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A B S T R A C T   

Digital volume correlation (DVC) quantifies internal 3D displacement and strain fields by correlating the volume 
images of a tested object acquired at different states. When using X-ray CT-based DVC, the number of projections 
is a key parameter that affects the acquisition time and quality of reconstructed volumetric images, and therefore 
the precision and temporal resolutions of DVC measurement. More projections result in high-quality volume 
images for DVC calculation but longer acquisition time and pronounced thermal drifts of the X-ray source. Few 
projections lead to quicker acquisition and fewer thermal drifts, but may degrade image quality and thus induce 
larger DVC measurement errors. Selecting an appropriate number of projections during CT imaging is therefore 
of practical significance for DVC measurement. To solve this dilemma, the effect of the number of projections on 
DVC measurements with X-ray CT is experimentally investigated in this work. First, numerically simulated 
speckle volume images with different numbers of projections were reconstructed by using FDK (Feldkamp) al-
gorithm, and the influence of the number of projections on DVC measurement was analyzed. Then, real rescan 
and compression experiments performed on a copper foam sample were carried out to further study the effect of 
projection number on DVC measurements. Both simulation and real experiments show that more projections 
result in longer imaging time but higher quality volume image and DVC measurement. DVC measurement errors 
decrease with the increase of projections at different decline rates. Therefore, an appropriate number of pro-
jections can be specified based on the results according to the requirements of DVC measurement precision and 
temporal resolution. For the specific X-ray CT device used in this real compression experiment, 36 ~ 60 pro-
jections are suggested to balance measurement precision and temporal resolution, and more than 720 projections 
are necessary for pursuing higher accuracy.   

1. Introduction 

Originally extended from two-dimensional digital image correlation 
by Bay BK et al. in 1999[1], digital volume correlation (DVC) has 
evolved into a practical and powerful experimental technique for inte-
rior full-field 3D displacement and strain measurement. As an image- 
based deformation measuring technique, DVC deals with volume im-
ages of a test object acquired by a volumetric imaging device at different 
loading states. Volumetric images are typically acquired from X-ray 
Computed Tomography (X-ray CT) systems for opaque solid materials 
[2–4], Magnetic Resonance Imaging (MRI) [5] or Optical Coherence 
Tomography (OCT) systems for biological subjects[6,7], or Laser Scan-
ning Confocal Microscopes (LSCM) for transparent media[8]. Among 
these volume imaging devices, laboratory or industrial X-ray CT devices 

are undoubtedly the most widely used in DVC measurements due to 
their easy access and simple operation. 

The imaging principle of an X-ray CT machine is schematically 
shown in Fig. 1. CT imaging consists of two steps: projection images 
collection and volume image reconstruction. In the first step, the tested 
sample mounted on a rotary stage is exposed to an X-ray source and 
rotates by step. The two-dimensional projection (i.e., an attenuated X- 
ray image) of the tested sample at each rotation step is recorded by the 
detector. Then, the volume image of the tested sample can be recon-
structed via a certain reconstruction algorithm (e.g., the Feldkamp al-
gorithm[9]). 

In the process of projection collection, many parameters specified by 
the operator would affect the acquisition time and quality of the 
reconstructed volume images[10,11]. These parameters include, but are 
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not limited to, X-ray source power, voltage, exposure time, the number 
of projections (Nproj) [12]. Among these parameters, the number of 
projections is the important factor in volume image quality and imaging 
time [13,14], which further have a significant impact on the precision 
and temporal resolution of DVC measurement. In other words, X-ray CT- 
based DVC measurement faces a dilemma in selecting an appropriate 
Nproj for optimal spatiotemporal resolution. On one hand, the accuracy 
of DVC relies heavily on the quality and fidelity of the reconstructed 
volume images (intensity gradient, noise level, etc)[15,16]. According 
to the spatial Nyquist sampling theorem in the field of CT imaging[17], 
larger Nproj can provide complete data to reconstruct the volume images 
with better image quality and few image artifacts[18], which is 
conducive to enhancing the quality of DVC measurements[19]. On the 
other hand, the imaging time is highly associated with the temporal 
resolution of DVC measurement. Larger Nproj leads to longer data 
acquisition time, which might be undesirable in DVC-based in-situ me-
chanical testing because of less temporal resolution. Besides, too long 
data acquisition time may cause some unnecessary imaging errors, such 
as the imaging distortion induced by the thermal drifts of the X-ray 
source[3,20]. 

Recently, the effect of the number of projections on reconstruction 
quality and DVC displacement error was investigated briefly in Ref.[15]. 
However, this research pays little attention to providing constructive 
suggestions on solving this dilemma in selecting Nproj for optimal DVC 
measurement. Up to now, how to choose an appropriate Nproj to balance 
temporal resolution and measurement quality during practical DVC 
applications remains an important but confusing problem facing DVC 
practitioners. To address this dilemma, it is of great practical signifi-
cance to study the two-sided influence of the number of projections on 
DVC measurement, and more importantly, provide suggestions for 
selecting an appropriate number of projections in real DVC applications. 

This work aims to experimentally study the effect of the number of 
projections in X-ray CT imaging on image quality and DVC measure-
ment, and provide certain referential suggestions for the appropriate 
selection of this key parameter. In the remainder of this paper, the 
Feldkamp (FDK) algorithm used for volume image reconstruction and 
the DVC algorithm employed for internal 3D displacement extraction 
are first briefly introduced. Then, simulated X-ray CT imaging experi-
ment and real rescan and compression experiments of a copper foam 

sample were carried out to experimentally investigate the effect of the 
number of projections on DVC measurement. The experimental pro-
cedures and DVC measurement analysis are detailed presented. Some 
valuable conclusions and corresponding suggestions to select an 
appropriate number of projections are also discussed. 

2. Methods 

In this section, the FDK algorithm, the classic volume image recon-
struction algorithm, which was used to reconstruct volume images with 
different numbers of projections collected in X-ray CT imaging, is 
described first. Then the basic principle of subvolume-based local DVC 
method, which was employed for extracting sub-voxel displacement 
from volume images, is introduced. 

2.1. FDK algorithm for reconstruction 

At present, the mainstream commercial CT machine in the industrial 
field is the cone-beam computed tomography (CBCT) scanner, which 
possesses a higher ray utilization rate and faster acquisition than the 
traditional two-dimensional fan-beam CT. The volume images can be 
reconstructed from the collected cone-beam projection data by different 
CBCT reconstruction algorithms. Among these algorithms, the FDK al-
gorithm is commonly used for reconstruction with angularly equidis-
tributed projections in CBCT systems owing to its advantages of circle 
track scanning, simple structure, and excellent reconstruction efficiency. 
The method of limited-angle tomographic reconstruction also has been 
further developed in recent years[21]. Since the angularly equidis-
tributed projections are provided in this work, the FDK algorithm is used 
to study the effect of the number of projections in X-ray CT imaging on 
DVC measurement. 

To facilitate understanding the FDK algorithm, the geometric struc-
ture of CBCT scanner is shown in Fig. 2, where Oxyz is the fixed coor-
dinate system of reconstructed volume image and Ouvw is the rotating 
coordinate system. v-axis coincides with z-axis and the source on w-axis 
rotates around the central z-axis. R and β denote the radius and angle of 
the rotation, respectively. Ouv is the virtual detector plane, which is 
parallel to the detector and contains the rotation axis. Supposing that the 
position of the point P on the virtual detector plane corresponding to the 

Fig. 1. X-ray CT imaging step: (a) projection images collection and (b) volume image reconstruction.  
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voxel point f(x, y, z) in reconstructed volume image is (u,v), the pro-
jection value of P is denote by Pβ(u, v) (See Fig. 2). P is the point on the 
virtual detector in Fig. 2 and p in Fig. 3 is the calculation point. 

The implementation of the FDK algorithm mostly consists of three 
steps: 1) weighted correction processing, 2) horizontal filtering pro-
cessing, and 3) weighted back-projection processing[9] as described 
step by step as follows: 

Step #1: Weighted correction processing. The two-dimensional 
projection data Pβ(u, v) is corrected by weighting factor: 

P
′

β(u, v) =
R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R2 + u2 + v2

√ ⋅Pβ(u, v) (1)  

where P’
β(u, v) denotes the projection after the correction of the 

weighting factor. 
Step #2: Horizontal filtering processing. The weighted data are 

horizontal filtered line by line: 

P’’
β (u, v) = P’

β(u, v)*h(u) (2)  

where ∗ denotes convolution and h(u) represents a filter function (i.e., 
Ram-Lak filtering function[22]) for convoluting the projection image 
data of the u row. 

Step #3: Weighted back projection processing. The filtered pro-
jection data are used for back projection calculation: 

f (x, y, z) =
∫ 2π

0
U2⋅P’’

β (u, v)dβ =
∑

β
U2⋅P’’

β (u, v) (3)  

where u = U(xcosβ + ysinβ),v = Uz,U = R/(R+ ycosβ − xsinβ). 

2.2. Digital volume correlation 

DVC is an image-based experimental mechanics tool, which retrieves 
full-field displacement and strain by comparing two digital volume 
images of a test object acquired at different states with a volumetric 
imaging machine. The volume images obtained before and after external 
loading are called reference and deformed volume images, respectively. 
Basic principles and registration implementations of subvolume-based 
local DVC have been explained clearly in previously published papers 
[23,24]. For completeness, the DVC algorithm is briefly described 
hereafter. During the routine implementation of DVC, a volume of in-
terest (VOI) should be first specified in the reference volume image, 
which is further divided into virtual grids according to the specified grid 
step. The resulting evenly spaced grid points are known as discrete 
calculation points or points of interest (POI). To accurately determine 
the 3D displacement vector of each POI, a reference cubic sub-volume 
with a proper side length centered at a calculation point p(x, y, z) is 
selected. Note that the reference subvolumes should contain sufficient 
local intensity variations to warrant they can be uniquely registered in 
the deformed volume images. The reference subvolume is searched 
using a certain correlation algorithm in deformed volume images to find 
a target subvolume with maximum similarity, and the coordinate dif-
ferences between the target subvolume center and the reference sub-
volume center yield the desired displacement vector of the POI. The 
same matching process is repeated at each POI to obtain the full-field 3D 
deformation. 

Fig. 2. Geometric structure of FDK.  

Fig. 3. Schematic illustration showing the basic principle of digital volume correlation.  
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To quantify the gray level similarity between the reference and target 
sub-volumes, a correlation criterion, together with a certain shape 
function that describes the shape and position change of sub-volumes, 
should be defined. The most commonly used correlation function is 
the zero-mean normalized sum-of-square difference (ZNSSD) function, 
which is equivalent to the well-known zero-mean normalized cross- 
correlation (ZNCC) criterion[25]. 

CZNSSD(p) =
∑

ξ

{
[f (x) − fm]

Δf
−
[g(x’) − gm]

Δg

}2

(4)  

where f(x) and g(x’) are the gray intensity of the reference and target 
deformed sub-volumes, respectively. x and x’ are the image coordinates 
of voxel points in the reference and target deformed sub-volumes. ξ =

(Δx,Δy,Δz)T denotes the local coordinates in the reference sub-volume. 
fm and gm are the mean gray values of the reference and target deformed 

subvolumes. Δf =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

ξ(f(x) − fm)2
√

and Δg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
ξ(g(x’) − gm)

2
√

. The 
unknown displacement vector to be determined is p =
(
u, ux, uy, uz, v, vx, vy, vz,w,wx,wy,wz

)T. Note that the first-order shape 
function is employed to achieve a balance between computational effi-
ciency and accuracy. When using the first-order shape function, the 
corrdinate of voxle points in target subvolumes can be written as 

x’(p) = x +

⎡

⎣
u
v
w

⎤

⎦+

⎡

⎣
ux uy uz
vx vy vz
wx wy wz

⎤

⎦

⎡

⎣
Δx
Δy
Δz

⎤

⎦ (5) 

The deformation parameters of p can be obtained by optimizing the 
non-linear ZNSSD correlation function. Firstly, the integer-voxel 
displacement of a seed point should be estimated by employing an 
integer-voxel searching algorithm. Subsequently, a subvoxel registration 
algorithm (i.e., 3D inverse compositional Gauss-Newton[23]) combined 
with an initial estimate transfer strategy (i.e., Reliability-guided 
displacement tracking, RGDT[26]) is used to determine the sub-voxel 
displacement. Since the coordinates of voxel points in the target 
deformed sub-volume normally fall into the sub-voxel positions after 
each iteration, a sub-voxel intensity interpolation scheme (i.e., Cubic B- 
spline interpolation scheme) is necessary when optimizing the correla-
tion function iteratively. By repeating the correlation analysis at all 
calculation points, full-field displacement can be extracted. 

3. Experiments 

In practical X-ray CT imaging, the sampling interval Δ is fixed and 
the full rotation is generally between 0 and 2π. Then, the number of 
recorded projections is Nproj = 2π/Δ and different Nproj can be obtained 
by changing Δ. To avoid other unnecessary errors in the process of 
projection collection, different numbers of projections were acquired in 
simulation and real experiments by evenly extracting from the 

maximum number (1440) of projection images. 

3.1. Simulation experiment 

First, to better investigate the effect of projection number of an X-ray 
CT scanner on the quality of reconstructed volume images and DVC 
measurements without imaging errors (e.g., Beam Hardening artifact 
[11] and ring artifact[27]) caused by imperfect X-ray imaging, 
computer-simulated translation and compression experiments were 
carried out firstly. As shown in Fig. 4, the simulation experiment consists 
of the following three steps: 

Step #1: Volume images simulation. A simulated speckle volume 
image with the size of 200 × 200 × 200 voxels was first generated ac-
cording to the method described in Ref.[24]. Then the rigid body 
translation (1.4 voxels in X direction, 1.2 voxels in Y direction, and 1.6 
voxels in Z direction) and the first-order deformation in Z direction (w =
0.02z) were, respectively, applied to the original reference volume 
image to generate two deformed volume image I (translation) and II 
(compression). 

Step #2: Projections extraction. The original reference volume 
image and original deformed volume images I and II are all projected to 
generate 1440 projections with the size of 300 × 300 pixels (i.e., the 
scanning interval is 0.25◦, sampling within 0 ~ 2π). And then different 
numbers of projections are evenly extracted from these 1440 pro-
jections. 4, 8, 16, 36, 60, 90, 120, 180, 240, 360, 720, and 1440 pro-
jections were analyzed in this work. Electronic Gauss noise with a mean 
value of 0 and standard deviation of 10 is imposed on these projections 
to simulate the noise in the real projection sampling. 

Step #3: Volume images reconstruction. The FDK algorithm is 
used to reconstruct the reference volume images and deformed volume 
images for DVC calculation from these different numbers of projections. 
During DVC calculation, the grid step is set as 10 voxels and the number 
of calculation points is 15 × 15 × 15 = 3375. 

3.2. Real experiment 

Real rescan and compression experiments were carried out to verify 
the simulation experiment results. As shown in Fig. 5, a foam copper 
sample with a size of 20 mm × 20 mm × 10 mm was chosen in the real 
experiment for its better natural texture features and the high-density 
polyethylene (HDPE) indenter was used to load in this experiment to 
reduce the artifact caused by the metal indenter. The sample is imaged 
by the X-ray CT (YXLON CT Modular, Germany). The X-ray source 
excitation voltage is set to 155 kV and the current is 0.4 mA. The source- 
to-detector and source-to-object are 999.99 mm and 81.87 mm, respec-
tively. Then 1440 projection images with 1024 × 1024 pixels were 
obtained with a scanning interval of 0.25◦ and an exposure time of 0.7 s. 
Micro X-ray CT device and foam copper sample are shown in Fig. 5. The 
size of the reconstructed volume image is 1024 × 1024 × 800 voxels and 

Fig. 4. Projection image (left), simulated volume image (middle) and sice image in simulation experiment (right).  
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a 200 × 200 × 200 voxels VOI was selected for DVC calculation. The grid 
step was set to be 10 voxels and the number of calculation points is 15 ×
15 × 15 = 3375, which are consistent with the simulation experiment. 

The foam copper rescan experiment was carried out first. The foam 
copper sample was preloaded with a force of 20 N to ensure good end 
contact before testing. Then the sample was scanned twice in a static 
state and 1440 projections were acquired each time. Different numbers 
of projections were extracted evenly from 1440 projections to recon-
struct the volume images by FDK algorithm and DVC calculation was 
carried out on these volume images. The foam copper compression 
experiment was carried out subsequently. The loading rate was set to 
0.1 mm/min and the displacement loading distance was 0.1 mm. After 
loading, the sample was settled for 5 min to ensure enough stress 
relaxation time. Then scanning was performed to record the 1440 pro-
jections in the deformation state. The reconstruction and DVC calcula-
tion parameters are the same as the rescan experiment. 

3.3. DVC analysis and error evaluation 

The DVC method used in this work refers to Ref.[23], which utilizes 
the state-of-art 3D IC-GN algorithm combined with the cubic B-spline 
interpolation method for sub-voxel registration. The iterative conver-

gence condition is set as follows: 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Δu)2 + (Δv)2
+ (Δw)

2
√

≤

0.001voxels or the maximum number of iterations reaches 10. To 
investigate the influence of sub-volume size on DVC measurements with 
different numbers of projections, two different sub-volume sizes, 21 ×
21 × 21 voxels and 41 × 41 × 41 voxels, were selected respectively in 
DVC calculation. The three-dimensional pointwise least-square (PLS) 
method with 113 calculation points is used to extract the positive strain 
field from the displacement field. All the DVC calculations were imple-
mented using in-house DVC software written in C++ language on a 

desktop computer (Intel(R) Core(TM) i5-8250 CPU with a 1.60 GHz 
main frequency and 8 GB RAM). 

The CT projection and reconstruction code used in this work is based 
on an open-source program TIGRE[28], which can obtain the pro-
jections under the CBCT system by projecting the volume images and 
reconstructing the volume images from different numbers of projections 
by FDK algorithm. 

To better examine the effect of the number of projections on DVC 
measurement error, all DVC measurement results are analyzed in terms 
of relative error calculated based on DVC measurement with the 
maximum projection number since there are always some errors in DVC 
calculation itself. 

ui
e =

∑N
j=1(ui

j − um
j )

N
(6)  

σi
u =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1
(ui

j − um
j − ui

e)
2

N − 1

√
√
√
√
√

(7)  

where ui
e, σi

u are mean error and standard deviation error of DVC mea-
surements on volume images reconstructed from i projections. ui

j rep-
resents the DVC-measured displacement or strain of jth calculation point 
when using i projections to reconstruct. m(m > i) is the maximum 
number of projections (m is 1440 in this work). 

4. Results and discussion 

4.1. Simulated translation and compression experiments 

Fig. 6 shows the peak signal-to-noise ratio (PSNR) of reconstructed 

Fig. 5. Top: X-ray CT, copper foam sample, and Bottom: VOI of volume image for DVC calculation.  
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volume images with different Nproj in the simulation experiment. As 
shown in Fig. 6, with the increase of Nproj, the PSNR raises rapidly at first 
and then remains unchanged basically when Nproj exceeds 240. The slice 
images with 4 projections are significantly different from the original 
volume image and the slice image soon has more detailed information 
and less noise with the increase of Nproj. The slice image with Nproj = 240 
is principally the same as the original slice image and further increasing 

Nproj improves the image quality little. 
DVC calculation was carried out on these reference and deformed 

volume images reconstructed from different numbers of projections. 
Figs. 7 and 8 show the displacement and strain results of DVC mea-
surements with two sub-volume sizes in the simulated translation 
experiment and the simulated compression experiment. As shown in 
Figs. 7 and 8, with the increase of the number of projections used in 

Fig. 6. The PSNR of reconstructed volume images with different Nproj in the simulation experiment, the original slice image, and the slice images reconstructed with 
Nproj = 4, 16, 60, 240 and 1440. 

Fig. 7. Statistical results of DVC measurements on volume images reconstructed with different Nproj using two different sub-volume sizes in the simulated translation 
experiment: (a) mean error and (b) SD error in measured displacements, (c) mean error and (b) SD error in measured strains. Here the dash-dotted line is Nproj = 240, 
and vx denotes voxel. 
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Fig. 8. Statistical results of DVC measurements on volume images reconstructed with different Nproj using two different sub-volume sizes in the simulated 
compression experiment: (a) mean error and (b) SD error in measured displacements, (c) mean error and (b) SD error in measured strains. Here the dash-dotted line is 
Nproj = 240, and vx denotes voxel. 

Fig. 9. The reconstructions with Nproj = 4, 36, 60, 240, 360 and 1440 in the real experiment. Each panel shows a slice image along the Z direction of the recon-
structed volume image. 
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reconstructing volume images, the standard deviation error of 
displacement and strain gradually decreases, and the mean error of them 
remains unchanged after slight fluctuations. Increasing the sub-volume 
size helps to reduce the standard deviation error in displacement caused 
by volume images reconstructed with insufficient projections but have 
less effect on the standard deviation error of strain. Further analyzing of 
DVC measurements, it can be found that the decline rates of standard 
deviation error under different numbers of projections are not the same. 
The standard deviation errors in the simulated translation experiment, 
especially for the strain, decrease rapidly at the beginning while 
decreasing gently when Nproj slightly exceeds 240. Moreover, the mean 
errors no longer fluctuate and hold less level when Nproj exceeds 240. 
The errors in simulated compression experiments show similar trends. 

4.2. Foam copper rescan and compression experiments 

Fig. 9 shows slice images of volume images reconstructed with 
different numbers of projections in the real experiment. The PSNR is not 
calculated since there is no original volume image in the real experi-
ment. The structure of copper foam can be hardly seen from the slice 
image with fewer than 60 projections. The slice image with 240 pro-
jections still has a small amount of noise but the interior structures can 
be roughly seen from this slice image. The slice image has little noise and 
the edge of the copper foam structure can be seen clearly when Nproj =

1440. 
The DVC displacement measurements with 1440 projections in foam 

copper rescan and compression experiments are shown in Fig. 10. As 
shown in Fig. 10, the U, V, W displacement field can be extracted 
accurately by DVC measurement with 1440 projections. 

As shown in Figs. 11 and 12, the standard deviation errors of DVC 
displacement and strain measurements also show a downward trend 
with the increase of Nproj and increasing the sub-volume size can reduce 
the standard deviation error caused by reconstructing volume images 
with insufficient projections, which are accordant with the simulation 
experiment results. The mean error of W direction displacement in the 
compression experiment has some differences from that in the rescan 
experiment. From Fig. 12 (a), we can see that the mean error increases 

greatly when Nproj is less than 16 and decreases gradually when Nproj is 
more than 360 and the mean error of W displacement is relatively small 
when Nproj = 4. That is may because all experiments used linear inter-
polation for FDK reconstruction. When the number of projection images 
is extremely small (Nproj = 4), the information obtained by linear 
interpolation occupies the most part and the simple deformation in these 
limited projections can be well reflected in the reconstructed volume 
image. when Nproj increase from 4 to 16, the projection data is still 
inadequate and the interpolation error caused by the increasing pro-
jections with noise may lead to a misdescription of deformation, thus an 
increase of mean error. With the further increase of Nproj, the volume 
image reconstructed by gradually sufficient projections can describe the 
deformation more accurately. 

It can also be found that the decline rates of standard deviation error 
under different numbers of projections are not the same. In rescan 
experiment, the standard deviation errors of both displacement and 
strain decrease rapidly when Nproj increases from 4 to 36, while decrease 
gentle when Nproj exceeds 60. There still are some differences between 
rescan and compression experiments. The standard deviation error of 
displacement decreases faster with the increase of Nproj in the 
compression experiment and there is a sharp decline when Nproj in-
creases from 360 to 720. Besides, unlike that the standard deviation of 
∊zz with the sub-volume size of 21 × 21 × 21 voxels decreasing slowly 
when Nproj increases from 180 to 360 in the rescan experiment, there is 
an obvious rise in compression experiment. But overall, the trend of 
standard deviation error in these two real experiments is still analogous. 

4.3. Discussion 

From the results of the simulation experiment and the real experi-
ment, it can be concluded that the mean errors and the standard devi-
ation errors of displacement and strain show a downward trend with the 
increase of the number of projections. The mean errors, especially for 
strain, fluctuate when Nproj is small and then change little with the in-
crease of Nproj. The standard deviation errors of the DVC measurement 
decrease rapidly at tens of Nproj but show a minor decrease when Nproj is 
larger than 200. Therefore, we can select the appropriate number of 

Fig. 10. The DVC displacement measurement with 1440 projections in foam copper (a) rescan and (b) compression experiments.  
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projections based on these results according to the requirements of error 
levels (precision of DVC measurement) and imaging time (temporal 
resolution of DVC measurement). It is worth noting that only deforma-
tion along the rotation axis (except deformation caused by the Poisson 
effect) is considered in real compression experiment and there are dif-
ferences in X-ray CT devices and micro-structures. Therefore, the num-
ber of projections recommended in this experiment may not be suitable 
for all cases. 

To further evaluate the DVC calculation with different projection 
numbers, the average iteration times and the average ZNCC correlation 
coefficient are obtained and shown in Fig. 13. With the increase of Nproj, 
the DVC calculation generally has fewer times of iteration and a better 
correlation coefficient, which indicates that the efficiency and accuracy 
of DVC calculation are improved by degree. But in the real experiment, 
the average times of iterations with the sub-volume size of 21 × 21 × 21 
voxels increase greatly when Nproj rises from 360 to 720. This is mainly 
because the small size sub-volumes in the volume image reconstructed 
with adequate projections cannot contain rich intensity variations (as 
shown in Fig. 9), which may lead to a mismatch in DVC calculation. 
Increasing the sub-volume size from 21 × 21 × 21 voxels to 41 × 41 ×
41 voxels can help to reduce the times of iteration but make little 
contribution to improve the correlation coefficient. 

The mean intensity gradient (MIG) and image noise level (σn) can be 
used as speckle quality evaluation criteria of volume image in DVC 
calculation[29,30]. DVC measurements on volume images with larger 
MIG and lower noise levels have less error. The MIG and standard de-
viation of noises in volume images reconstructed with different projec-
tion numbers in the simulation experiment and real experiment were 
calculated. The Laplacian operator was used to estimate the standard 
deviation of volume image noise[31]. As shown in Fig. 14, both the 
noise standard deviation and MIG of reconstructed images decrease with 

the increase of Nproj. Therefore, increasing Nproj has a two-sided effect on 
the DVC measurement results. On the one hand, more projections could 
reduce the noise of reconstructed volume images and improve the ac-
curacy of DVC measurement. On the other hand, larger Nproj would 
decrease the MIG of volume image, which would increase standard de-
viations during DVC measurement. 

5. Conclusion 

In this work, simulation and real experiments were carried out to 
study the effect of the number of projections of an X-ray CT device on the 
quality of reconstructed volume images and DVC measurements. Based 
on the experimental results, some valuable conclusions are summarized 
as follows:  

1) The volume image reconstructed with more projections has higher 
fidelity thus better reconstruction quality. However, the volume 
image reconstructed with 240 projections is already of good quality 
despite that this number of projections does not satisfy the spatial 
Nyquist sampling theorem. Further increasing the number of pro-
jections shows little improvement on reconstructed volume image 
quality. 

2) The DVC measurement errors, especially the standard deviation er-
rors in detected displacements and strains, decrease with the in-
crease of the number of projections at different decline rates. 
However, it is interesting to note that the DVC measurements on the 
volume images reconstructed with 36 ~ 60 projections have similar 
error levels compared to those with more projections, even though 
these volume images have low fidelity and higher noise levels. This 
can be explained by the fact that the volume images reconstructed 

Fig. 11. Statistical results of DVC measurements on volume images reconstructed with different Nproj using two different sub-volume sizes in the foam copper resacn 
experiment: (a) mean error and (b) SD error in measured displacements, (c) mean error and (b) SD error in measured strains. Here the dash-dotted line is Nproj = 36, 
and vx denotes voxel. 

Z. Xuanhao et al.                                                                                                                                                                                                                               



Measurement 194 (2022) 111061

10

with few projections have higher MIG values, which can still use as a 
faithful deformation carrier.  

3) Appropriate number of projections can be selected according to 
actual requirements of measurement precision and temporal reso-
lution. Given the copper foam sample and X-ray CT equipment in this 
real experiment, it is recommended to reconstruct the volume image 
with 36 ~ 60 projections, which can obtain relatively accurate re-
sults (acceptable measurement precision) with less sampling time 
(high temporal resolution). If the temporal resolution is not consid-
ered, more than reconstruction with 720 projections is better to 
ensure more precise DVC measurements. 

There are two recently developed methods for improving the 

temporal resolution: 1) projection-based DVC[32] is an integrated 
method (back-projection reconstruction and deformation measure-
ment), whose measurement quality still depends on the selection of the 
number of projections. 2) High-speed acquisition[33] relies on an 
improvement of hardware equipment (e.g., synchrotron radiation). 
However, the fundamental problem is that the increased temporal res-
olution will inevitably weaken the quality of DVC measurements. 
Therefore, this work aims at investigating the effect of the number of 
projections on DVC measurements with X-ray CT and providing certain 
referential suggections for balancing measurement accuracy and tem-
poral resolutions during practical DVC applications through regulating 
projection numbers. However, different numbers of projections were 
acquired in simulation and real experiments by evenly extracting the 

Fig. 12. Statistical results of DVC measurements on volume images reconstructed with different Nproj using two different sub-volume sizes in the foam copper 
compression experiment. (a) mean error and (b) SD error in measured displacements, (c) mean error and (b) SD error in measured strains. Here the dash-dotted line is 
Nproj = 60, and vx denotes voxel. 

Fig. 13. (a)The average iteration times and (b) the average correlation coefficient of DVC calculations with two sub-volume sizes in simulation experiment (ST: 
simulated translation, SC: simulated compression) and real experiment (RR: real rescan, RC: real compression). 
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maximum number of projection images, which are a little different from 
projections acquired in practice. Besides, the suggestions given in this 
work might vary with different deformation situations, micro-structures, 
and X-ray CT devices in practice. And whether the conclusions can be 
extended to other X-ray CT devices or deformation cases, more experi-
mental works should be performed. 
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[3] N. Limodin, J. Réthoré, J. Adrien, J.Y. Buffière, F. Hild, S. Roux, Analysis and 
artifact correction for volume correlation measurements using tomographic images 
from a laboratory X-ray source, Exp. Mech. 51 (2010) 959–970. 

[4] L. Mao, Z. Yuan, M. Yang, H. Liu, F.-P. Chiang, 3D strain evolution in concrete 
using in situ X-ray computed tomography testing and digital volumetric speckle 
photography, Measurement 133 (2019) 456–467. 

[5] A. Benoit, S. Guérard, B. Gillet, G. Guillot, F. Hild, D. Mitton, J. Périé, S. Roux, 3D 
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