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A B S T R A C T

A new super-resolution model, namely the turbulence volumetric super-resolution (TVSR) model, is developed
based on convolutional neural network (CNN) to reconstruct three-dimensional high-resolution turbulent flow
field data from low-resolution data. Direct numerical simulation (DNS) and corresponding filtered DNS (FDNS)
data of homogeneous isotropic turbulence at various Reynolds numbers are used to train the TVSR model. The
proposed model is a modification of Liu et al. (2020), aiming to provide an improved generalization capability
of the super-resolution model. For this purpose, we propose a patchwise training strategy in consideration of the
property of turbulence that the velocity correlation between two points diminishes as the separation becomes
sufficiently large. Furthermore, data at various Reynolds numbers are combined together to train the model.
In comparison with existing models, the present TVSR model shows a better generalization capability in two
aspects. First, the TVSR model trained using data at low Reynolds numbers is found robust and accurate in
the super-resolution reconstructions of flow fields at higher Reynolds numbers. Second, although only DNS
data are used for training, the TVSR model is also robust in reconstructing high-resolution flow fields from
low-resolution data obtained from large-eddy simulation (LES). This feature of the TVSR model provides a
new access to obtain turbulent motions at unresolved scales in LES studies of turbulent flows.
1. Introduction

High-resolution flow data are valuable for investigations of flow
structures and statistics of turbulent flows. In the context of computa-
tional fluid dynamics, the direct numerical simulation (DNS) resolves
turbulent motions at all scales and provides high-resolution flow data.
However, it is expensive to apply DNS in practical flows at high
Reynolds numbers, because the computational cost of DNS increases
rapidly at a rate of the cube of the Reynolds number [1–3]. As a com-
promise, the large-eddy simulation (LES) resolves turbulent motions at
large scales using grids with relatively low resolution to reduce the
computational cost, while the effects of unresolved motions on resolved
flow fields are approximated using a subgrid-scale model [4,5]. How-
ever, in certain applications, such as turbulent acoustics and transport
of small particles [6–10], the small-scale unresolved motions can be
also critical. In the present study, we aim at reconstructing turbulent
motions at all scales from low-resolution flow fields obtained from LES.

There are various flow field reconstruction models, including the ap-
proximate deconvolution method (ADM), stochastic model, kinematic
simulation (KS) model, hybrid models and Gabor mode enrichment
model. In the ADM [11,12], the unresolved flow field is reconstructed

∗ Corresponding author at: The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
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as a truncated expansion of the inverse filter operator with respect to
the filter operator, which improves the LES result of the flow field
at resolved scales. However, as noted by Cernick et al. [13], the
ADM does not reconstruct turbulent motions at unresolved scales. In
stochastic models [14,15], the subgrid-scale flow field is treated as
a white noise given by the solution of the Langevin equation that
governs the Brownian motion supplemented with random sources [16].
Recently, Barge and Gorokhovski [17] proposed a stochastic subgrid
acceleration model by employing the LES equations with a forcing term
on the smallest resolved scales to simulate the effects of the dynamics
at subgrid scales. In KS models [18–22], the turbulent-like flows are
generated using a series of random Fourier modes, of which the energy
spectra follow a prescribed −5∕3-scaling law at the inertial subrange.
The hybrid ADM/KS model [23] reconstructs the energy spectra at
both resolved and subgrid scales and accurately predicts the Lagrangian
statistical properties, but it only generates Gaussian turbulence without
recovering the small-scale intermittency of turbulence [24]. Moreover,
Ghate and Lele [25] developed the turbulence enrichment approach us-
ing the spectrally localized Gabor modes, which offers an optimal basis
to represent small-scale turbulence within quasi-homogeneous regions.
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This approach showed promising results in the LES of two problems at
high Reynolds numbers, namely the homogeneous isotropic turbulence
and a rough-wall turbulent boundary layer flow [26].

In recent years, machine learning is applied to solve various prob-
lems in turbulence research [27,28], including the development of
turbulence models [29–31], temporal prediction of turbulence [32,33],
turbulence identification [34,35], turbulent flow control [36,37], and
flow field reconstruction [38–47]. In the following content, we focus on
the applications of machine learning to the flow field reconstruction.

Maulik and San [38] proposed to use a single-layer feed-forward
artificial neural network (ANN) to recover an original flow field from
artificially prescribed perturbations (in terms of applying a Gaussian
filter or adding white noise). Their model performed well in the a
priori tests of two-dimensional (2D) homogeneous isotropic turbulence,
three-dimensional (3D) decaying homogeneous isotropic turbulence,
and compressible stratified turbulence. The ANN was then used as con-
volutional and deconvolutional maps between a subsampled DNS flow
field and a filtered DNS flow field to close the 2D LES equations [39].
Beck et al. [40] used the ANN and a convolutional neural network
(CNN) to learn the filtered momentum fluxes in LES of decaying ho-
mogeneous isotropic turbulence. They found that the CNN performed
well in reconstructing the closure terms. Xie et al. [48] proposed a
spatially multi-scale ANN to reconstruct the SGS stress and heat flux
of compressible isotropic turbulence, which showed an advantage over
the dynamic mixed model in the prediction of the spectra of velocity
and temperature. In the above applications of ANN and CNN to the flow
field reconstruction, the resolution of the reconstructed flow variable
is limited to the same as that of the input data, while the turbulent
motions at unresolved scales corresponding to a higher resolution
remain unavailable.

Fukami et al. [41] conducted super-resolution reconstruction of
turbulent flow field using two different machine learning approaches,
namely the CNN and the hybrid downsampled skip-connection/multi-
scale models. These models were examined in the context of 2D cylin-
der wake flow and 2D decaying isotropic turbulence, which showed the
capability of machine learning in reconstructing high-resolution lami-
nar and turbulent flow fields from low-resolution data. Deng et al. [42]
applied the enhanced super-resolution generative adversarial network
(ESRGAN) to reconstruct the flow around a single cylinder and the
wake flow of two side-by-side cylinders obtained from laboratory exper-
iments. The analyses of instantaneous fields, statistical flow quantities,
and spatial correlations showed that high-resolution flow fields were
reasonably reconstructed. The ESRGAN was also applied to reconstruct
the 3D velocity fields of homogeneous isotropic turbulence [44] and
decaying turbulence [45]. In these applications, the reconstructed flow
field showed visually realistic image. Recently, Liu et al. [47] used
static CNN (SCNN) and multiple temporal paths CNN (MTPCNN) mod-
els for the super-resolution reconstruction in 3D homogeneous isotropic
turbulence. The energy spectra and PDF of the velocity gradients
obtained from the MTPCNN models were closer to the DNS results
than those obtained form SCNN. Kim et al. [49] used a cycle-consistent
generative adversarial network (CycleGAN) to train an unsupervised
super-resolution model, which showed an excellent ability on recon-
structing small-scale structures of isotropic turbulence and channel
turbulence. The models of Liu et al. [47] and Kim et al. [49] were
both essentially 2D models, while the 3D high-resolution flow field is
reconstructed by applying the model slice by slice to 2D low-resolution
flow fields.

Inspired by the above pioneering works on the super-resolution
models, we propose a turbulence volumetric super-resolution (TVSR)
model using CNN to reconstruct the 3D high-resolution homogeneous
isotropic turbulence from the low-resolution flow data by modifying
the super-resolution model of Liu et al. [47]. In comparison with
the existing super-resolution models, the proposed model is different
mainly in the following two aspects. First, the proposed model applies
2

a patchwise training strategy, considering that the velocity correlation
between two points diminishes as the separation becomes sufficiently
large. This strategy also enables the training of TVSR model using
data at different Reynolds numbers together, and thus provides a
possibility of applying the model to higher Reynolds numbers. Second,
the proposed model directly processes 3D flow fields, instead of dealing
with 2D slices as in previous studies. This treatment is physically more
reasonable, considering that the turbulence is a three-dimensional flow
phenomenon. Meanwhile, for the same grid ratio 𝑟, the available infor-
mation of low-resolution data is 1∕𝑟2 and 1∕𝑟3 that of high-resolution
ata for 2D and 3D fields, respectively. As a result, it is computationally
ore expensive to train a 3D model than a 2D model. The performance

f the TVSR model is evaluated by comparing the instantaneous vortex
tructures and turbulent statistics obtained from the TVSR model and
NS. In the a priori tests, the reconstructions of filtered DNS (FDNS)

napshots at various Reynolds numbers are performed to examine the
ccuracy of the model. In the a posteriori test, the TVSR model is applied
o the super-resolution reconstructions of flow fields obtained from LES.
he remainder of this paper is organized as follows: In Section 2, the
umerical details of the DNS and LES of isotropic turbulence and the
ata for training and validating the models are described. The training
pproach and parameters of the TVSR model are given in Section 3.
he a priori and a posteriori test results are presented in Section 4, with
he conclusions of this research given in Section 5.

. Data preparation

In this section, we describe the data of homogeneous isotropic
urbulence used for training and validating the TVSR model. The gov-
rning equations and numerical methods employed for conducting DNS
nd LES are given in Sections 2.1 and 2.2, respectively. The filters used
or generating low-resolution FDNS data are introduced in Section 2.3.

.1. Direct numerical simulation

The DNS data are generated by solving the following Navier–Stokes
quations for incompressible flows

⋅ 𝐮 = 0, (1)

𝜕𝐮
𝜕𝑡

= 𝐮 × 𝝎 − ∇
(

𝑝
𝜌
+ 1

2
𝐮2
)

+ 𝜈∇2𝐮 + 𝐟 (𝐱, 𝑡) , (2)

where 𝐮 denotes the velocity, 𝝎 = ∇ × 𝐮 is the vorticity, 𝑝 is the
pressure, and 𝜌 and 𝜈 represent the density and kinematic viscosity of
fluid, respectively. The turbulent flow is sustained by a deterministic
forcing term 𝐟 (𝐱, 𝑡), of which the value is nonzero at Fourier modes with
wavenumber magnitudes no larger than 2.0. With this deterministic
forcing, statistically steady turbulence is generated by maintaining
constant energy production inside the first two wavenumber shells, and
the energy ratio between the two shells follows the 𝑘−5∕3 scaling law
of the energy spectra [50].

The DNS of homogeneous isotropic turbulence is conducted using a
standard pseudo-spectral method code in a periodic cubic domain, of
which the length of each edge is 𝐿. The computational domain is dis-
cretized uniformly using 𝑁3 grid points. In Fourier space, Eqs. (1)∼(2)
are expressed as
( 𝜕
𝜕𝑡

+ 𝜈𝑘2
)

�̂� (𝐤, 𝑡) = 𝐏 (𝐤) (𝐮 × 𝝎) + �̂� (𝐤, 𝑡) , (3)

where �̂� (𝐤, 𝑡) =  (𝐮) denotes the Fourier coefficients of the veloc-
ity, with  being the Fourier transformation operator. The projec-
tion tensor 𝐏 (𝐤) = 𝛿𝑖𝑗 − 𝑘𝑖𝑘𝑗∕𝑘2 (𝑖, 𝑗 = 1, 2, 3) projects  (𝐮 × 𝝎) onto
the plane normal to the wavenumber vector 𝐤 = [𝑘1, 𝑘2, 𝑘3] and
eliminates the pressure gradient term in Eq. (2). The wavenumber
components in Fourier space are defined as 𝑘𝑗 = 𝑛𝑗 (2𝜋∕𝐿), where
𝑛𝑗 = −𝑁∕2,… ,−1, 0, 1,… , 𝑁∕2 − 1 for 𝑗 = 1, 2, 3. In physical space,
the grid is evenly spaced in all three directions, and its resolution is

𝛥 = 𝐿∕𝑁 . Due to the use of the 2∕3 rule for eliminating the aliasing
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Table 1
DNS parameters of isotropic turbulent flows in a
statistically steady state.
𝑅𝑒𝜆 𝑁3 𝛥∕𝐿

64.43 1283 0.0491
128.78 2563 0.0245
205.51 5123 0.0123
302.04 10243 0.00614

error, the maximum resolvable wavenumber is 𝑘max = 2𝜋∕(3𝛥) [23,51].
The spatial resolution is monitored by the value of 𝑘max𝜂, where 𝜂
is the Kolmogorov length scale. The value of 𝑘max𝜂 should be larger
than 1.0 for small-scale turbulent motions being well resolved, and
𝑘max𝜂 = 1.3 is utilized in all DNS cases in the present study. The fluid
velocity in Fourier space is advanced in time using a second-order
Adams–Bashforth method and an exact integration for the nonlinear
terms and the linear viscous term, respectively. The time step is chosen
to ensure that the Courant–Friedrichs–Lewy (CFL) number is 0.5 or less
for numerical stability.

Table 1 summarizes the parameters of DNS cases. As shown, we
have conducted four DNS cases. The Reynolds number 𝑅𝑒𝜆 = 𝑢′𝜆∕𝜈
ranges from 64.43 to 302.04, where 𝑢′ =

√

⟨𝑢𝑖𝑢𝑖⟩ ∕3 is the velocity
luctuation intensity, and 𝜆 =

(

15𝜈𝑢′2∕𝜀
)1∕2

is the Taylor microscale,
with 𝜀 being the energy dissipation rate. The number of grid points is
128, 256, 512, 1024, respectively, which yields a finer grid resolution
𝛥∕𝐿 for cases at higher Reynolds numbers.

.2. Large eddy simulation

The LES of homogeneous isotropic turbulence is performed using
he same code for DNS with lower grid resolution. The governing
quation in Fourier space for the LES is expressed as
𝜕
𝜕𝑡

+
[

𝜈 + 𝜈𝑒
(

𝑘 |
|

𝑘𝑐
)]

𝑘2
)

�̂� (𝐤, 𝑡) = 𝐏 (𝐤)
(

𝐮 × 𝝎
)

+ �̂� (𝐤, 𝑡) , (4)

here 𝐮 and 𝝎 are the resolved velocity and vorticity in physical space,
espectively. Compared with the one for DNS given by Eqs. (3), the
overning equation for LES contains an additional eddy-viscosity 𝜈𝑒,
hich is calculated using the spectral eddy-viscosity model [52,53] as

𝑒
(

𝑘 |
|

𝑘𝑐
)

= 𝜈+𝑒
(

𝑘 |
|

𝑘𝑐
)

√

𝐸
(

𝑘𝑐
)

∕𝑘𝑐 , (5)

𝜈+𝑒
(

𝑘 |
|

𝑘𝑐
)

= 𝐶−3∕2
𝑘

[

0.441 + 15.2 exp
(

−3.03 𝑘𝑐∕𝑘
)]

, (6)

here 𝑘𝑐 denotes the wavenumber corresponding to the filtering scale,
(

𝑘𝑐
)

is the energy spectrum value at 𝑘 = 𝑘𝑐 , and 𝐶𝑘 = 2.0 is a
constant.

2.3. Filtered direct numerical simulation

To generate low-resolution FDNS data, the DNS velocity field is
filtered spatially using the following convolution

𝐮 (𝐱) = ∫ 𝐺 (𝐫)𝐮 (𝐱 − 𝐫)d𝐫, (7)

where 𝐺 is the filtering function. In the present study, three types of
filter functions listed in Table 2 are used to obtain different groups of
FDNS data. In the table, 𝛥 denotes the filtering scale, with 𝑘𝑐𝑓 = 𝜋∕𝛥
being the corresponding filtering wavenumber. The filtering operation
is performed in Fourier space, and the filtered velocity �̃� (𝐱, 𝑡) in phys-
ical space is computed as the Fourier transformation of ̂̃𝐮 (𝐤, 𝑡). Among
the three filter functions listed in Table 2, the sharp spectral filter is
sharp in spectral space but nonlocal in physical space; the box filter is
local in physical space but not effective at filtering the energy at high
wavenumbers; only the Gaussian filter is reasonably compact in both
3

physical and spectral space. The difference of transfer function between
Table 2
Three filter functions used for generated the FDNS data.

Filter function FDNS velocity �̃� (𝐱, 𝑡) =
𝑘max
∑

|𝐤|=1

̂̃𝐮 (𝐤, 𝑡) 𝑒𝑖𝐤⋅𝐱

Sharp spectral filter ̂̃𝐮 (𝐤, 𝑡) = �̂� (𝐤, 𝑡) ⋅𝐻
(

𝑘𝑐𝑓 − |𝐤|
)

Gaussian filter ̂̃𝐮 (𝐤, 𝑡) = �̂� (𝐤, 𝑡) ⋅ exp
(

− |𝐤|2𝛥2

24

)

Box filter ̂̃𝐮 (𝐤, 𝑡) = �̂� (𝐤, 𝑡) ⋅
sin

(

|𝐤|𝛥∕2
)

|𝐤|𝛥∕2

Table 3
The parameters of DNS at different 𝑅𝑒𝜆 and the generated
low-resolution FDNS data with 𝑘𝑐𝑓 ∶ 𝑘max = 1 ∶ 4.

𝑅𝑒𝜆 𝑁3 (DNS) 𝑁3 (FNDS) 𝛥∕𝐿

64.43 1283 323 0.2945
128.78 2563 643 0.1473
205.51 5123 1283 0.0736
302.04 10243 2563 0.0368

them is compared by the energy spectra of FDNS, as shown in Figure 1
of a previous study [30].

Note that the filtered velocity field obtained from the approach de-
scribed above has the same resolution as DNS. To extract low-resolution
data, we extract velocity at every 𝑟 grid points in each direction, where
𝑟 = 𝑘max∕𝑘𝑐𝑓 denotes the resolution ratio between the FDNS and DNS
data. To obtain the flow data with different resolutions, we generate
FDNS data with 𝑘𝑐𝑓 ∶ 𝑘max = 1 ∶ 4 for different cases. The parameters
of FDNS data are summarized in Table 3.

3. Turbulence volumetric super-resolution model

3.1. Method

To reconstruct 3D high-resolution turbulence data 𝐈𝐻𝑅 from low-
resolution turbulence data 𝐈𝐿𝑅 using a deep learning algorithm, it is
essential to establish a mapping function  between them, viz.

𝐈𝐻𝑅 = 
(

𝐈𝐿𝑅,𝐰
)

, (8)

where 𝐰 is the weight. The value of 𝐰 is trained using the Adam opti-
mizer [54], an algorithm for gradient-based optimization of stochastic
objective functions:

 = argmin
𝐰

(

‖̂𝐈𝐻𝑅 − 𝐈𝐻𝑅‖
2
2 + 𝜆‖𝐰‖22

)

, (9)

where �̂�𝐻𝑅 is the high-resolution data reconstructed using the neural
network, and the mean square error between �̂�𝐻𝑅 and the correspond-
ing DNS data 𝐈𝐻𝑅 is used as the loss function. The L2 regularization
term 𝜆‖𝐰‖22 (𝜆 is an regularization parameter) is included to avoid
overfitting. Specifically, the value of 𝜆‖𝐰‖22 increases as the neural
network becomes more complex. Therefore, this term is added to
prevent the neural network from being overly complex, and as such
overfitting is avoided.

Fig. 1 shows the schematic diagram of the proposed TVSR network,
while the hyperparameters are listed in Table 4. From Fig. 1, it is seen
that the proposed TVSR network is mainly composed of residual blocks
and upscale modules. The residual network, consisting of multiple
residual blocks has exhibited excellent performance in computer vision
problems in recently years [55–58]. The number of residual blocks 𝑚 is
an important hyperparameter of the TVSR model. Its effect on the train-
ing accuracy is given in Section 3.2. Each residual block consists of two
3D convolutional layers and one rectified linear unit (ReLU) activation
layer as shown in Fig. 1(b), and there is a short skip connection between
the input and output of the first and second convolutional layers,
respectively. Each convolutional layer consists of multiple filter kernels,
which is used to extract low-resolution input features. The number of
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Fig. 1. Schematic diagram of (a) the proposed turbulence volumetric super-resolution network (TVSR) and (b) residual block, (c) upscale module in the TVSR.
Fig. 2. The variations of the normalized loss function with the training epochs in
the training and validation datasets. The loss function is normalized using the mean
square of the real output, and the initial error at the zeroth epoch of about 1.0 for
both training and validation datasets are not shown in the logarithmic coordinates. The
maximum number of training epochs is set to 150.

filter kernels is another adjustable hyperparameter, of which the effect
on the training accuracy is also investigated in Section 3.2. In order
to avoid the gradient vanishing and exploding problems in the deep
network, a long skip connection is applied over the residual blocks,
and this treatment is found to be effective at improving the accuracy
of the super-resolution model in previous studies using EDSR and RCAN
methods [58,59]. The size of filter kernel in each convolutional layer
is 𝑘 × 𝑘 × 𝑘. Theoretically, increasing the value of 𝑘 can expand the
range of feature extraction from the data, while the computational cost
increases correspondingly. The present value 𝑘 = 3 is chosen following
the common practice in many previous studies.

The upscale module is composed of one 3D convolutional layer
and one 3D transposed convolutional layer [60], followed by a ReLU
activation layer as shown in Fig. 1(c). The number of upscale module
is determined by the grid ratio 𝑟 between the low-resolution and high-
resolution data. Specifically, each upscale module can upsample the
low-resolution input by an upscaling factor 𝑟′ = 2. In the present study,
TVSR models for 𝑟 = 4 are trained and tested, and therefore the number
of upscale module is 𝑛 = 2. We further note here that although 𝑛 is a
hyperparameter, it is not adjustable but determined by the grid ratio
𝑟. In other words, if the grid ratio 𝑟 changes, a new model needs to
be trained. An alternative chain-upscaling strategy can avoid training
a new model, that is, to train a model with 𝑟 = 2 using data at different
grid resolutions and Reynolds numbers. After training, the model is
4

then applied 𝑛 times to conduct the super-resolution reconstruction
Table 4
The hyperparameters of the TVSR network.
Number of residual blocks (𝑚) 8
Number of filter kernels (𝑓 ) 128
Filter kernel size (𝑘) 3
Number of upscaling modules (𝑛) 2
Activation function ReLU

with grid ratio of 2𝑛. However, the accuracy of the TVSR model based
on such a chain-upscaling strategy decreases with the increase of 𝑛
because of the cumulative error in deep network. In the a priori test
with 𝑟 = 4, we find that the performance of applying twice the TVSR
model with 𝑟 = 2 is much less satisfactory than that of applying the
TVSR model with 𝑟 = 4. Therefore, the chain-upscaling strategy is not
adopted in the present study, and the corresponding results are not
presented in this paper.

3.2. Training of TVSR model

Table 5 gives the parameters of training dataset, including the sizes
of input and output data, and the number of training samples. As
shown, the flow data at two lower Reynolds numbers, i.e. 𝑅𝑒𝜆 = 64.43
and 128.78, are used for training the model. To ensure that the model
can be generalized to flows at higher Reynolds numbers with different
numbers of grid points, we choose a patch-by-patch reconstruction
strategy. Such a patchwise reconstruction strategy is also supported by
an important property of turbulence, that is, the correlation of velocity
at two points diminishes as the separation is sufficiently large. The
patch size of 𝑁𝑝 = 16 is chosen to train the model, and as such the
total number of grid points in a 3D patch is 163 and 643 for FDNS and
DNS data, respectively. Here, the ‘‘patch size’’ refers to the number of
grid points of each patch. The effects of the patch size on the training
accuracy and model performance are investigated in Appendix A. To
minimize the discontinuity in the velocity gradient at the edges of
two adjacent patches, the patches are chosen with overlapping regions.
Specifically, the grid interval between two sampling patches is 4 and 8
for 𝑅𝑒𝜆 = 64.43 and 𝑅𝑒𝜆 = 128.78, respectively. Due to the limitation in
the computer memory, the data are grouped into batches to train the
model. The number of patches in each batch (named as ‘‘batch size’’)
is 16, which means that the input of TVSR model for each training step
is a matrix with the size of 16 × 16 × 16 × 16 and the output is a matrix
of 64 × 64 × 64 × 16.

Fig. 2 compares the training loss of TVSR models with different
combinations of the numbers of residual block (𝑚) and filter kernel
(𝑓 ). Here, different filter kernel could extract different feature maps,
which gives a comprehensive representation of the flow features. The
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Table 5
The parameters of our training dataset.
𝑅𝑒𝜆 FDNS DNS Input patch Output patch Grid interval Number of patches

64.43 323 1283 163 643 4 2625
128.78 643 2563 163 643 8 7203
vertical axis represents the loss function normalized by the mean square
of the real output 𝐈𝐻𝑅, the horizontal axis represents the number of
training epochs. In each training epoch, the proportion of training
dataset contains 90% of the total training patches, while the remaining
10% patches are used as validation dataset.

As shown in the figure, the initial value of the loss function is
relatively large, because the trainable parameters in the network are
randomly initialized. The value of the loss function in general decreases
as the number of epochs increases. In the few beginning epochs,
the weight and bias coefficients are trained to optimize the objec-
tive function and the loss decreases rapidly. After that, the values of
the normalized loss function for both training and validation datasets
approach a steady small value of 𝑂(10−3) in several training epochs,
ndicating the success of training. It is also seen from Fig. 2 that when
he number of residual blocks is set to 𝑚 = 2 or 4, the validation loss
onverges to a larger value than the training loss. As 𝑚 increases to 8,
he variation in the loss function between the training and validation
atasets decreases significantly. Note that close values of the training
oss and validation loss are desired, as this is an indication that the
raining is not overfitted. Therefore, 𝑚 = 8 is chosen in the present study
o train the TVSR model. Furthermore, it is seen that the validation loss
onverges to similar values when the number of filter kernels is set to
= 64 and 128. This indicates that increasing the value of 𝑓 does not

improve the training accuracy, and 𝑓 = 128 is sufficient to train the
TVSR model.

Thus far, the effects of the numbers of residual blocks 𝑚 and filter
kernels 𝑓 are discussed. In Appendix B, we further provide an eval-
uation on the computational complexity of the TVSR model based on
different sets of 𝑚 and 𝑓 , together with more details of our training tool.
Besides, the requirements for carrying out full DNS at various Reynolds
numbers are also given for comparison. It is evident from Appendix B
that the computational cost of LES+TVSR model is significantly smaller
than DNS.

4. Results and discussion

4.1. Accuracy test

To examine the performance of the TVSR models, the instantaneous
and statistical results of the reconstructed fields are compared with the
DNS results. In this section, we examine the models in the context of
two lower Reynolds numbers 𝑅𝑒𝜆 = 64.43 and 128.78. The data for
these two Reynolds numbers are used to train the model. However,
the results presented in this section are obtained from the application
of the TVSR models to testing data, which have no overlap with the
training data. Such a testing approach is a fundamental requirement of
machine learning, that is, after training, the model should be applied
to testing data varying from the training data. The test results at
higher Reynolds numbers are given in Section 4.2 to examine the
generalization capability of the TVSR models.

Fig. 3 displays the contours of three velocity components in a 2D
slice at 𝑅𝑒𝜆 = 64.43 obtained from DNS, FDNS and TVSR models. The
Gaussian and sharp spectral filters are denoted as ‘GF’ and ‘SF’ in the
figure, respectively. As described in Section 2.3, we have also trained
a TVSR model corresponding to the box filter. Because both Gaussian
filter and box filter are localized operators confined in a finite region in
physical space, the two corresponding TVSR models yield similar super-
resolution reconstruction in terms of both instantaneous and statistical
results. Therefore, we use the Gaussian filter as a representative to
5

present the results of these two models. As shown in Fig. 3, compared
to the DNS results in the middle column, the FDNS flow fields shown
in the first and last columns are smeared due to the loss of small-scale
information in the flow field. The reconstructed flow fields displayed
in the second and fourth columns are visually consistent with the DNS
results.

To further conduct a quantitative examination of the reconstructed
flow field, the energy spectra obtained from DNS, FDNS and TVSR
models are compared in Fig. 4. As shown in Fig. 4(a), the energy spectra
obtained from the TVSR model corresponding to the Gaussian filter
agrees well with the DNS results, indicating that velocity fluctuations
at different scales are well reconstructed. From Fig. 4(b), it is seen that
although the TVSR model corresponding to the sharp spectral filter
underestimates the energy spectra, it mostly recovers the energy at
unresolved scales in comparison to the FDNS data. Different from the
Gaussian and box filters, the sharp spectral filter is sharp in spectral
space, associated with a global dependency in physical space [30,61].
To be specific, the velocity at each single point of the FDNS flow
field relies on the velocity of the entire DNS flow field. The proposed
TVSR model reconstructs the flow field using a patch-by-patch strategy,
while in each patch, the flow data outside the patch remain unknown.
Therefore, compared to the FDNS data based on the Gaussian and box
filters, it is more difficult for the proposed TVSR model to reconstruct
a high-resolution flow field from an FDNS flow field based on a sharp
spectral filter.

A straightforward approach for overcoming the aforementioned dif-
ficulty in the present patch-by-patch model is to train the model using
the entire field data, a strategy that is used in most previous super-
resolution models [41,42,47]. However, the global training approach
limits the generalization capability of the model to higher Reynolds
numbers, because the number of grid points for the low-resolution
flow data varies with the Reynolds number. In other words, if a model
trained using low-Reynolds number data is used to reconstruct a flow
field at a higher Reynolds number, it can be only applied in a patch-
by-patch manner. However, different from the velocity fluctuations at
inertial subrange, of which the energy spectra follow the −5∕3 law with
respect to the wavenumber, the velocity fluctuations at large scales,
or integral scales, do not show similarity as the Reynolds number in-
creases. Therefore, it should not be expected that a model trained using
global flow data can be well generalized to a higher Reynolds number.
In fact, to the knowledge of the authors, there is no examination of
the generalization capability in previous studies of super-resolution
models. On the other hand, the generalization capability is a highly
desired feature of a super-resolution model, which enables the appli-
cation of a model trained using flow data at low Reynolds numbers
(usually available from DNS) to reconstruct high-resolution data at high
Reynolds numbers (infeasible to obtain from DNS due to the limitation
in computer power). Based on the above considerations, we decide to
choose the patch-by-patch strategy to train the TVSR models, with an
acceptable regression in the accuracy.

4.2. Applications to higher Reynolds numbers

In this section, we further investigate the generalization capabil-
ity of the TVSR models by examining their performances at higher
Reynolds numbers (𝑅𝑒𝜆 = 205.51 and 302.04), of which the data are
not used to train the model. Fig. 5 shows the velocity component 𝑢 of
3D isotropic turbulence at 𝑅𝑒𝜆 = 302.04 obtained from FDNS, DNS, KS
model and TVSR model corresponding to the Gaussian filter. The results
obtained from another super-resolution method, namely the KS model,

is also displayed for comparison. In each panel, the upper row shows
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Fig. 3. Contours of the velocity field 𝑢, 𝑣, 𝑤 at the 𝑥 = 0.0 slice of 3D isotropic turbulence from DNS, FDNS and TVSR model corresponding to the Gaussian and sharp spectral
filters (𝑅𝑒𝜆 = 64.43). GF and SF stand for Gaussian filter and sharp spectral filter, respectively.
Fig. 4. Energy spectra obtained from DNS, FDNS and TVSR model corresponding to (a) the Gaussian filter and (b) the sharp spectral filter. The results for 𝑅𝑒𝜆 = 64.43 and 128.78
are shown here.
the entire domain of a 2D slice, while the bottom row displays the left-
bottom region, denoted by a dashed box in the upper row. Similar to
the results shown in Fig. 3 for the lower Reynolds numbers, the FDNS
flow field is smeared, while the reconstructed high-resolution flow field
obtained from the TVSR model is visually consistent with the DNS
result. In the KS model [23], the subgrid turbulence, generated as a set
of random Fourier modes, is superimposed to the low-resolution FDNS
flow field. Although the KS model partially recovers the small-scale
turbulent structures, the random and frozen subgrid turbulence also
makes the plots of the velocity fields noisier than the DNS results. In
contrast, the flow field reconstructed using the TVSR model are visually
smoother than the results of the KS model.

Fig. 6 compares the energy spectra obtained from DNS, FDNS, TVSR
model and KS model. In the KS model, the subgrid energy spectra ob-
tained from DNS are used as input, such that the reconstructed energy
spectrum is coincident with the DNS results. In other words, if the DNS
result of energy spectra remain unknown, the KS model cannot be used
to reconstruct a high-resolution flow field. In contrast, once the training
is finished, the TVSR model does not need energy spectra as input
to reconstruct the high-resolution flow field due to its generalization
capability. As shown in Fig. 6(a), the TVSR model corresponding to the
Gaussian filter also gives an accurate prediction of the energy spectra
6

at both 𝑅𝑒𝜆 = 205.51 and 302.04. The TVSR model corresponding
to the sharp spectral filter also makes reasonable prediction on the
energy spectra at higher Reynolds numbers in Fig. 6(b), similar to the
test results at low Reynolds numbers shown in Fig. 4(b). As noted in
Section 4.1, the discrepancy between the results of DNS and TVSR
model corresponding to the sharp spectral filter is mainly attributed
to the patch-by-patch reconstruction strategy, which however, provides
the desirable generalization capability.

Figs. 7 and 8 compare respectively the probability density func-
tions (PDF) of the longitudinal velocity gradient 𝜕𝑢∕𝜕𝑥 and transverse
velocity gradient 𝜕𝑢∕𝜕𝑦 obtained from DNS, FDNS, TVSR model and
KS model. The standard deviations 𝜎𝜕𝑢∕𝜕𝑥 and 𝜎𝜕𝑢∕𝜕𝑦 are used to nor-
malize the corresponding velocity gradients. In the FDNS flow field,
large-magnitude velocity gradient is filtered out due to the absence of
small-scale velocity fluctuations. This is reflected by the relatively small
PDF values of large-magnitude velocity gradients in comparison with
the DNS results. In the KS model, it is assumed that the small-scale
fluctuations follow the Gaussian distribution. As a result, compared to
the FDNS results, the PDF values of both longitudinal and transverse
velocity gradients obtained from the KS model tend to approach the
Gaussian distribution. Figs. 7(a) and 8(a) show that the PDF values of
both 𝜕𝑢∕𝜕𝑥 and 𝜕𝑢∕𝜕𝑦 obtained from the TVSR model corresponding to
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Fig. 5. Contours of the velocity component 𝑢 obtained from DNS, FDNS, TVSR model and KS model in a 2D slice at (a) 𝑅𝑒𝜆 = 205.51 and (b) 𝑅𝑒𝜆 = 302.04. The FDNS data are
generated by processing the DNS data using the Gaussian filter. The upper row of each figure shows the entire domain, while the bottom row displays the left-bottom region in
a dashed box of the upper row.
Fig. 6. Energy spectra obtained from the FDNS, DNS, TVSR model and KS model at 𝑅𝑒𝜆 = 205.51 and 302.04. The FDNS data are generated by processing the DNS data using (a)
the Gaussian filter and (b) the sharp spectral filter.
the Gaussian filter agree well with the DNS result. From Figs. 7(b) and

8(b), it is seen that the TVSR model corresponding to the sharp spectral

filter only slightly underestimates the PDF values of large-magnitude
7

velocity gradients when compared to the DNS results. As a summary

of the investigation of the PDF values of velocity gradients, the TVSR

models, corresponding to both Gaussian and sharp spectral filters, make
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Fig. 7. PDF of the normalized longitudinal velocity gradient obtained from DNS, FDNS, TVSR model and KS model at 𝑅𝑒𝜆 = 302.04. The FDNS data are generated by processing
the DNS data using (a) the Gaussian filter and (b) the sharp spectral filter.
Fig. 8. PDF of the normalized transverse velocity gradient obtained from DNS, FDNS, TVSR model and KS model at 𝑅𝑒𝜆 = 302.04. The FDNS data are generated by processing the
NS data using (a) the Gaussian filter and (b) the sharp spectral filter. The PDF value is shown in a logarithmic coordinate.
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ore reasonable reconstruction of small-scale velocity fluctuations than
he conventional KS model. Moreover, the incompressibility of the
econstructed velocity fields are preliminarily evaluated based on the
ata of velocity gradients. For the TVSR model corresponding to Gaus-
ian filter, the continuity equation is satisfied at most computational
oints.

To evaluate the performance of the TVSR on recovering the vortex
tructures, we calculate the vortex criterion 𝑄, the second invariant of
he velocity gradient tensor. Fig. 9 plots the isosurface of 𝑄 obtained

from FDNS, DNS, TVSR model and KS model at 𝑅𝑒𝜆 = 205.51. Compared
to the DNS result (Fig. 9a), the small-scale vortex structures are mostly
filtered out in the FDNS flow field (Fig. 9b). The KS model (Fig. 9d)
reconstructs many small, fragmental vortex structures, which differs
significantly from the DNS result. In contrast, the turbulent vortex
structures obtained from the TVSR model (Fig. 9c) is visually consistent
with the DNS result. To further conduct a quantitative analysis of the
performance of the TVSR model on recovering the vortex structures,
we calculate the PDF of 𝑄, shown in Fig. 10. It is seen that the PDF of
𝑄 obtained from FDNS shows a narrower tail than the DNS result. The
KS model partially recovers the PDF of 𝑄. In contrast, the TVSR model
corresponding to the Gaussian filter can accurately reconstruct the PDF
of 𝑄. The performance of the TVSR model corresponding to the sharp
spectral filter is less satisfactory than the TVSR model corresponding to
the Gaussian filter, but better than the KS model.

From the results presented in this section, it is seen that the pro-
posed TVSR model shows a generalization capability to higher Reynolds
number. This feature is important for a super-resolution model, as
8

it enables the application of the model trained using low-Reynolds-
number data (which is relatively easy to obtained due to the smaller
computational cost) to reconstruct high-resolution flow fields at higher
Reynolds numbers (which are more expensive to be acquired using
DNS). In the following content, we further notice the two main reasons
that enable the generalization capability of the TVSR model. The first
reason is the scale-similarity nature of turbulence motions at small
scales. Specifically, the grid size 𝛥 normalized by the Kolmogorov
length scale 𝜂 remain the same in different DNS cases for resolving
turbulent motions at all scales (see Section 2.1). Correspondingly,
the filtering scale 𝛥 of the low-resolution data is also consistent for
different Reynolds numbers (see Section 2.3). As such, the velocity
around the filtering scale of the low-resolution data is characterized
by 𝜖1∕3𝜂1∕3, which is used to non-dimensionalize the velocity for model
raining. In fact, it is well understood in previous studies that if 𝜂 and
1∕3𝜂1∕3 are used respectively as characteristic length and velocity, the
nergy spectra for different Reynolds numbers are well scaled at large
avenumbers [2]. The second reason is associated with the patchwise

econstruct strategy. It is understood that the turbulent motions at large
cales (or correspondingly, at small wavenumbers) are not scaled by
and 𝜖1∕3𝜂1∕3. This means that if more information of large length

cale is involved in model training, the effect of Reynolds number
ecomes stronger. In this sense, the patchwise reconstruction strategy
educes the influence of large-scale turbulent motions to enhance the
eneralization capability of the TVSR model.
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Fig. 9. Isosurface of the 𝑄 (= −200) obtained from (a) FDNS, (b) DNS, (c) TVSR model and (d) KS model at 𝑅𝑒𝜆 = 205.51. The FDNS data are generated by processing the DNS
data using the Gaussian filter with 𝑟 = 4.
Fig. 10. PDF of the 𝑄 obtained from DNS, FDNS, TVSR model and KS model at 𝑅𝑒𝜆 = 302.04. The FDNS data are generated by processing the DNS data using (a) the Gaussian
filter and (b) the sharp spectral filter.
4.3. A posteriori test in LES

Most super-resolution models proposed in previous studies are only
examined in the context of processing low-resolution data generated by
filtering high-resolution data, as is shown in Section 4.2. However, it
is more useful to reconstruct a high-resolution flow field from a low-
resolution field obtained directly from an under-resolved simulation,
such as LES. The latter task is more challenging in a sense that the
DNS data corresponding to the LES data are unavailable. To be more
specific, the model can be trained using only FDNS data, of which
9

the corresponding DNS data are known exactly, while after training,
it is desired that the model is also robust in reconstructing LES data.
In this section, we present the a posteriori test results of applying the
TVSR model to the reconstruction of high-resolution data obtained
from LES data. In the above a priori test, we have trained three TVSR
models corresponding to different filters. In the a posteriori test, the
implicit filter of LES is close to a sharp spectral filter in the present
simulations based on the pseudo-spectral method. As a result, although
the TVSR models corresponding to the Box and Gaussian filters perform
well in the a priori test, they yield unsatisfactory predictions of the
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Fig. 11. Contours of the velocity component 𝑢 in the upper row and isosurfaces of the 𝑄 (= −200) in the bottom row obtained from LES, DNS, TVSR model corresponding to the
sharp spectral filter, and a hybrid ADM/TVSR model at 𝑅𝑒𝜆 = 205.51.
subgrid energy spectra in the a posteriori test. Therefore, the TVSR
model corresponding to the sharp spectral filter is chosen to conduct
the super-resolution reconstruction of LES flow field.

Fig. 11 plots the contours of velocity component 𝑢 in the upper row
and the isosurfaces of 𝑄 in the bottom row obtained from LES, DNS,
TVSR model, and a hybrid ADM/TVSR model. Here, the ADM refers
to the approximation of the unfiltered solution of LES flow field at
resolved scales, which is expressed as

𝐮∗ = 𝐺−1 ⋅ �̂�, (10)

where �̂� is the filtered velocity of LES, 𝐺 is a filter function in spectral
space, �̂�∗ is an approximation of the unfiltered velocity. The inverse
function 𝐺−1 can be approximated using the Taylor series expansion,

𝐺−1 (𝑘) ≈
𝑁
∑

𝑛=0

(

1 − 𝐺 (𝑘)
)𝑛

≈ 6 − 15𝐺 (𝑘) + 20𝐺2 (𝑘) − 15𝐺3 (𝑘) + 6𝐺4 (𝑘) − 𝐺5 (𝑘) ,

(11)

where 𝑁 = 5 is sufficient to provide reasonable results for most
cases [12]. The filter 𝐺(𝑘) must satisfy |

|

|

1 − 𝐺 (𝑘)||
|

< 1 to ensure the
existence of its inversion. In this work, we choose the three-dimensional
Gaussian transfer function, in which the approximate inverse function
increasing monotonously with the wavenumber can strength the mo-
tions at smaller scales. Substituting Eq. (11) into Eq. (10), the velocity
𝐮∗ can be calculated as repeated filtering of �̂�,

𝐮∗ = 𝐺−1�̂� ≈ 6�̂� − 15
̂𝐮 + 20

̂
𝐮 − 15

̂
𝐮 + 6

̂

𝐮 −

̂

𝐮 (12)

According to the previous study [23], the FDNS corresponding to
the spherically sharp spectral filter can be regarded as an idealized LES,
but the energy near the cut-off scale is significantly underestimated
due to the error in the SGS model, while the ADM is able to improve
the energy and dissipation spectra near the cut-off scale. In the hybrid
ADM/TVSR model, the ADM is utilized first to recover the velocity
fluctuations at the resolved scales before the TVSR model is applied.
Note that there is no direct correspondence between the DNS and LES
instantaneous flow fields. The DNS results are only used as references
for a qualitative comparison. It is observed from the first column of
Fig. 11 that the velocity field obtained from LES is smeared, while
the vortex structures obtained from LES are sparse in space. Shown
in the third column, although the TVSR model visually refines the
10
resolution of the LES data, and concentration of small-scale vortex
structures (identified by the 𝑄-criterion) obtained from the TVSR model
is still lower than the DNS results. As noted above, this is because the
energy near the cut-off scale is under estimated in LES. In contrast, the
hybrid ADM/TVSR model makes a more reasonable prediction of the
high-resolution field, of which the concentration of vortex structures is
visually closer to the DNS results.

To further conduct a quantitative examination of the performance of
the TVSR model, Fig. 12 shows the energy spectra obtained from DNS,
LES, TVSR model, and hybrid ADM/TVSR model. In LES, the energy
spectra are absent at high wavenumbers corresponding to subgrid
scales and are underestimated near the cut-off wavenumbers. The TVSR
model partially recovers the energy spectra at subgrid scales. Compared
to the TVSR model, the hybrid ADM/TVSR model makes a better
prediction on the energy spectra, because the classical ADM recovers
the energy spectrum near the cut-off wavenumbers [12,23]. We note
here that it should not be expected that the hybrid ADM/TVSR model
can completely recover the energy spectra of DNS for the following
reasons. First, the sharp spectral filter is associated with a global
correlation in physical space, which to some extent conflicts with
the patchwise reconstruction strategy proposed in the present study.
However, it is very likely that if the simulation is conducted using
other numerical frameworks corresponding to a localized implicit filter,
such as finite difference or finite volume methods, this issue can be
addressed properly. Second, the error between LES and DNS actually
consists of two parts, namely the errors between FDNS and DNS caused
by the filter and between LES and FDNS caused by the error associated
with the subgrid-scale stress model [62]. Only the error between FDNS
and DNS can be treated by the super-resolution model, as it is trained to
recover an FDNS field to a DNS field. In the above a posteriori test, the
ADM partially compensates the deviation between the LES and FDNS
fields, but further improvement is still expected. The incorporation of
the super-resolution model into the LES solver is a possible approach
to give better results [12].

Fig. 13 compares the PDF values of velocity gradients obtained from
DNS, LES, ADM, TVSR model, and hybrid ADM/TVSR model. It is seen
from Fig. 13 that the ADM imposes little influence on the PDF values
of velocity gradients, mainly because it cannot recover any turbulence
signals at unresolved scales. The TVSR model makes a good prediction
on the PDF of velocity gradients, and the hybrid ADM/TVSR model
further improves the prediction.
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Fig. 12. Energy spectra obtained from DNS, LES, ADM, TVSR model, and hybrid ADM/TVSR model: (a) 𝑅𝑒𝜆 = 205.51 and (b) 𝑅𝑒𝜆 = 302.04.

Fig. 13. PDF values of velocity gradients obtained from DNS, LES, ADM, TVSR model, and hybrid ADM/TVSR model for (a, b) 𝑅𝑒𝜆 = 205.51 and (c, d) 𝑅𝑒𝜆 = 302.04. Panels (a)
and (c) show the PDF values of the longitudinal velocity gradient. Panels (b) and (d) show the PDF values of the transverse velocity gradient.

Fig. 14. PDF of the 𝑄 obtained from DNS, LES, ADM, TVSR model, and hybrid ADM/TVSR model for (a) 𝑅𝑒𝜆 = 205.51 and (b) 𝑅𝑒𝜆 = 302.04.
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Fig. 14 compares the PDF of 𝑄 obtained from DNS, LES, ADM,
TVSR model, and hybrid ADM/TVSR model. As shown, the TVSR model
significantly underestimates the PDF value of 𝑄, particularly at large
magnitudes, which is even less satisfactory than the ADM. However,
the hybrid ADM/TVSR model significantly improves the prediction on
the PDF of 𝑄, especially at the negative values. It is understood in
previous studies of vortex identifications that negative value of 𝑄 is
ne of the important criteria of vortex structures. In this regard, the
ybrid ADM/TVSR model makes a satisfactory reconstruction of the
ortex structures, a conclusion that is consistent with the observation
rom Fig. 11.

. Conclusion

In this paper, the turbulence volumetric super-resolution (TVSR)
odel is developed based on convolutional neural network (CNN)

o reconstruct the 3D high-resolution turbulent flow data from low-
esolution data. To prepare the training samples, three filter functions,
amely the box filter, Gaussian filter, and sharp spectral filter, are
pplied to generate low-resolution FDNS data from high-resolution
NS data. Using the flow data at the two lower Reynolds numbers,

he mapping function between low-resolution FDNS data and high-
esolution DNS data is established as the TVSR model, which is then
pplied to reconstruct the high-resolution flow field at various Reynolds
umbers.

In the a priori test, the TVSR model corresponding to the Gaussian
ilter (or box filter) makes excellent predictions on both instantaneous
low field and turbulent statistics, including the energy spectra, and
DF values of velocity gradients and invariant 𝑄. The performance of
VSR model corresponding to the sharp spectral filter is not as good as
hat from the TVSR model corresponding to the Gaussian filter, but it
lso recovers part of the small-scale turbulence.

In the a posteriori test, it is found that when the TVSR model is
pplied to the super-resolution reconstruction of an LES flow field,
t can only recover part of the unresolved energy spectra, and the
econstructed vortex structures are sparser than the DNS result. The
ybrid ADM/TVSR model significantly improves the performance over
he TVSR model. The concentration of the vortex structures obtained
orm the hybrid ADM/TVSR model is visually consistent with the
NS result. This observation is quantitatively confirmed through the
xamination of the PDF of 𝑄. The Hybrid AMD/TVSR model makes a
ood prediction of the PDF of 𝑄 with negative values.

In comparison with existing models based on either conventional
ethod (e.g. the kinematic simulation and approximate deconvolution
ethod) or other machine learning methods (e.g. the fully-connected
eural network and hybrid downsampled skip-connection/multi-scale
odel), the TVSR model shows the following advantages. First, unlike

he 2D image super-resolution network that is used in previous models
or reconstructing the flow data, the TVSR model directly processes
D flow field data. As such, the correlations of velocity in all three
irections are involved in the TVSR model. Second, the proposed TVSR
odel shows a good generalization capability in a sense that the model

rained using flow data at low Reynolds numbers can be used for super-
esolution reconstruction of flow fields at higher Reynolds numbers.
he generalization capability is attributed to the patch-by-patch recon-
truction strategy. Finally, the TVSR models coupled with the ADM are
ound robust and accurate in super-resolution reconstruction of flow
ata obtained from LES.

As a final remark of this paper, we note that the present work is
he first step towards the super-resolution reconstruction of LES data of
urbulent flows. To further improve the capacity of TVSR model, some
ey issues need to be addressed. First, the implicit form of filter in LES is
nknown and more filter functions, i.e. the general filter, Cauchy filter,
magorinsky filter and their composite forms, can be implemented into
he training [61]. Second, the coupling of data assimilation [63] and
12

achine learning is a promising method to enhance the reconstruction f
Fig. A.15. The comparison of the normalized loss function for TVSR model with
different number of grid points of patch.

of turbulent flows because the reconstructed results can provide a
feedback to the training process. Finally, the present model is limited to
the prediction of spatial statistics of turbulence, which can be extended
to reconstruct space–time correlations and spectra from incomplete
information [64].
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Appendix A. The effect of patch size on the accuracy of TVSR
model

In the proposed patchwise reconstruction strategy, the accuracy of
TVSR model is influenced by the patch size. Theoretically, increasing
the patch size yields a higher training accuracy of the model by involv-
ing more information of flow field in the training. In this appendix,
we compare the TVSR models trained with different patch sizes of
𝑁𝑝 = 4, 8 and 16 to provide a quantitative estimation of the effect of
atch size. The flow data at 𝑅𝑒𝜆 = 64.43 and 128.78 corresponding to
harp spectral filter are used for training, and the parameters of our
raining datasets with different patch sizes are shown in Table A.6.
ther hyperparameters remain the same as those given in Table 4.

Fig. A.15 compares the normalized loss function for TVSR model
ith different patch sizes. As seen, both the training loss and validation

oss decrease as the patch size increases. To further examine the effect
f the patch size, the models are applied to reconstruct high-resolution

low data at 𝑅𝑒𝜆 = 205.51.
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Fig. A.16. Contours of the velocity component 𝑢 at the 𝑥 = 0.0 slice of 3D isotropic turbulence from DNS, FDNS_SF and TVSR model with different number of grid points of patch
(𝑅𝑒𝜆 = 205.51).
Fig. A.17. The Comparison of energy spectra obtained from DNS, FDNS_SF and TVSR
model with different number of grid points of patch (𝑅𝑒𝜆 = 205.51).

Table A.6
The parameters of our training datasets with different number of grid points of patch.

Input patch Output patch Number of patches Batch size

43 163 70875 + 525611 1024
83 323 7203 + 70875 128
163 643 2625 + 7203 16

Figs. A.16∼A.18 compares the contours of velocity component 𝑢,
the energy spectra and PDF values of velocity gradients obtained from
TVSR models with different patch sizes. The DNS and FDNS results are
also shown for validation. In Fig. A.16, the three TVSR models give
similar visualization of the velocity contours. However, as shown in
Fig. A.17, the energy spectrum of the high-resolution field obtained
from the TVSR model with 𝑁𝑝 = 4 are less satisfactory than the results
for 𝑁 = 8 and 16. The TVSR model with 𝑁 = 16 gives better result
13

𝑝 𝑝
of energy spectrum near the cut-off wavenumber than that with 𝑁𝑝 =
8. Similarly, the PDF values of longitudinal and transverse velocity
gradients for 𝑁𝑝 = 4 is unsatisfactory, while 𝑁𝑝 = 8 and 𝑁𝑝 = 16 give
reasonable predictions of the PDF of velocity gradients.

Appendix B. Computational costs of TVSR model

In this appendix, we briefly compare the computational costs for
implementing the DNS/LES and training the TVSR model. Table B.7
compares the computational costs of different methods. The DNS and
LES were performed on the ‘‘Tianhe-I’’ at the National Super Computer
Center in Tianjin, China, and the model of the Central Processing Unit
(CPU) is Intel Xeon X5670. As shown, the computational cost spend on
the development of statistically stationary isotropic turbulence exhibits
an exponential growth with the increasing Reynolds number.

The TVSR models were trained on a personal computer, which loads
a Graphic Processing Unit (GPU) with the model of NVIDIA RTX2080.
The training datasets consisting of 9828 pairs of input (163) and output
(643), are obtained by filtering the DNS flow data at two lower Reynolds
numbers, 𝑅𝑒𝜆 = 64.43 and 128.78. Increasing the complexity of CNN
by using a larger number of trainable parameters can improve the
accuracy of the model, but meanwhile leads to an increase in the time
cost for model training. Once the TVSR model training is accomplished,
the turbulent flows at higher Reynolds numbers can be reconstructed
based on the low-resolution data.

Taking the case of 𝑅𝑒𝜆 = 302.04 as an example, the DNS costs
107.2 h and 256 CPUs on developing the statistically stationary tur-
bulent flow field, but only 5.61 h on 64 CPUs are needed to obtain the
LES data, and at most 19.1 h on a personal computer are used to train
the TVSR model. The super-resolution model is devoted to obtain the
high-resolution turbulent data with less time and computational cost.

The code used for training TVSR model is opened in the website
‘‘https://github.com/zhouturb/3D-Tubulence-Super-Resolution’’.

https://github.com/zhouturb/3D-Tubulence-Super-Resolution
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Fig. A.18. PDF values of (a) longitudinal and (b) transverse velocity gradients obtained from DNS, FDNS_SF and TVSR model with different number of grid points of patch
(𝑅𝑒𝜆 = 205.51).
Table B.7
The computational costs of time for the DNS, LES and the TVSR model.

𝑁3 𝑅𝑒𝜆 CPU number Computing time (h) Cost (CPU ⋅ h)

DNS

1283 64.43 16 0.3 4.8
2563 128.78 64 1.9 121.6
5123 205.51 128 15.3 1958.4
10243 302.04 256 107.2 27443.2

LES

323 64.43 16 0.0025 0.04
643 128.78 16 0.04 0.64
1283 205.51 16 1.05 16.8
2563 302.04 64 5.61 372.5

𝑚 𝑓 Number of variables Training time/epoch (s) Total time (h)

TVSR

2 32 416497 123 5.1
2 64 1330193 172 7.2
2 128 4650577 317 13.2
4 32 527217 131 5.5
4 128 6420561 366 15.3
8 32 748657 158 6.6
8 128 9960529 458 19.1
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