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A B S T R A C T   

Few machine learning (ML) models were applied for very-high-cycle fatigue (VHCF) analysis and these methods 
encounter limitations in data sparsity and overfitting. The present work aims to overcome data sparsity and 
propose an easy-to-use and nonredundant ML model for VHCF analysis. Monte Carlo simulation (MCs) is run to 
enlarge dataset size and a ML method is proposed to investigate the synergic influence of defect size, depth, 
location and build orientation on Ti-6Al-4V. The coefficient factor that indicates the percentage variation be-
tween the predicted and experimental fatigue lives can reach up to 0.98, meaning that the model demonstrates 
good prediction accuracy.   

1. Introduction 

Utilizing traditional methods to investigate factors that affect very- 
high-cycle fatigue (VHCF) of additive manufactured alloys faces a se-
ries of challenges. Unlike traditional manufacturing process which can 
mass produce objects, 3D printing process, though it helps create objects 
in a variety of shapes, is limited by the machine capabilities of 3D 
printers themselves. To be specific, the lead time of printing desired 
objects is usually long and the post-processing such as surface finishing 
must be considered if the precision of 3D printers cannot meet the 
expectation, followed by polishing process to obtain desired test sam-
ples. In terms of materials, as demonstrated in ref. [1], the expense of 
powdered metal is higher than bar stock. As a result, the longer duration 
of VHCF test compared with low/high cycle fatigue test as well as higher 
cost result in sparse available test data. The construction of traditional 
models like ref. [2–3] relies heavily on conducting a number of time- 
consuming and cost-intensive experiments and yet their generalization 
capacity is limited by the dataset size. The challenge has urged re-
searchers to pursue new predictive methods that do not require labo-
rious experimental work and thus machine learning (ML) approach is 
proposed, as an effective technique which has demonstrated its great 
capability of recognizing patterns in complex data for linear and 
nonlinear regression [4]. 

Titanium alloys, especially Ti-6Al-4V, are widely used in aerospace, 

commercial and biomedical applications because their excellent com-
bination of high specific strength, corrosion resistance, low density, high 
fracture toughness, and superior biocompatibility [5–7]. Machining of 
titanium alloys have drawn significant attention on manufacturing and 
research area. Titanium alloys are often considered as hard-to-machine 
materials and real progress in industrial productivity is not yet visible. 
Growing maturity of additive manufacturing has enabled the use of 
rapid manufacturing technology [8–10]. Selective laser melting (SLM), 
as one of the laser power bed fusion methods, can reduce material waste 
and produce components with high complexity [11–12]. However, SLM 
is associated with a range of parameters such as energy density, hatch 
speed, scanning speed, laser power hatch distance and layer thickness 
and variations in these parameters may result in microstructure and 
defect distribution [11,13]. It is noted that effect of build orientation on 
mechanical properties and microstructure of Ti-6Al-4V manufactured by 
SLM is significant [14] and the effect of build orientation on the VHCF 
response of Ti-6Al-4V alloy was investigated in ref. [2]. But the synergic 
effect of build orientation and defect properties on fatigue life is not 
apparent. Derivation of relationship between the fatigue life and related 
fatigue properties relies on sophisticated statistical extrapolation and is 
often costly and time-consuming. In this work, the influence of defect 
properties and build orientation on the VHCF response of SLMed Ti-6Al- 
4V was studied. VHCF morphology and fractography data were collected 
by scanning electron microscopy after fully reversed ultrasonic fatigue 
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tests. 
ML models for fatigue prediction have been increasingly proposed to 

solve complex linear and non-linear relationships. Random forest (RF), 
support vector regression (SVR) and the artificial neural network (ANN) 
are three commonly used regression algorithms to carry out fatigue life 
prediction. Each of these three algorithms has its own drawback. The 
prediction accuracy of random forest decreases with number of decision 
trees and more trees may result in longer processing time [15]. For 
support vector regression algorithm, it can generate results of high ac-
curacy and generalizability when the training data is not massive [16]. 
Since in the work a large data set will be generated and short training 
time is desired, the ANN algorithm has been chosen. The ANN which is 
one of the most extensively employed ML algorithms has long been used 
to predict the S-N relation [17] and it shows distinguished performance 
in the mapping complicated nonlinear relationships [18,19]. Back-
propagation ANN is applied to model the nonlinear relationship among 
variables. 

As noted, the number of publications of VHCF of SLMed Ti-6Al-4V is 
not abundantly available and the lack of fatigue data is an inevitable 
issue to confront with [2,20]. Overfitting is a common issue that pre-
vents the ML algorithms from generalizing models to fit the observed 
data as well as unseen data. Variations of fatigue properties also add to 
the difficulty of set up an ANN model. 

Probabilistic models of fatigue life distribution under various related 
factors are usually proposed to address the increasing concern for 
structural reliability and integrity assessment of engineering fields. A 
probabilistic stress-life (P-S-N) curve is developed by a finite number of 
fatigue tests to analyze the effect of scatter and estimate an average S-N 
curve with standard deviation. Finite element simulation and statistical 
methods such as Weibull distribution are widely applied in probabilistic 
fatigue life analysis [21–25]. For Weibull distribution, P-N relationship 
should be first experimentally determined and then based on shape 
parameter and scale parameters, a P-S-N diagram can be established to 
estimate confidence bands. The assumption of P-S-N is that a sufficient 
number of identical test specimen are run until failure and then the 
probability of failure can be obtained by analyzing the scatter of fatigue 
lives. At each stress level, SLMed specimen for each build orientation 
only has limited data available and thus it is difficult to determine 
Weibull distribution parameters. The constructed Weibull distribution 
may be shifted to the left or right side of the actual distribution in this 
case. 

To compensate the effects of overfitting and shifted variations, a 
Beta-PERT type Monte Carlo simulation (MCs) is applied to enlarge 
dataset size. The MCs is useful for randomly generating numbers of a 
variable within a given range according to a probability density function 
[26,27]. Furthermore, the Beta-PERT distribution can generate proba-
bilistic model based on optimistic values and confidence bands and 
adjust the skewness of the distribution curve to compensate the shift of 
distribution curves. After MCs, the ANN model is constructed, trained, 
and validated with the data generated to predict fatigue life based on 
defect properties and build orientation. 

In the present work, the motivation is to overcome data sparsity and 
present a convenient and nonredundant ML method for the VHCF life 
prediction of SLMed Ti-6Al-4V. The ease of implementation and 
simplicity of ML models were often forsaken when constructing ML 
models. Recently, there is a trend to build an ANN model with multiple 
layers and scores of neurons which is also called deep neural network 
(DNN). But the increasing layers and neurons only add to limited 
improvement of accuracy [28] while the processing time of the ML 
model may double or triple. The redundant DNN is user-unfriendly and 
can be truncated to a shallower ANN. In this context, a shallow ANN is 
proposed. The defect properties including (equivalent) defect size, 
location (distance to surface), and depth (fracture surface roughness 
measured by scanning white light interferometry) together with build 
orientation will be correlated with the VHCF life through ANN. The 
predictive fatigue life will be analyzed, and performance of the model 

will be evaluated. 

2. Construct raw dataset 

2.1. Specimen and test procedure 

2.1.1. Material 
The material used in this work is a type of titanium alloy which is Ti- 

6Al-4V. As additive manufacturing techniques has enabled titanium 
alloy to become a cost-effective material, there is an increasing attention 
to the structural integrity of additively manufactured Ti-6Al-4V com-
ponents. It is important to better understand the failure mechanisms 
subjected to cyclic loadings. The test samples are made by SLM and 
different build orientations are achieved by cutting the bulk 3D printed 
material in corresponding angles which are 0◦, 45◦, and 90◦, as shown in 
Fig. 1. (a)[2]. The process technique employed for manufatcuring the 
samples makes the defects well distributed inside the specimens rather 
than on the specimen surface. 

2.1.2. Specimen and fatigue test 
Fig. 1(b) shows the test specimen geometry. An ultrasonic fatigue 

tester (Lasur GF20-KT) was used to carry out the fatigue tests at R = − 1 
with a frequency of 20 kHz ± 500 Hz at room temperature in air. Three 
groups of specimen with respect to build orientations were used for 
ultrasonic fatigue test. The range of stress amplitude varies from 500 
MPa to 200 MPa which contains high cycle fatigue and VHCF regimes 
(will be shown in Fig. 8) and fatigue limits do not appear for all of three 
configurations. Above 250 MPa, each of three groups of specimen with 
different build orientations were tested every 50 MPa and below 250 
MPa, they were tested every 25 MPa. All the fatigue data were evaluated 

Fig. 1. (a) Schematic drawing of SLMed Ti-6Al-4V (b) test specimen geomerty.  
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after the fatigue failure. More details on the fatigue test could be referred 
in [2]. 

2.2. Raw data collection 

Fig. 2 shows the flowchart of ML process in predicting fatigue life 
with the synergic effect of build orientation and defects. Before applying 
any predictive model to the fatigue test data collected, the data prepa-
ration process must be considered since most ML algorithms learn from 
the data provided and thus it is imperative that to construct a well- 
structured dataset. The raw data were obtained from the article [2]. 
The raw dataset, which is listed in Table 1, consists of S-N and defect 
properties of 22 samples representing seven horizontally built, eight 45◦

built and seven vertically built titanium alloy samples, respectively. All 
specimens were manufactured through SLM and different build orien-
tations of specimens were achieved by cutting bulk 3D printed material 
in corresponding angles. Defect depth, size and distance to surface were 
observed using scanning white light interferometry and scanning elec-
tron microscopy. 

2.3. Feature selection 

The realization of a ML model depends on the selection of features. 
Relevant features are selected to improve model accuracy and reduce 
overfitting and training time. As shown in Fig. 3, SLMed specimens in 
different directions show similar microstructure but their strength and 
defect properties such as defect size and distribution, are quite different 
and these SLMed defect properties have effects on their VHCF life 
[2,3,29,30]. The dataset consists of five inputs and one output. The in-
puts include material defect properties (defect depth, defect size and 
defect distance from surface), fatigue loading (maximum stress), and 

build orientation and the output is the predicted fatigue life. 

3. Data preparation 

3.1. Monte Carlo simulation and discussion 

The S-N data collected are imported to Matlab Regression tool to 
generate fit curve equations to obtain the Basquin relation, ΔσN− a

f = C, 
while fatigue loadings and defect properties relation are generated using 
Microsoft Excel regression tool after outliers were removed. While the 
raw dataset was constructed, the sizes of subsets for every fatigue feature 
are too few to achieve a desirable level of performance since sparse data 
is given by the article [2]. Sparse data add to the difficulty of general-
ization of a ML predictive model since a model with a small dataset often 
encounter overfitting which means that a model learns from the dataset 
too well so that the accuracy of new predictions beyond the dataset is 
undermined. The scatter or variability of features makes the overfitting 
more likely to occur for models with small dataset and makes the 
generalization of the predictive model very poor. 

Scatter is one of the most common phenomena of mechanical and 
fatigue properties of materials. The S-N relationship of fatigue data ex-
hibits the scatter phenomenon. To illustrate, for a certain fixed ampli-
tude loading or stress level, the variability in titanium alloy’s inherent 
material properties, defect properties such as defect size, and poor 
alignment of test machine and samples can cause the fatigue lives of 
seemingly identical specimens to vary [31]. To compensate for the 
negative effects of limited available data, data generation techniques 
can be applied to the original dataset to increase the amount of data in 
dataset. The scatter of fatigue and mechanical features exhibit Gaussian- 
like distribution. With that determined, the MCs method can be applied 
to the original dataset to yield a range of possible outcomes with the 

Fig. 2. Machine learning process flowchart of predicting fatigue life with the synergic effect of build orientation and defects.  
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same probabilities of each feature. 
The first step in MCs is to identify the statistical distribution model 

for each set of input parameters. Then based on the requirements of the 
statistical distribution model chosen, random samples will be extracted 
from the outputs of the MCs model. One of the most widely used MCs is 
the normal distribution model. However, to build a typical normal dis-
tribution model, the standard deviation and the mean value must be 
provided to describe the variation from the mean. Apparently, there is 
great difficulty in identifying the mean and standard deviation of the 
MCs model since sparse data could result in huge percentage of error. 
Therefore, other models that do not require standard deviation to pro-
duce outputs are desired. The simplest model that suits the condition is 
the triangular distribution. The triangular distribution is a continuous 
probability distribution which shapes like a triangle with minimum, 
maximum, and most likely values as its bounds [32]. Unlike the normal 
distribution, the triangular distribution emphasizes the most likely value 
or the mode value. The shape of triangle may be skewed to the left or 
right depending on the mode value. The disadvantage of this model is 
that it may overemphasize the mode value at the expense of minimum or 
maximum values and thus the accuracy of the results may be jeopar-
dized. The beta-PERT distribution [33] is another model that is also 

defined by minimum (a), maximum (c) and the most likely values (b) but 
compared with the triangular distribution it yields a distribution that 
more similarly represents the realistic probability distribution. The ap-
peal of the beta-PERT distribution is that, depending on the reliability of 
the input parameters, the beta-PERT distribution can closely resemble 
the normal or lognormal distributions. To determine the most likely 
value, the raw dataset is imported to the matlab and Excel using the built- 
in regression tool to obtain linear and non-linear relationships. The 
points on the regression lines are considered the most likely values. 
Parallel lines are also made passing through the lowest and highest 
points in the raw dataset to determine the lower bound and upper bound 
of the model. As the bounds and mean values are collected, the shape 
parameters α, β and standard deviation σ would be calculated using the 
equations below: 

α =
4(b − a)

c − a
+ 1 (1)  

β =
4(c − b)

c − a
+ 1 (2)  

Table 1 
Build Orientation, defect properties, σmax (maximum stress), and fatigue life, collected from [2].  

Sample ID σmax (MPa) Build orientation (◦) Defect depth (μm) Defect size (μm) Distance to surface (μm) Nf (cycle) 

1 500 0 74 115 200 1.10E + 05 
2 450 0 23 51 922 2.68E + 06 
3 400 0 33 56 1043 5.35E + 06 
4 350 0 56 69 589 1.10E + 07 
5 300 0 49 95 751 2.51E + 07 
6 250 0 30 42 273 2.40E + 08 
7 225 0 128 30 627 5.10E + 08 
8 450 45 36 50 250 3.70E + 05 
9 400 45 50 93 1051 7.45E + 05 
10 350 45 27 39 344 9.23E + 06 
11 320 45 61 35 332 3.10E + 07 
12 300 45 57 28 449 7.18E + 07 
13 250 45 65 80 204 8.68E + 07 
14 225 45 36 64 297 3.41E + 08 
15 200 45 70 48 145 5.35E + 08 
16 400 90 29 110 827 2.15E + 05 
17 350 90 53 62 343 3.97E + 06 
18 320 90 23 83 85 9.78E + 06 
19 300 90 27 39 299 2.38E + 07 
20 250 90 83 72 1303 1.03E + 08 
21 225 90 44 64 399 1.42E + 08 
22 200 90 85 29 302 2.11E + 08  

Fig. 3. Fractography of Ti-6Al-4V specimens manufactured by SLM with different build orientations [2] (a) 45◦, σa = 450 MPa and Nf = 3.7 × 105; (b) 90◦, σa = 400 
MPa and Nf = 2.15 × 105. 
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σ =
c − a

6
(3)  

where a is the minimum value or lower bound; b is the optimistic value 
or regression value; c is the maximum value or upper bound. 

In the following step, the MCs is run in Excel to augment the dataset 
size for stress amplitude regimes from 190 MPa to 460 MPa. For Ti-6Al- 
4V alloy that is printed in 90◦, when stress amplitude is greater than 410 
MPa, there is no apparent defect depth detected and therefore the stress 
amplitude range is adapted to the range from 190 MPa to 410 MPa. For 
every 10 MPa, 400 random data points are generated for each fatigue 
feature and 32,800 data points are generated in total. 

The standard deviation of MCs results in Table 2, to a large extent, 
depends on the dispersion of original defect data. Raw defect data ex-
hibits significant variability against fatigue life and stress and thus the 
trend of regression line for each defect property is greatly influenced by 
outliers and extreme values. To deal with the uncertainty, outliers and 
extreme values were removed before running regression and yet this 
process could potentially cause errors in judging the trend of regression 
and yield greater dispersion for MCs results. For defect size of specimens 
that are manufactured in 45◦, the variability is too high to determine the 
trend of regression even if the outliers and extreme values were 
removed. So, in this situation, the relation between the defect size and 
stress is considered as a piece-wise function. It is assumed that before the 
threshold 275 MPa, defect size and stress are correlated in a positive 
relationship, and after threshold value, these factors exhibit a positive 
relationship with a different trend. 

3.2. Data transform 

Before choosing any ML model, it is of great significance to trans-
forming data collected. For application of VHCF prediction model, the 
training time is expected to be very time-consuming and to avoid this, in 
this work, the scale of the VHCF life is extremely high compared with 
that of low cycle fatigue life and thus the training time would be very 
long if no data preprocessing techniques are applied to the fatigue life 
data. Data normalization as a result is crucial to expedite the training 
time by scaling down the data to the same range [34]. The data gener-
ated by MCs are mapped into a range [0, 1] and the transformation 
equation is given by Eq. (4). 

XN =
X − Xmin

Xmax − Xmin
(4)  

where XN is the normalized value of the corresponding X , Xmax and Xmin 
are the maximum and minimum value of the X , respectively. 

4. ML model selection 

4.1. Backpropagation neural network model based on L-M algorithm 

The backpropagation neural network has already been applied in the 
various fields such as fatigue analysis and ecology and it has 

demonstrated strong capability of interpolating non-linear relationship 
between the inputs and outputs [35–36]. The feedforward neural 
network model with backpropagation based on Levenberg-Marquardt 
algorithm is used in the present work, as shown in Fig. 4. The back-
propagation model architecture that consists of 3 layers was established 
to predict the VHCF life of Ti-6Al-4V alloy. The defect distance to sur-
face, build orientation, defect depth and defect size were used as inputs 
and VHCF life was the output. The network contains three components: 
one input layer with 5 nodes, one hidden layer with 18 nodes and one 
output layer with 1 node. 

Traditionally, the backpropagation model is based on the gradient 
descent algorithm to minimize the error by calculating the minimum 
gradient of the error curve [37]. The weights and biases in the forward 
direction are randomly initialized and the in backward direction the 
gradient descent algorithm is performed to minimize the error to the 
desired level. However, in terms of medium size training set, the training 
speed and convergence of the traditional gradient descent algorithm 
may take extremely long time. The Levenberg-Marquardt algorithm 
interpolates between the Gauss–Newton algorithm and the method of 
gradient descent and it significantly outperforms simple gradient 
descent and conjugate gradient descent methods for medium sized 
problems [38]. Levenberg-Marquardt algorithm is designed to solve 
non-linear least squares problems by minimizing the sum-of-error 
function of the following form: 

E = 1/2
∑

k(ek)
2
= 1/2||e||2 (5)  

where e = (e1, e2, …, ek) is a vector and is referred as residuals. If the 
residual between the pervious weight vector and the new weight vector 
is small, the error vector can be substituted by a Taylor series. 

e(j+i) = e(j) + ∂ek/∂wi(w(j+1) − w(j)) (6) 

As a result, the error function can be transformed as: 

E = 1/2||e(j) + ∂ek/∂wi(w(j + 1) − w(j))||2 (7) 

Minimizing the error function in terms of new weight vector, yields 

w(j+1) = w(j) − (ZTZ)− 1ZTe(j) (8)  

where (Z)ki ≡ ∂ ek / ∂ wi. 
By neglecting the second term, the Hessian for the sum-of-square 

error function: 

(H)ij = ∂2E/∂wiÂ⋅∂wj =
∑

{(∂ek/∂wi)(∂ek/∂wi) + ek∂2ek/∂wi∂wj} (9)  

can be rewritten as: 

H = ZTZ (10) 

The computation of the Hessian is relatively easy for the back-
propagation accommodates the network weights using first order de-
rivatives. But there is still a concern about the new formula since it could 
possibly cause a large step size during the descent process causing the 
function fail to reach the minimum. To compensate the negative effect, a 
new parameter is introduced to modify the error function, which can be 
also called regularization. 

E = 1/2
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒e(j) +

∂ek
∂wi

(w(j + 1) − w(j) )
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

2

+ λ||w(j + 1) − w(j) | |2 (11)  

where λ is the parameter that controls the step size and w(j+1) = wj – 
(ZTZ + λI)− 1 ZTe(j). 

Each input neuron (xi) has an associated weight (wi) and bias (bi). In 
the hidden layer, each node transforms values from the previous layer 
using a linear weighted summation wi⋅xi + bi and a non-linear activation 
function φ. The output y can be expressed as 

Table 2 
Variation of Monte Carlo simulation.  

Monte Carlo simulation results Standard deviation 

Defect depth 0◦ 11.4 
45◦ 5.6 
90◦ 7.49 

Defect size 0◦ 11.6 
45◦ 0 
45◦ 0.72 
90◦ 7.7 

Defect distance to surface 0◦ 68.7 
45◦ 30.7 
90◦ 41.0  
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y = φ(
∑n

i=1
wiÂ⋅xi + bi) (12)  

where wi and bi represent the weight and bias of the ith neuron of input 
layer and n represents the number of elements in the input layer. 

The activation function φ is a mathematical equation that determines 
the output of a neural network. Sigmoid, ReLU, and tanh functions are 
some frequently used functions [39–40]. The tanh or hyperbolic tangent 
function is chosen as the activation function in this work. 

φ =
eZ − e− Z

eZ + e− Z (13) 

Compared with the sigmoid function, the gradient of tanh function is 
steeper which fastens the convergence and optimization of neural 
network [41]. 

Fig. 5 represents the process of machine learning. The entire data set 
is randomly divided into three subsets. 70% of the 32,800 data are used 
for training set, 15% for validation set and 15% for test set. 

5. Results and discussion 

Two metrics that are used to measure the precision and evaluate the 
performance of the ANN model are coefficient of determination R2 and 

mean-squared error (MSE). 

R2 = 1 −
∑n

i=1(Pi − Ppre
i )

2

∑n
i=1(Pi − Pmean)

2 (14)  

MSE =
1
n
∑n

i=1
(Pi − Ppre

i )
2 (15)  

where Pi is the ith P in the generated dataset, Pi
pre is the ith predicted 

value and Pmean represents the mean value of generated dataset. For the 
R2, it ranges from 0 to 1. The higher R2 is, the better fit the model is. MSE 
indicates the average residual between the generated dataset and pre-
dicted results. The smaller MSE, the better the predicted results. Table 3 
shows that the coefficient of determination of training, validation and 

Fig. 4. The architecture of ANN with single hidden layer.  

Fig. 5. Machine learning process flowchart.  

Table 3 
Performance of ANN model.  

Data Set MSE R2 R 

Training Set  0.0411  0.9711  0.98545 
Validation Set  0.0399  0.9716  0.98572 
Test Set  0.0408  0.9711  0.98543 
All  0.0409  0.9712  0.98549  
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test sets are 0.9711, 0.9716, and 0.9711 respectively, which are very 
close to 1. This means that the predicted results are in good accordance 
with the generated dataset, indicating that the trained ANN model has 
successfully interpreted the relationship between the build orientation, 
defect properties and VHCF property of Ti-6Al-4V alloy. The MSE for 
training, validation and test sets are 0.0411, 0.0399, and 0.0408, 
respectively. Considering the scale of the VHCF life, MSE calculated are 
relatively small and acceptable, implying that the predicted results are 
very close to the actual values. Although the MSE of test set is higher 
than the validation set, its accuracy remains high. Fig. 6 indicates the 
normalized mean-squared error versus epoch. It can be noted that the 
mean-squared error converges to a global optimization in a short time 
which means that the ML algorithm and functions chosen for the model 
have a good agreement with the data provided so that it reaches the 
minimum quickly. The R value for training, validation and test sets are 
above 0.98 and clearly indicates that there is high correlation between 
estimates and actual values. 

Fig. 7 represents the result of ANN prediction. It can be seen that the 
predicted points form three distinguished curves representing VHCF 
response of SLMed Ti-6Al-4V under the effect of build orientation and 
defects. The predicted results have a good agreement with the true 
response shown in Fig. 8. The regression lines in Fig. 8 represent the 
Basquin relations for 0◦, 45◦, 90◦ built specimens, which are σa =

1527N− 0.09113
f ,σa = 1506N− 0.09443

f , σa = 1212N− 0.08626
f with coefficient 

of determinations R2 equal to 0.9094, 0.939, and 0.9046, respectively. 
Some comparisons between the predicted fatigue life using ANN model 
and the actual fatigue life values are shown in Fig. 9 (a) and (b). In Fig. 9 
(a), for better visualization of relationship between MCs testset data and 
predicted fatigue life data, MCs testset data at one specific stress level 
will be compared with the predicted fatigue life at the same stress level 
from 500 MPa to 200 MPa and it can be seen clearly that the test results 
lie within MCs testset and form regressions very close to Matlab re-
gressions. In Fig. 9 (b), it is found that all samples in test set fall along 
diagonal which is the equal life line and fall within 95% confidence 
interval in ref. [2]. It seems that the data generated by MCs represent the 
feature of the original data well. The S-N regression line obtained by 
ANN model has relatively small difference with the S-N curve obtained 
from ref. [2]. Large dataset size prevents the occurrence of overfitting 
and underfitting since small dataset size causes the ML model to fit too 
well to the data given and fail to predict results beyond the dataset. The 
generalization ability of the ANN model is promising in digesting new 
data and making accurate predictions given defect properties and build 
orientation. 

6. Conclusions 

This work examined the backpropagation neural network machine 
leaning method for modelling the very-high-cycle fatigue life of addi-
tively manufactured Ti-6Al-4V alloy. Important features are primarily 
identified in terms of defect size, defect distance to surface, defect depth 
and build orientation. The main conclusions can be drawn from the 
results obtained above:  

(1) The Monte Carlo simulation is an effective method to enlarge 
dataset size while preserving the interrelationship between fea-
tures. The difficulty in obtaining large amount of fatigue data of 
the additively manufactured Ti-6Al-4V alloy is solved by random 
number generation technique. More representative data are ob-
tained, and this can avoid overfitting concern caused by lack of 
data and ensured more effective training. Representative features 
are selected and a large dataset from training the BP ANN model 
is constructed for expand the applicability and generalization 
capability of the model.  

(2) The BP ANN method successfully predicted the very-high-cycle 
fatigue life of the Ti-6Al-4V samples with respect to the effect 
of defect properties and build orientation caused by processing 
techniques. The BP ANN model effectively seized the failure 
pattern of the dataset and distinguish one S-N curve caused by 
characteristic failure features from another and it exempts re-
searchers from laborious traditional experiments. 

0 5 10 15 20 25 30 35 40
10-5

10-4

10-3

10-2

10-1

100

101

M
ea

n 
sq

ua
re

d 
er

ro
r

Epoch

Train
Validation
Test

Fig. 6. Mean square error of normalized data versus epoch.  

105 106 107 108 109 1010
100

200

300

400

500

600
Predicted 0°
Predicted 45°
Predicted 90°

St
re

ss
 a

m
pl

itu
de

 [M
Pa

]

Number of cycles to failure [cyc]

Fig. 7. Predicted fatigue life based on the ANN model.  

105 106 107 108 109
100

200

300

400

500

600
0°
45°
90°
 0° regression
 45° regression
 90 ° regression

St
re

ss
 a

m
pl

itu
de

 [M
Pa

]

Number of cycles to failure [cyc]

Fig. 8. S-N graph retrieved from [2]. (0◦

: σa = 1527N− 0.09113
f ,.R2 = 0.9094;

45◦

: σa = 1506N− 0.09443
f ,R2 = 0.939;90◦

: σa = 1212N− 0.08626
f ,R2 = 0.9046)

J. Li et al.                                                                                                                                                                                                                                         



International Journal of Fatigue 158 (2022) 106764

8

(3) It is found that the BP neural network with L-M learning algo-
rithm exhibits a good fault tolerance and capability in processing 
very-high-cycle fatigue properties with a high accuracy. The 
Levenberg-Merquardt learning algorithm has superiority over 
other learning algorithm for its fast and efficient learning speed in 
dealing with a large dataset, fast convergence to optimization, 
and ease of implementation for the code is provided by Matlab.  

(4) The accuracy of predicted fatigue curve is limited by the quality 
of original dataset. Variations or scatter of fatigue properties 
often cause misinterpretation of interrelationship among vari-
ables and thus selection of representative data must be ensured. 
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