by SST-IDDES and RSM-IDDES (a: Cpavg , b: Cprms).
gradually at a certain point in the flow field and produces the fluc-
tuation pressure. As the instability and breaking process of the free 
shear layer continues, a region containing various scales vortices 
that have significant fluctuation pressure is formed, furthermore 
this region intersects with the wall surface, forming a ring-shaped 
fluctuation pressure distribution on the surface. The position of the 
ring-shaped region is related to the peak position of Cprms , mean-
while it is affected by the speed of the instability process of the 
9

free shear layer under the mean sense. Because the instability pro-
cess predicted by the RSM-IDDES method is faster than SST-IDDES 
(the arrows in Fig. 12b indicate the previous statement on aver-
age, besides the instantaneous situation is shown in Fig. 9a), the 
peak position of Cprms by RSM-IDDES method is more forward than 
SST-IDDES method. Fig. 13 shows the time averaged subgrid stress 
calculated by the two methods, which reflects the instability pro-
cess of the free shear layer under the mean sense. The red ribbon 
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Fig. 12. a: Mean flow field contour obtained from SST-IDDES and RSM-IDDES, fluid zone is colored by mean velocity (nondimensionalized by the speed of sound) and filled 
with mean streamlines and surface zone is colored by the mean friction coefficient; b: Mean fluctuation flow field contour obtained from SST-IDDES and RSM-IDDES, colored 
by the root mean square of fluctuation pressure coefficient.

Fig. 13. a: Mean subgrid normal stress contour obtained from SST-IDDES and RSM-IDDES; b: Mean subgrid shear stress contour obtained from SST-IDDES and RSM-IDDES.
represents the shear layers shedding from fairing, it can be seen 
the “averaged” shear layer predicted by RSM-IDDES is also shorter 
than that of SST-IDDES. That means the instability of the shear 
layer by the RSM-IDDES occurs earlier than that of SST-IDDES un-
der the mean sense. It leads the free shear layer to shorten and hit 
the wall earlier forming a smaller separation bubble, the evidence 
is also shown in Fig. 9a. On the other hand, considering the peak 
of Cprms , the simulation results of both two models are larger than 
the experimental data. One reason for this difference could be due 
to the experiment not taking the measurement at the peak posi-
tion, near x=0.58), yet the result by RSM-IDDES model is smaller 
and closer to the experimental data than SST-IDDES model.

To compare the turbulent flow field simulated by SST-IDDES 
and RSM-IDDES in more detail, the time sequences of the flow 
field along the streamwise direction and azimuthal direction are 
extracted as shown in Fig. 14a. Fig. 14b shows the proportion of 
resolved turbulent kinetic energy to the overall turbulent kinetic 
energy, the resolved TKE are extracted from the line. It can be seen 
that both models have resolved more than 80% of the TKE, which 
means the grid size reaches the requirements of DES simulation 
for resolving the TKE [58]. The following will analyze the resolved 
turbulence structure by the two models from the perspective of 
two distributions in time and space. The analyses of power spectral 
density (PSD) of fluctuation velocity and turbulent kinetic energy 
spectrum, which respectively reflect the distribution of turbulent 
kinetic energy with frequency (temporal mode of Fourier analy-
sis) at a specific position and with wavenumber (spatial mode of 
10
Fig. 14. a: Schematic diagram of extraction line distribution for Fourier analysis; b: 
The proportion of computed resolved turbulent kinetic energy to the overall turbu-
lent kinetic energy obtained from SST-IDDES and RSM-IDDES along the extraction 
line.

Fourier analysis) at a specific moment. Since the main flow of the 
hammerhead configuration is axial direction flow, only the axial 
fluctuation velocity ‘u’ is considered for Fourier analysis, and the 
azimuthal average of the spectrum is implemented to make the 
spectral curves smooth. The two spectra in Fig. 15 and Fig. 16a are 
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Fig. 15. Distribution diagram of fluctuating velocity power spectral density along the 
streamline direction obtained by SST-IDDES and RSM-IDDES (angular frequency and 
power spectral density are both logarithmic coordinates).

PSD of fluctuation velocity at each axial position and turbulent ki-
netic energy spectrum at each moment, respectively. The spectrum 
is calculated by 2600 points, which is evenly located in range of 
0.412 to 0.95. All spectra are applied to the temporal or spatial 
sampling frequency to normalize the two-type spectra so that the 
integral of them at each streamwise position or moment is equal 
to the temporal or spatial average of resolved turbulent kinetic en-
ergy. Then these could be used to analyze the resolved turbulent 
kinetic energy distributions in the temporal and spatial modal.

First, from the perspective of temporal modal analysis, it can be 
seen from Fig. 15 that the frequency distribution of resolved tur-
bulent kinetic energy at each axial position is a wide-frequency 
distribution with no dominant frequency. There are more medium 
and low frequency components and fewer high frequency compo-
nents, which agree with the calculation in Ref. [20] and experiment 
in Ref. [55]. In the medium and low frequency ranges (angular fre-
quency is lower than 104), in front of the free shear layer attach-
ment point, the amplitude of fluctuation velocity PSD gradually in-
creases and reaches the peak near the attached point (near x=0.6). 
Behind the attached point, the amplitude of PSD mostly remains 
constant after a short period of decrease. In the high frequency 
range, the amplitude of PSD gradually decreases as the flow de-
velops backward along the axial direction after the attached point. 
This is due to the dissipation of high-frequency turbulent kinetic 
energy. From the comparison of fluctuation velocity PSD simulated 
by the two methods in Fig. 15, the RSM-IDDES method can capture 
more turbulent fluctuation (the amplitude of RSM-IDDES is larger 
than SST-IDDES) in the separation bubble, especially in the middle 
and high frequency regions, and there are few differences between 
the two methods outside the separation bubble.

On the other hand, from the perspective of spatial modal anal-
ysis, it can be seen from Fig. 16a that the distribution of resolved 
turbulent kinetic energy in the spatial wavenumber at each specific 
moment presents a classical distribution. This has low wavenum-
ber turbulent kinetic energy component than medium and high 
wavenumber, and the turbulent kinetic energy component gradu-
ally decreases as the wavenumber increases. The variation of the 
turbulent kinetic energy spectrum in the time history is different 
from the variation of fluctuation velocity PSD in the spatial range. 
The turbulent kinetic energy spectrum slightly fluctuates around 
the mean energy spectrum (as shown in Fig. 16b) over the whole 
time history since the fluctuation velocity is close to a stationary 
random process with a mean value of 0. The slight fluctuation of 
the turbulent kinetic energy spectrum in time history is due to the 
11
variations of turbulent flow field structures at each time caused by 
the development of the free shear layer. Comparing the simulation 
results of SST-IDDES and RSM-IDDES, the low wavenumber compo-
nents of the turbulent kinetic energy spectrum of the two meth-
ods are almost the same, while the medium and high wavenum-
ber components obtained by RSM-IDDES are relatively more than 
SST-IDDES. The more high-wavenumber turbulent kinetic energy 
components are captured by RSM-IDDES, means that the finer tur-
bulent structures are simulated. The same is also reflected in the 
turbulent eddy structure depicted by the density gradient contour 
in Fig. 9a. To visualize this difference between the two methods 
more clearly, the energy spectrum is averaged over the time dis-
tribution as shown in Fig. 16b. The Kolmogorov law (with a k−5/3 
slope) is observed. It is worth noting that the spectrum predicted 
by RSM-IDDES method has a greater subrange that follows the Kol-
mogorov law.

4. Conclusion

A general construction approach of a class of DES methods, 
which have the turbulent length-scale equation, is presented 
based on the assumption of equilibrium turbulence. By using 
the proposed construction approach, an IDDES method based on 
SSG/LRR-ω RSM turbulent model has been developed and imple-
mented in an in-house hybrid unstructured Navier-Stokes solver. 
The model coefficients of the RSM-based IDDES method are cal-
ibrated by DIT simulations. The performance of RSM-IDDES has 
been explored by simulating the massively separated flows around 
the tandem cylinders and the transonic buffet flow over a ham-
merhead launch vehicle. The predictions are validated by the 
available experimental data, and the performance is evaluated by 
means of instantaneous, statistical, spectral analysis of the nu-
merical data comparing with that of SST-based IDDES. The result 
indicates that the mean Cp and Cprms obtained by the RSM-based 
IDDES method show better agreements with the experiments than 
that of SST-based IDDES.

The massively separated flow behind the bluff body is well re-
produced. The flow topology is characterized by the free shear 
layer developing from the upstream boundary layer and gradu-
ally losing stability after a period of extension. After the free 
shear layer loses stability, it breaks into various scales vortices 
and merges together as they are being convected downstream and 
forms the wake. These processes that result from the anisotropy 
in the Reynolds stress are well captured by the RSM-based ID-
DES, because the exact production terms. Thus, the RSM-based 
IDDES provides more refined vortex structures than the SST-IDDES 
method and shows a certain advantage over the SST-based IDDES 
method, as compared with experiments.

Work is currently under way to study the buffet flow around 
NASA common research model, as well as to improve the perfor-
mance of RSM-IDDES.
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Fig. 16. a: Distribution diagram of fluctuating velocity energy spectrum along the time history obtained by SST-IDDES and RSM-IDDES (angular wavenumber and energy 
spectrum are both logarithmic coordinates); b: Distribution diagram of fluctuating velocity energy spectrum with the time average obtained from SST-IDDES and RSM-IDDES 
(angular wavenumber and energy spectrum are both logarithmic coordinates).

Fig. B1. Effect of different CDES-constants in RSM-IDDES on the energy spectrum in the DIT case, t∗ = 2.0 (a. SSG branch, b. LRR branch).
Appendix A. Adaptive dissipation Roe scheme

The adaptive dissipation Roe scheme [39,40] is given by:

F adapt = 1

2
(F L + F R) − φ

1

2
|ARoe|( Q R − Q L) (A.1)

F L, F R are the left and right values of the convective flux respec-
tively. ARoe is the Roe matrix. Q R , Q L are the left and right values 
of conserved variable respectively. φ is the adaptive dissipation fac-
tor.

φ = φmax tanh
(

AC H1) (A.2)

Where A = C H2 · max{[CDES�/Lturb/g − 0.5]; 0}, Lturb = [(υt +
υ)/(C3/2

μ K )]1/2, K = max{[(S2 + �2)/2]1/2; 0.1τ−1}.
τ is the characteristic time which is calculated by character-
istic length and velocity (τ = L0/U0), g = tanh(B4) and B =
C H3 · � · max(�, S)/ max[(S2 + �2)/2, 10−20], S =

√
2 S̃ i j S̃ i j , � =√

2W̃ ij W̃ i j , W̃ ij = (Ũ i, j − Ũ j,i)/2.
The constants are given as: φmax = 1, C H1 = 3, C H2 = 1, C H3 = 2.

Appendix B. Calibration of CDES using Roe scheme

The numerical dissipation has a significant influence on the 
energy spectrum of DIT, as presented in Ref. [39]. Therefore, the 
adaptive dissipation Roe scheme has been used in the whole study. 
12
The CDES is a parameter that is also occupied in the scheme, and 
the value of CDES will affect the numerical dissipation. In order 
to validate the RSM-IDDES in our code, we have also performed 
the DIT simulations with the Roe scheme. The numerical dissipa-
tion is manually reduced by using a very small dissipation factor 
(φ = 0.05). The results are plotted in Fig. B1. It was found that 
CDES,LRR = 0.5 and CDES,SSG = 0.3 show better performance at the 
high-wavenumber.
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