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In neutrally stratified shallow water, full-depth Langmuir cells (LCs) can interact with the
turbulent benthic boundary layer and, thus, influence bottom wall shear stresses. In this
paper the impacts of full-depth LCs on the streamwise and spanwise wall shear stresses
are systematically studied using the database obtained from wall-resolved large-eddy
simulation of shallow-water Langmuir turbulence. Analyses focus on the instantaneous
wall shear stress fluctuations and the joint probability density functions between the
stress fluctuations and the LCs parts of the velocity fluctuations, which show that the
linear superimposition effect and nonlinear modulation effect of LCs are responsible for
the spanwise organized distribution of wall shear stress fluctuations. Compared with the
statistics in pure shear-driven turbulence without LCs, the mean square values of wall
shear stress fluctuations in shallow-water Langmuir turbulence are enhanced by the strong
linear superimposition effect of LCs, while the skewness and kurtosis are reduced by
the combination of the linear superimposition effect and nonlinear modulation effect of
LCs. Based on the scalings of these effects, a new predictive model of wall shear stress
fluctuations is proposed for shallow-water Langmuir turbulence. The proposed model can
predict the spatial distribution and statistics of wall shear stress fluctuations using the LCs
parts of velocity fluctuations measured above the water bottom. Owing to the persistence
of the spanwise inhomogeneity of wall shear stresses induced by full-depth LCs, the new
predictive model will be useful for improving the wall-layer modelling for shallow-water
Langmuir turbulent flows.
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1. Introduction

In neutrally stratified shallow water, shear-driven turbulence underneath surface waves
often features full-depth Langmuir cells (LCs) in the form of pairs of counter-rotating
streamwise vortices extending from the water surface to the bottom (Gargett et al.
2004; Gargett & Wells 2007; Tejada-Martínez & Grosch 2007). Field observations and
laboratory experiments have shown that the concentration of resuspended sediment in
shallow-water Langmuir turbulence exhibits an organized spanwise variation (Gargett
et al. 2004; Dethleff & Kempema 2007). Because sediment resuspension and transport
are correlated with the shear stresses at the water bottom (Grant & Madsen 1986; Grant &
Marusic 2011), it is crucial to make accurate predictions of wall shear stress fluctuations in
shallow-water Langmuir turbulence. Recent studies of canonical wall-bounded turbulent
flows also show that investigation of the wall shear stress fluctuations can improve the
wall-layer model in large-eddy simulation (LES) (Howland & Yang 2018) and help predict
turbulence statistics in reduced-order models (Sasaki et al. 2019). As a first step to expand
these valuable model applications from canonical wall-bounded turbulent flows to flows
in coastal environments, we investigate wall shear stress fluctuations in shallow-water
Langmuir turbulence in this study.

Streamwise wall shear stress fluctuations in canonical wall turbulence without full-depth
LCs have been extensively studied in the literature (Alfredsson et al. 1988; Kravchenko,
Choi & Moin 1993; Jeon et al. 1999; Miyagi et al. 2000; Colella & Keith 2003; Abe,
Kawamura & Choi 2004; Hu, Morfey & Sandham 2006; Örlü & Schlatter 2011; Klewicki
2012; Keirsbulck, Labraga & GadelHak 2012; Diaz-Daniel, Laizet & Vassilicos 2017;
Gubian et al. 2019; Liu, Klaas & Schröder 2019; Wang, Pan & Wang 2020). At low
Reynolds numbers, the streamwise wall shear stress fluctuations are highly correlated
with the near-wall coherent structures (Alfredsson et al. 1988; Kravchenko et al. 1993;
Jeon et al. 1999). As the Reynolds number increases, the large-scale motions (LSMs)
originating from the outer layer also impact the near-wall flow through the linear
superimposition effect (Brown & Thomas 1977; Metzger & Klewicki 2001; Abe et al.
2004; Marusic, Mathis & Hutchins 2010) and the nonlinear modulation effect (Hutchins
& Marusic 2007; Mathis, Hutchins & Marusic 2009; Deng, Huang & Xu 2016; Hwang
& Sung 2017). The former means that the large-scale horizontal velocity fluctuations near
the wall are caused by LSMs extending from the outer layer to the near-wall region, and
the latter means that the small-scale velocity fluctuations generated locally near the wall
are amplified or attenuated by LSMs depending on the sign of the large-scale velocity.
Consequently, the statistics of the streamwise wall shear stress fluctuations vary with the
Reynolds number. For example, the root-mean-square (r.m.s.) value of the streamwise wall
shear stress fluctuations exhibits a logarithmic increase with the Reynolds number (Örlü
& Schlatter 2011) for the friction Reynolds number Reτ ∼ O(102 ∼ 103) in numerical
simulations (Abe et al. 2004; Hu et al. 2006; Diaz-Daniel et al. 2017) and Reτ ∼ O(102 ∼
107) in experiments (Mathis et al. 2013; Gubian et al. 2019; Wang et al. 2020). The
skewness, kurtosis and the probability density of extreme events all grow weakly with the
Reynolds number (Keirsbulck et al. 2012; Diaz-Daniel et al. 2017; Liu et al. 2019). Mathis
et al. (2013) proposed a predictive model for the streamwise wall shear stress fluctuations
by accounting for the linear superimposition and nonlinear modulation effects of LSMs.
Their model successfully reproduced the shear stress fluctuations using the outer-layer
large-scale streamwise velocity, which was later used to improve the wall-layer model for
wall turbulence simulations (Howland & Yang 2018; Yin, Huang & Xu 2018).

In the presence of full-depth LCs (or Langmuir-type cells), LSMs still exist but are
attenuated (Deng et al. 2019; Peruzzi et al. 2021), characterized by the reduction in the
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contribution of LSMs to the Reynolds stresses in the outer layer. Conversely, full-depth
LCs generated by the interaction between wind-driven turbulent currents and water waves
fill the whole water column and significantly impact the flow field near the bottom (Gargett
& Wells 2007; Tejada-Martínez & Grosch 2007; Kukulka, Plueddemann & Sullivan 2012;
Martinat, Grosch & Gatski 2014; Sinha et al. 2015; Deng et al. 2019, 2020). Specifically,
the streamwise and spanwise components of the Reynolds normal stresses near the bottom
are enhanced by full-depth LCs through the linear superimposition effect (Gargett & Wells
2007; Tejada-Martínez & Grosch 2007; Sinha et al. 2015; Deng et al. 2019). Full-depth
LCs also have strong nonlinear interactions with small-scale background turbulent motions
(Kukulka et al. 2012; Martinat et al. 2014; Deng et al. 2020), resulting in an organized
spanwise variation in turbulence intensity near the bottom (Martinat et al. 2014; Deng
et al. 2020).

Based on the above review on the previous studies of LSMs and full-depth LCs, it
is expected that research on the impacts of full-depth LCs on bottom wall shear stress
fluctuations in shallow-water Langmuir turbulence would be useful for improving the
wall-layer model and sediment resuspension model in coastal flows. Recently, Shrestha
& Anderson (2020) studied the bottom wall shear stresses in shallow-water Langmuir
turbulence using wall-modelled LES based on the Craik–Leibovich (CL) equations (Craik
& Leibovich 1976; Craik 1977). The significant impacts of full-depth LCs on wall shear
stress fluctuations are evident from the comparison of the instantaneous fields between
shallow-water Langmuir turbulence (Shrestha & Anderson 2020) and canonical wall
turbulence (Abe et al. 2004; Mathis et al. 2013). Specifically, Shrestha & Anderson (2020)
found that almost all of the streamwise wall shear stress fluctuations have the same signs as
the streamwise velocity induced by full-depth LCs, while the correlation in canonical wall
turbulence is lower, approximately 0.3 (Mathis et al. 2013). Motivated by the pioneering
work of Shrestha & Anderson (2020), systematic studies of the impacts of full-depth LCs
on wall shear stress fluctuations in shallow-water Langmuir turbulence are called for.

In the present work we aim to address the following three questions on the impacts of
full-depth LCs on the streamwise and spanwise components of bottom wall shear stress
fluctuations in neutrally stratified shallow-water Langmuir turbulence.

(i) How do full-depth LCs impact the spatial distribution of bottom wall shear stress
fluctuations?

(ii) What are the impacts of full-depth LCs on the statistics of the wall shear stress
fluctuations?

(iii) How can the impacts of full-depth LCs on the wall shear stress fluctuations be
quantitatively scaled under different flow conditions, and how can their predictive
models be developed in shallow-water Langmuir turbulence?

These questions are answered by analysing the wall-resolved LES database of neutrally
stratified shallow-water Langmuir turbulence obtained by Deng et al. (2019). The
full-depth LCs are extracted using a triple decomposition technique. The impacts of
full-depth LCs are revealed by comparing the results with those in pure shear-driven
turbulence without full-depth LCs. Through the investigation of the statistics at different
Reynolds numbers, wavenumbers of water waves and turbulent Langmuir numbers
(McWilliams, Sullivan & Moeng 1997), the impacts of full-depth LCs on the wall shear
stress fluctuations are quantitatively scaled using the velocities induced by full-depth LCs.
Based on these scalings, a predictive model is developed. The proposed model establishes
a physical foundation for the improvement of wall-layer modelling for coastal flows in the
future.
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The remainder of this paper is organized as follows. The database of the neutrally
stratified shallow-water Langmuir turbulence obtained by wall-resolved LES is introduced
in § 2. Section 3 investigates the mechanisms of full-depth LCs governing the spatial
distribution of the wall shear stress fluctuations. The impacts of full-depth LCs on the
statistics of wall shear stress fluctuations are quantified in § 4. In § 5 a predictive model is
proposed and assessed. Sections 3, 4 and 5 address questions (i), (ii) and (iii), respectively.
Conclusions are given in § 6.

2. Database and LCs

2.1. Description of database
The wall-resolved LES database of neutrally stratified shallow-water Langmuir turbulence
is obtained by solving the following continuity and CL equations:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂Π

∂xi
+ ν

∂2ui

∂xj∂xj
+
∂τ

sgs
ij

∂xj
+ εijkus

jωk + Fi. (2.2)

As shown in figure 1, the filtered velocities in the streamwise (x or x1), vertical (y or
x2) and spanwise (z or x3) directions are u (or u1), v (or u2) and w (or u3), respectively.
In the first and second terms on the right-hand side of (2.2), Π is the modified
pressure in the LES, ρ is the water density and ν is the kinematic viscosity of water.
According to the derivation of the CL equations (Craik & Leibovich 1976; Craik 1977), ui
corresponds to the velocity induced by mean current and turbulence motions, of which the
characteristic frequencies are much lower than the water wave frequencies. Because the
high-frequency wave-induced motions are clipped in the CL equations, LES is conducted
and a subgrid-scale (SGS) stress tensor term τ

sgs
ij is included in the third term on the

right-hand side of (2.2) (McWilliams et al. 1997; Tejada-Martínez & Grosch 2007). The
effects of waves on the mean current and turbulence motions are represented by a CL
vortex forcing, the last term on the right-hand side of (2.2), where εijk is the third-order
Levi–Civita symbol, ωi is the vorticity and us

i is the Stokes drift of water waves. In shallow
water, us

i is quantified as (Tejada-Martínez & Grosch 2007)

us
1 = us∗ cosh(2ky)

2 sinh2(2kh)
, us

2 = us
3 = 0, y/h ∈ [0, 2], (2.3a–c)

where us∗ is the wave Stokes drift velocity at the water surface, k is the wavenumber and h
is the half-water depth. The term Fi is the imposed pressure gradient corresponding to the
tide. The present study focuses on the neutral stratification condition, i.e. no stratification
in the flow, and, thus, the effect of the buoyancy force is ignored. The boundary conditions
at the water surface y/h = 2 include no penetration, a constant streamwise wind shear
stress τw and a zero spanwise wind shear stress. The no-slip boundary condition is
employed at the water bottom y/h = 0. The periodic boundary condition is applied in
the streamwise and spanwise directions.

Equations (2.1)–(2.2) are solved using the fractional-step method (Kim & Moin
1985). The spatial discretization utilizes a hybrid spectral/finite-differential scheme on a
staggered grid (Deng et al. 2019). The dynamic Smagorinsky model is used to calculate
the SGS stress tensor τ sgs

ij (Smagorinsky 1963; Germano et al. 1991; Lilly 1992). Details
of our simulation schemes and validations can be found in Deng et al. (2019, 2020).
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Surface shear stress τw

Water bottom

L z 
= 16π

h/3

y

x
z

H = 2h

Lz = 8πh

Figure 1. Sketch of the computational model for shallow-water Langmuir turbulence.

Using the friction velocity at the water surface uw = √
τw/ρ and the half-water

depth h as the characteristic velocity and length scales, respectively, there are four
non-dimensional parameters in the CL equation, including the friction Reynolds number
Reτ = uwh/ν, the turbulent Langmuir number Lat = √

(uw/u∗)(u∗/us∗) (Martinat et al.
2011; Gargett & Grosch 2014; Shrestha et al. 2019; Shrestha & Anderson 2020), the
wavenumber of the surface waves kh, and the relative strength between the wind stress
and the pressure gradient forcing ψ = uw/uτ,S (Shrestha et al. 2019). Here, u∗ = √

τb/ρ
is the total friction velocity corresponding to the total mean bottom shear stress τb, and
uτ,S = √

τS/ρ is the friction velocity corresponding to the mean bottom shear stress τS
induced by the pressure gradient. According to the observation records of full-depth LCs
in field experiments, full-depth LCs are present when the tide is relatively weak (Gargett
et al. 2004; Gargett & Wells 2007; Gargett & Grosch 2014). Therefore, following the works
of Tejada-Martínez & Grosch (2007), Tejada-Martínez et al. (2012), Sinha et al. (2015)
and Shrestha & Anderson (2020), we focus on the cases of ψ = ∞, i.e. u∗/us∗ = 1, to
exclusively study the effect of full-depth LCs in the present study. The impacts of the
pressure gradients are briefly discussed in § 5.4.

The values of the other three parameters are listed in table 1. Among the nine cases,
pure shear-driven turbulence with Lat = ∞ (case 7) is compared with the shallow-water
Langmuir turbulence cases to illustrate the impacts of full-depth LCs on the wall shear
stresses. As reported by Tejada-Martínez & Grosch (2007), Sinha et al. (2015) and
Shrestha, Anderson & Kuehl (2018), for shallow-water to intermediate water waves
(kh < π/2) with 0.38 < Lat < 1, the spanwise length scales of full-depth LCs and the
spatial distribution patterns of the velocities induced by full-depth LCs are not significantly
influenced by Lat and kh. At low Lat (Lat < 0.38) the full-depth LCs are weaker and
narrower than Lat > 0.38 (Shrestha et al. 2018). Under the condition of deep water waves
kh = 5.0, the full-depth LCs are deformed with significantly weakened upwelling motions
(Shrestha et al. 2018). To conduct a systematic analysis on the effects of full-depth
LCs, different flow conditions in the ranges of 0.38 < Lat < 1 and kh < π/2 are firstly
considered in cases 1–6 with Reτ varying from 1000 to 395 (cases 1–3), kh ranging from
0.5 to 5.0 (cases 1, 4, 5, 8), and Lat changing from 0.7 to 0.9 (cases 1 and 6). The effects
of deformed full-depth LCs occurring at low Lat or high kh are explored using case 8
(Lat = 0.3) and case 9 (kh = 5), respectively.

Owing to the limitation of the present computer power, the Reynolds number in the
present wall-resolved LES is much lower than the realistic values Reτ = O(106). However,
Reτ = 1000 is sufficiently high for shallow-water Langmuir turbulence to capture the
typical high-Reynolds-number effects as in canonical wall turbulence. To be specific,
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Reτ Lat kh Lx/h Lz/h Nx Nz Ny 
x+ 
z+ 
y+
min

Case 1 1000 0.7 0.5 8π 16π/3 512 512 192 49.09 32.72 0.625
Case 2 700 0.7 0.5 8π 16π/3 384 384 144 45.81 30.54 0.588
Case 3 395 0.7 0.5 8π 16π/3 256 256 128 38.78 25.85 0.395
Case 4 1000 0.7 1.0 8π 16π/3 512 512 192 49.09 32.72 0.625
Case 5 1000 0.7 1.5 8π 16π/3 512 512 192 49.09 32.72 0.625
Case 6 1000 0.9 0.5 8π 16π/3 512 512 192 49.09 32.72 0.625
Case 7 1000 ∞ — 8π 16π/3 512 512 192 49.09 32.72 0.625
Case 8 1000 0.3 0.5 8π 16π/3 512 512 192 49.09 32.72 0.625
Case 9 1000 0.7 5.0 8π 16π/3 512 512 192 49.09 32.72 0.625

Table 1. Computational parameters in various cases. The grid numbers in the streamwise, vertical and
spanwise directions are Nx, Ny and Nz, respectively. The grid resolutions in the streamwise and spanwise
directions are
x+ and
z+, respectively. The minimal grid resolution in the vertical direction is
y+

min. Other
variables are defined in the text.

LSMs in canonical high-Reynolds-number wall turbulence lead to a bimodal shape in
the profile of the r.m.s. value of the streamwise velocity fluctuations (Smits, McKeon
& Marusic 2011), and similarly, full-depth LCs in shallow-water Langmuir turbulence
at Reτ = 1000 also induce a bimodal profile of the r.m.s. value (Deng et al. 2019).
Furthermore, both the LSMs in canonical high-Reynolds-number wall turbulence and
full-depth LCs at Reτ = 1000 impose a nonlinear modulation effect on small-scale
turbulence (Mathis et al. 2009; Deng et al. 2020).

The size of the computational domain is Lx × Ly × Lz = 8πh × 2h × 16πh/3, which
contains two pairs of full-depth LCs in the z-direction for cases 1–6 (Deng et al. 2019),
and three pairs of full-depth LCs for case 8 (shown in § 5.4). The number of water waves
in the domain is Lx/λ = Lx/(2π/k) = 4kh, with λ being the wavelength of the wave. As
reported in our previous studies (Deng et al. 2019, 2020), the meandering of the large-scale
streaks of streamwise velocity can be observed in both the present computational domain
and a larger domain of 32πh × 2h × 64πh/3, and the statistics of the LCs parts and the
background turbulence parts of velocities fluctuations obtained in these two domains are
consistent. This means that Lx = 8πh is sufficiently large to capture the meandering of
LSMs. The grid mesh is evenly distributed in the x- and z-directions and is stretched in
the y-direction. The first mesh centres off the surface and the bottom is located within

y+ = 1. Hereinafter, the superscript ‘+’ denotes values non-dimensionalized by the wall
unit δυ = ν/uw and friction velocity uw. The grid resolution satisfies the requirement of
wall-resolved LES, namely, 50 � 
x+ � 130, 15 � 
z+ � 35 and
y+

min � 1 (Chapman
1979; Choi & Moin 2012). Discussions on the choices of simulation parameters can be
found in Deng et al. (2019). It was confirmed in Deng et al. (2019) that the turbulence
statistics obtained from the wall-resolved LES of shallow-water Langmuir turbulence
using the CL equations agree with experimental results (also see Tejada-Martínez &
Grosch 2007). Therefore, the database is used in the present study to investigate the
impacts of full-depth LCs on the statistics of the bottom wall shear stress fluctuations.

2.2. Extraction of full-depth LCs
Full-depth LCs are extracted using the following triple decomposition (Tejada-Martínez
& Grosch 2007):

ui = 〈ui〉 + u′
i = 〈ui〉 + uL

i + uT
i . (2.4)
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Here 〈ui〉 is the mean current based on time and plane averaging, and u′
i represents the

velocity fluctuations induced by turbulence motions. The velocity fluctuations can be
further decomposed into an LCs part uL

i and a background turbulence part uT
i . The LCs

part uL
i is defined as

uL
i = 1

Lx

∫ Lx

0
u′

i dx. (2.5)

Because the present computational domain can capture the meandering of LSMs, the
streamwise averaging is sufficient to separate full-depth LCs from other meandering
structures, and, thus, time averaging is not applied in (2.5). In pure shear-driven
turbulence uL

i corresponds to the velocity induced by Couette cells (CCs), owing to
their similarity to the cells in turbulent Couette flows (Tejada-Martínez & Grosch
2007). The above triple decomposition has been used to extract the CCs in turbulent
Couette flows (Papavassiliou & Hanratty 1997) and full-depth LCs in shallow-water
Langmuir turbulence (Tejada-Martínez & Grosch 2007; Deng et al. 2019). Similar triple
decomposition techniques were also used to study the coherent motions induced by
streamwise-aligned roughness and riblets (Raupach & Shaw 1982; Choi, Moin & Kim
1993; Jimenez et al. 2001; Garcia-Mayoral & Jimenez 2011; Jelly, Jung & Zaki 2014; Seo,
Garcia-Mayoral & Mani 2015; Scherer et al. 2022).

Corresponding to the triple decomposition (2.4), the wall shear stress, defined as

τi2 = μ
∂ui

∂y

∣∣∣∣
y=0

, (2.6)

can also be decomposed into

τi2 = 〈τi2〉 + τi2
′ = 〈τi2〉 + τi2

L + τi2
T . (2.7)

According to the no-slip bottom boundary condition and the continuity equation, τ22 = 0
strictly holds. Furthermore, when the flow develops into an equilibrium state, the mean
wall shear stress is balanced by the wind shear stress at the water surface, and, therefore,
〈τ12〉 = τw and 〈τ32〉 = 0. In the present study we focus on the fluctuations τ12

′ and τ32
′

and their LCs and background turbulence parts.
Figure 2 compares the instantaneous flow fields between the full-depth LCs in

shallow-water Langmuir turbulence (case 1) and CCs in pure shear-driven turbulence
(case 7). Both full-depth LCs and CCs appear as counter-rotating streamwise vortex pairs.
However, the streamwise and spanwise velocities induced by full-depth LCs are more
intense than those of CCs, especially near the water bottom. Owing to the strong footprint
of full-depth LCs near the bottom, the wall shear stress fluctuations in shallow-water
Langmuir turbulence are significantly altered by full-depth LCs, as shown in the results in
the following sections.

3. Spatial distribution of wall shear stress fluctuations

In this section the effects of full-depth LCs on the spatial variation of the wall shear stress
fluctuations are first illustrated by comparing their instantaneous fields with those in pure
shear-driven turbulence. Next, how full-depth LCs dominate the spatial patterns of the
stresses is elucidated by analysing the joint probability density function (j.p.d.f.) of the
LCs part of the velocity and the stresses. Cases 1 and 7 are selected as the representatives
of shallow-water Langmuir turbulence and pure shear-driven turbulence, respectively. The
other cases listed in table 1 are used to develop and validate the predictive model in § 5.
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(a)

Figure 2. Instantaneous fields of uL
i in (a) shallow-water Langmuir turbulence (case 1) and (b) pure

shear-driven turbulence (case 7). The contours are uL+ and the vectors are (vL+,wL+). The near-bottom
diverging and converging flow regions induced by full-depth LCs are marked in (a).

3.1. Spatial patterns of wall shear stress fluctuations
Figure 3 compares the contours of instantaneous wall shear stress fluctuations between
shallow-water Langmuir turbulence (case 1) and pure shear-driven turbulence (case 7).
The dashed lines in figure 3(a,b) divide the x–z plane into regions with positive
and negative uL, while the dash-dotted lines in figure 3(c,d) separate the regions
with positive wL from those with negative wL. Here, the values of the LCs parts
of the streamwise velocity uL and spanwise velocity wL are taken at a reference
height of y/h = 0.1 (y+ = 100), where the peak r.m.s. value of uL in shallow-water
Langmuir turbulence occurs (Deng et al. 2019). Figure 3(a) shows that in shallow-water
Langmuir turbulence, the positively and negatively valued streamwise wall shear
stress fluctuations τ12

′ are accumulative in the regions with the same signs of
uL, forming streamwise-elongated large-scale streaks. In contrast, such organized
streamwise-elongated streaks are not observed in pure shear-driven turbulence (figure 3b),
where positive-valued (negative-valued) τ12

′ also occurs in the regions with negative uL

(positive uL). In other words, the correlation between τ12
′ and uL is more pronounced in

shallow-water Langmuir turbulence than in pure shear-driven turbulence. This comparison
illustrates the dominant role played by full-depth LCs in the spatial pattern of streamwise
wall shear stress fluctuations.

The instantaneous spanwise wall shear stress fluctuation τ32
′ is also influenced by

full-depth LCs. In pure shear-driven turbulence τ32
′ is distributed irregularly in the

x–z plane (figure 3d). In contrast, in shallow-water Langmuir turbulence τ32
′ exhibits

an organized distribution (figure 3c). The events of small-magnitude τ32
′ gather in the

near-bottom converging region with negative uL, while the events of large-magnitude τ32
′

appear in a bristle form in the diverging region with positive uL (see figures 3a,c and 2a).
In the diverging region, positive- and negative-valued τ32

′ concentrates on the sides with
positive and negative wL, respectively, forming streamwise-elongated streaks. The above
observation indicates that the spanwise distribution of the streaks of τ32

′ is dependent on
both the LCs part of the streamwise velocity uL and the LCs part of the spanwise velocity
wL. Shrestha & Anderson (2020) found similar patterns based on wall-modelled LES. The
similarity between the wall-modelled LES results of Shrestha & Anderson (2020) and
the present wall-resolved LES results suggests a strong impact of full-depth LCs on the

942 A6-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.343


Wall shear stress fluctuations influenced by LCs

25
uL>0 uL>0uL<0

1.0
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
–1.0

20

15

10

5

0 5 10 15

τ ′1
+
2

25
uL>0 uL>0uL<0 uL<0uL<0

1.0
0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8
–1.0

20

15

10

5

0 5 10 15

τ ′1
+
2

25
wL>0 wL>0wL<0wL<0

0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8

20

x/h

z/h z/h

x/h

15

10

5

0 5 10 15

τ ′
3
+
2

0.8
0.6
0.4
0.2
0
–0.2
–0.4
–0.6
–0.8

τ ′
3
+
2

25
wL>0wL>0 wL>0wL<0 wL<0wL<0

20

15

10

5

0 5 10 15

(a) (b)

(c) (d )

Figure 3. Instantaneous fields of wall shear stress fluctuations. (a,b) The streamwise wall shear stress
fluctuation τ ′

12 in shallow-water Langmuir turbulence (case 1) and pure shear-driven turbulence (case 7),
respectively. (c,d) The spanwise wall shear stress fluctuation τ ′

32 in case 1 and case 7, respectively. The LCs
parts of the streamwise velocity uL and spanwise velocity wL are taken at a reference height of y/h = 0.1
(y+ = 100 at Reτ = 1000).

background turbulence part of the wall shear stress fluctuations. This point is discussed in
more detail in the next section.

3.2. Mechanisms of full-depth LCs influencing the spatial patterns of wall shear stress
fluctuations

In this section we analyse the j.p.d.f. of the LCs parts of velocities and the wall shear
stress fluctuations to conduct a quantitative investigation of the observation in figure 3.
Figure 4 shows the contours of P(uL, τ12

′), the j.p.d.f. of the LCs part of velocity uL
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Figure 4. Contours of the j.p.d.f. of uL at y/h = 0.1 (y+ = 100) and τ ′
12 at y/h = 0, P(uL, τ ′

12). (a,b)
Contours obtained from shallow-water Langmuir turbulence with full-depth LCs (case 1) and pure shear-driven
turbulence with CCs (case 7), respectively.

at y/h = 0.1 and the streamwise wall shear stress fluctuation τ12
′. The results in cases

1 and 7 are contrasted to demonstrate the differences between shallow-water Langmuir
turbulence and pure shear-driven turbulence. In the following analyses of j.p.d.f., the LCs
parts of velocities uL and wL are all evaluated at y/h = 0.1 (y+ = 100 at Reτ = 1000)
without specification. It is seen from figure 4 that the contours of P(uL, τ ′

12) exhibit two
peaks for both flows. Around the upper peak with positive uL, the probability of positive
τ12

′ is higher in shallow-water Langmuir turbulence than in pure shear-driven turbulence.
Around the lower peak with negative uL, positive τ12

′ is rarer in shallow-water Langmuir
turbulence. These features of P(uL, τ12

′) in the presence of full-depth LCs are consistent
with the organized streaks of τ12

′ observed in figure 3(a).
Because τ12

′ consists of an LCs part τ12
L and a background turbulence part τ12

T

(2.7), we further study the impacts of full-depth LCs on P(uL, τ12
L) and P(uL, τ12

T).
Figure 5 depicts P(uL, τ12

L) and P(uL, τ12
T) using red isopleths and coloured contours,

respectively. As shown, the contours of P(uL, τ12
L) are nearly straight lines in both

shallow-water Langmuir turbulence and pure shear-driven turbulence. In other words,
τ12

L+ = α1uL+ holds approximately, indicating a linear superimposition effect of uL on
τ12

′ through τ12
L. Here, α1 is the slope of the straight line and its value is further discussed

in § 5.1. The stronger intensity of the LC part of velocity uL (figure 2) leads to a larger
magnitude of the linearly superimposed τ12

L in shallow-water Langmuir turbulence than
in pure shear-driven turbulence. As a result, large-magnitude τ12

L events occur more
frequently in shallow-water Langmuir turbulence (red isopleths in figure 5).

The j.p.d.f. P(uL, τ12
T) (coloured contours in figure 5) is also influenced by full-depth

LCs through a nonlinear modulation effect on τ12
T . In both shallow-water Langmuir

turbulence and pure shear-driven turbulence, the contours of P(uL, τ12
T) are asymmetrical

about the horizontal line uL = 0, suggesting a nonlinear effect of uL on τ12
T . Specifically,

the width of the contours of P(uL, τ12
T) in the τ12

T -axis direction is larger in the upper
half of the uL–τ12

T plane with positive uL than in the lower half with negative uL. This
behaviour of the j.p.d.f. indicates the amplification and suppression of τ12

T in the regions
with positive and negative uL, respectively, similar to the modulation effect of LSMs on
near-wall turbulence found in canonical wall turbulence (Marusic et al. 2010). Comparing
figures 5(a) with 5(b), the width of the isopleth P(uL, τ12

T) = 0.02 (indicated by the
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Figure 5. Joint probability density functions P(uL, τ12
T ) and P(uL, τ12

L) in (a) shallow-water Langmuir
turbulence (case 1) and (b) pure shear-driven turbulence (case 7). The coloured contours are P(uL, τ12

T )

and the red isopleths are P(uL, τ12
T ) = 0.5 and 1.2. The horizontal arrows mark the width of the isopleth

P(uL, τ12
T ) = 0.02.

horizontal arrows) near the upper peak with positive uL is shown to be comparable in
the two flows, while near the lower peak with negative uL, it is smaller in shallow-water
Langmuir turbulence than in pure shear-driven turbulence. This observation indicates that
full-depth LCs impose a stronger suppression effect on τ12

T in the region with negative uL

than CCs.
The relationship among P(uL, τ12

′), P(uL, τ12
T) and P(uL, τ12

L) can be further
quantified using the following analyses. Based on the linear relationship τ12

L+ = α1uL+
pointed out above, P(uL, τ12

′) can be transformed into P(uL, τ12
T) as

P(uL+, τ12
′+) = |J|−1 P(uL+, τ12

T+ = τ12
′+ − α1uL+), (3.1)

where J is the Jacobian of the coordinate transformation from (uL+, τ12
T+) to (uL+, τ12

′+)
and ‘| |’ represents the determinant of a matrix. Using the relationship τ12

′+ = α1uL+ +
τ12

T+, J can be expressed as

J = ∂(uL+, τ12
′+)

∂(uL+, τ12T+)
=
(

1 0
α1 1

)
. (3.2)

As a result, (3.1) can be further simplified into

P(uL+, τ12
′+) = P(uL+, τ12

T+ = τ12
′+ − α1uL+). (3.3)

According to (3.3), P(uL, τ12
′) can be obtained by shifting P(uL, τ12

T) in the τ12
T -axis by

a distance of α1uL+ (or τ12
L+). In (3.3) the j.p.d.f.s P(uL, τ12

L) and P(uL, τ12
T) manifest

the linear superimposition effect and nonlinear modulation effect, respectively. It is shown
below (figure 14 in § 5.1) that τL

12 is induced by a ‘top–down’ mechanism of uL, which
is similar to that of LSMs found in wall turbulence (Scherer et al. 2022). According to
the definition of wall shear stress (2.6), τT

12 is determined by near-bottom uT , which is
amplified/suppressed by the positive/negative energy production correlated to the local
positive/negative vertical gradient of uL (Deng et al. 2020). Therefore, the strong linear
superimposition effect and nonlinear modulation effect of full-depth LCs lead to the
features of P(uL, τ12

′), which correspond to organized streamwise-elongated streaks of
τ12

′ (figure 3a).
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Particularly on the lower half-plane with negative uL, the width of P(uL, τT
12) on the

positive side of τT
12 shrinks owing to the suppression effect of negative uL (figure 5a), and

after shifting towards the negative direction of the τ ′
12-axis (or τT

12-axis) by a distance of
|τL

12|, the contours of the resultant P(uL, τ ′
12) in (3.3) are mostly located on the side of

negative τ ′
12 (figure 4a). On the upper half-plane with positive uL, the width of P(uL, τ12

T)

in the τT
12-axis expands on the positive side of τT

12 (figure 5a). After a shift towards positive
τT

12 (τ ′
12) by a distance of τL

12, a large portion of the resultant P(uL, τ12
′) is located on the

side of positive τ ′
12 (figure 4a). Therefore, the correlation between τ ′

12 and uL is strong in
shallow-water Langmuir turbulence (figures 3a, 4a). It should be noted that for positive uL,
there is still a portion of the contours of P(uL, τ12

′) on the negative side of τ ′
12 (figure 4a),

since P(uL, τ12
T) also expands on the side of negative τT

12 and the value of positive τL
12 is

not large enough (figure 5a). Comparing P(uL, τ ′
12) in the lower half-plane with that in the

upper half-plane, it can be observed that the correlation between negative τ ′
12 and negative

uL is more pronounced than that of the positive values (figure 4a).
The above discussions are on the streamwise wall shear stress fluctuations τ12

′. Next, we
investigate the spanwise component τ32

′. To conduct quantitative analyses of the impact of
full-depth LCs on the spatial pattern of τ32

′ shown in figure 3(c), figure 6 depicts the j.p.d.f.
P(wL, τ ′

32) under the conditions of uL > 0 and uL < 0. In pure shear-driven turbulence the
contours of P(wL, τ ′

32) under the conditions of uL > 0 and uL < 0 are similar to each other.
Particularly the contours shown in figure 6(c,d) are both approximately symmetric about
the horizontal line wL = 0. These observations indicate that τ ′

32 is almost independent of
uL and wL, and, thus, τ32

′ appears irregular in figure 3(d). In contrast, in shallow-water
Langmuir turbulence P(wL, τ ′

32) shows a strong dependence of τ ′
32 on both uL and wL.

The contours of P(wL, τ ′
32) under the condition of uL > 0 (figure 6a) exhibit two peaks

in the first and third quadrants where the signs of wL and τ ′
32 are the same, while those

under the condition of uL < 0 (figure 6b) show only one peak at the origin. The above
features correspond to the organized streaks of τ ′

32 located in the regions with positive uL

(figure 3c).
To further investigate the effects of uL and wL on the spanwise wall shear stress

fluctuation τ32
′, figure 7 shows P(wL, τL

32) and P(wL, τT
32) under the conditions of uL > 0

and uL < 0. As shown by the red isopleths, τL+
32 is approximately a linear function of wL+,

i.e. τ32
L+ = α3wL+. This linear function indicates a linear superimposition effect of wL on

τ32
′, which is confirmed later in § 5.1 (figure 14) to be induced by a top–down mechanism

of wL. In comparison with pure shear-driven turbulence, the magnitude of wL near the
bottom is larger in shallow-water Langmuir turbulence (figure 2), which consequently
causes a larger magnitude of τ32

L. Furthermore, it is evident from figure 2(a) that a large
magnitude of wL mainly occurs in the near-bottom diverging region with positive uL. As
a result, the contour peaks in figure 7(a) for uL > 0 occur at larger magnitudes of wL than
in figure 7(b) for uL < 0.

In figure 7(a,b) the contours of P(wL, τ32
T) are approximately symmetric about the

horizontal line wL = 0, and, thus, the impact of the signs of wL on τ32
T is weak.

Conversely, the contour pattern of P(wL, τ32
T) in figure 7(a) is different from that in

figure 7(b), indicating a nonlinear effect of uL on τ32
T . The width of the contours of

P(wL, τ32
T) in the τ32

T -axis direction is larger under the condition of uL > 0 than that
under the condition of uL < 0, demonstrating the amplification and attenuation of τ32

T
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Figure 6. Contours of the j.p.d.f. P(wL, τ ′
32). (a,b) Contours of P(wL, τ ′

32) under the conditions of uL > 0 and
uL < 0, respectively, in shallow-water Langmuir turbulence (case 1). (c,d) Contours of P(wL, τ ′

32) for positive
and negative uL, respectively, in shear-driven turbulence (case 7).

by positive and negative uL, respectively. Therefore, it is the LCs part of the streamwise
velocity uL but not the spanwise velocity wL that imposes a nonlinear modulation effect on
τ32

T+ in shallow-water Langmuir turbulence. Since τT
32 is contributed by the background

turbulence fluctuations wT near the bottom, the modulation effect of uL on τT
32 is consistent

with that on wT through the local energy production related to the local shear of the vertical
gradient of uL. In pure shear-driven turbulence the nonlinear modulation effect of uL on
τ32

T is weak, because the difference in the contours of P(wL, τT
32) under the conditions of

uL > 0 and uL < 0 (figure 7c,d) is insignificant.
Similar to (3.3), P(wL, τ32

′), P(wL, τ32
T) and P(wL, τ32

L) satisfy the relationship

P(wL+, τ32
′+) = P(wL+, τ32

T+ = τ32
′+ − α3wL+), (3.4)

which indicates that P(wL, τ32
′) can be obtained by shifting P(wL, τ32

T) in the τ32
T -axis by

a distance of τ32
L. Thus, the strong nonlinear modulation effect of uL on τ32

T and the linear
superimposition effect of wL on τ32

L lead to the features of P(wL, τ32
′) in figure 6(a,b),

which represent the organized streaks of τ32
′ in the presence of full-depth LCs depicted in

figure 3(c).
The above analyses address the first question raised in § 1. In summary, in shallow-water

Langmuir turbulence, full-depth LCs are found to generate organized distributions of
wall shear stress fluctuations that are much more distinct than the effects of CCs
in pure shear-driven turbulence and LSMs in canonical wall-bounded turbulent flows.
The organized streamwise-elongated streaks of τ12

′ are caused by the combination of
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Figure 7. Joint probability density functions P(wL, τT
32) (the coloured contours) and P(wL, τL

32) (the red
isopleths) in (a,b) shallow-water Langmuir turbulence (case 1) and (c,d) pure shear-driven turbulence (case
7); (a,c) are under the condition of uL > 0, and (b,d) are under the condition of uL < 0. The horizontal arrows
in (a,b) mark the width of the isopleth P(wL, τT

32) = 0.02.

the linear superimposition effect and nonlinear modulation effect of uL induced by
full-depth LCs, while those of τ32

′ are attributed to the linear superimposition effect
of wL and the nonlinear modulation effect of uL. In pure shear-driven turbulence, the
linear superimposition effect and nonlinear modulation effect of CCs on τi2

′ diminish
(figures 5b and 7c,d). Consequently, organized streaks of τi2

′ are much less obvious in
the instantaneous field (figure 3b,d). Organized streaks of τi2

′ were not found in canonical
wall turbulence either (Abe et al. 2004), likely owing to the weaker linear superimposition
effect and nonlinear modulation effect of LSMs on τi2

′ compared with full-depth LCs.

4. Statistics of wall shear stress fluctuations

In this section the statistics of wall shear stress fluctuations are studied to further
investigate the impacts of the linear superimposition effect and nonlinear modulation effect
of full-depth LCs. From previous studies, it is understood that the mean square value,
skewness and kurtosis of wall shear stress fluctuations are important parameters in the
stochastic models of sediment erosion (Partheniades 1965; Van Prooijen & Winterwerp
2010). Therefore, we focus on the mean square value σ 2(τ ′+

i2 ), skewness S(τ ′+
i2 ) and

kurtosis K(τ ′+
i2 ) that measure the averaged strength, the asymmetry between the positive-

and negative-valued large-magnitude events, and the probability of the extreme events of
wall shear stress fluctuations, respectively.
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Figure 8. Comparison of the components of the mean square values of (a) τ ′+
12 and (b) τ ′+

32 in (4.1) between
shallow-water Langmuir turbulence (case 1) and pure shear-driven turbulence (case 7). The bars filled by red
and blue colours indicate an increase and reduction in the values in case 1 compared with those in case 7,
respectively. The percentages of the components of the total value are also listed.

Based on the triple decomposition (2.7), the following can be derived:

σ 2(τ ′+
i2 ) = σ 2(τT+

i2 )+ σ 2(τL+
i2 ). (4.1)

This equation indicates that the impacts of full-depth LCs on the mean square values can
be analysed through the two components σ 2(τT+

i2 ) and σ 2(τL+
i2 ). Figure 8 compares the

values of σ 2(τ ′+
i2 ), σ

2(τT+
i2 ) and σ 2(τL+

i2 ) between shallow-water Langmuir turbulence
and pure shear-driven turbulence. As shown, σ 2(τT+

12 ) and σ 2(τT+
32 ) are suppressed in

shallow-water Langmuir turbulence, consistent with the suppression of the near-bottom
uT and wT owing to the weakened LSMs in the presence of full-depth LCs (Deng et al.
2019; Peruzzi et al. 2021). Meanwhile, owing to the strong linear superimposition effect of
full-depth LCs, σ 2(τL+

i2 ) is amplified. Because the increment of σ 2(τL+
i2 ) is stronger than

the decrement of σ 2(τT+
i2 ), σ 2(τ ′+

i2 ) is enhanced in shallow-water Langmuir turbulence.
Accordingly, compared with pure shear-driven turbulence, the contribution proportion of
σ 2(τL+

i2 ) and σ 2(τT+
i2 ) to σ 2(τ ′+

i2 ) in shallow-water Langmuir turbulence increases and
decreases, respectively. This result is also a signal of the strong linear superimposition
effect of full-depth LCs on the wall shear stress fluctuations.

We discuss the skewness S(τ ′+
i2 ) next. In both shallow-water Langmuir turbulence and

pure shear-driven turbulence, the skewness of τ12
′+ is positive (figure 9). The sign of

S(τ ′+
12 ) is opposite to that in the work of Shrestha & Anderson (2020). This is because

the wall shear stress defined in (2.6) is exerted on the bottom wall, the sign of which
is opposite to that of the bottom surface stress imposed on the fluid used in the work
of Shrestha & Anderson (2020). This result indicates that among large-magnitude τ12

′+,
positive values occur more frequently than negative values. By contrasting the results
of cases 1 and 7 shown in figure 9, the value of S(τ12

′+) is found to be smaller
in shallow-water Langmuir turbulence than in pure shear-driven turbulence, suggesting
less positive large-magnitude τ12

′+ in shallow-water Langmuir turbulence. To further
investigate the mechanisms underlying this observation, we use the triple decomposition
(2.7) to decompose S(τ12

′+) as

S(τ ′+
12 ) = 〈(τ12

′+)3〉
σ 3(τ12′+)

= 〈(τT+
12 )

3〉
σ 3(τ12′+)︸ ︷︷ ︸

TS1

+ 〈(τL+
12 )

3〉
σ 3(τ12′+)︸ ︷︷ ︸

LS1

+ 3
〈τL+

12 (τ
T+
12 )

2〉
σ 3(τ12′+)︸ ︷︷ ︸

I1S1

+ 3
〈τT+

12 (τ
L+
12 )

2〉
σ 3(τ12′+)︸ ︷︷ ︸

I2S1

.

(4.2)
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1.5
Filled: case 1
Hollow: case 7

1.0

0.5

TS1 LS1S(τ12
′+) IlS1

0

Figure 9. Comparison of the components of skewness of τ ′+
12 in (4.2) between shallow-water Langmuir

turbulence (case 1) and pure shear-driven turbulence (case 7). The red and blue coloured bars indicate an
increase and reduction in the values in case 1 compared with those in case 7, respectively.

Here, σ 3(τ12
′+) is the cubic of the r.m.s. value of τ12

′+. The terms TS1 and LS1 represent
the contributions from the background turbulence and full-depth LCs, respectively, and
I1S1 and I2S1 are the components involving the interaction between the background
turbulence and full-depth LCs. According to the definition of the triple decomposition
given by (2.4) and (2.5), I2S1 equals zero.

Figure 9 compares the non-zero components of S(τ12
′+) in (4.2) between shallow-water

Langmuir turbulence and pure shear-driven turbulence. The small negative value of LS1
in figure 9 implies a negatively skewed distribution of τL+

12 , i.e. a higher probability for
the positive τL+

12 than the negative values. Because τL+
12 is strongly correlated with uL+

(figure 5a), the negative skewness of τL+
12 can be explained by the distribution of uL+, that

is, the positive uL+ occupies more than half of the x–z plane (figures 2 and 3). It is evident
from figure 9 that the attenuation of S(τ12

′+) in shallow-water Langmuir turbulence is
mainly caused by the reduction in TS1. Based on its definition given by (4.2) and the
definition of the skewness S(τ12

T+), TS1 can be rewritten as

TS1 = 〈(τT+
12 )

3〉
σ 3(τ12′+)

= σ 3(τ12
T+)

σ 3(τ12′+)
〈(τT+

12 )
3〉

σ 3(τ12T+)
= σ 3(τ12

T+)
σ 3(τ12′+)

S(τ12
T+). (4.3)

From the discussion of figure 8, σ 3(τ12
T+)/σ 3(τ12

′+) is known to be smaller in
shallow-water Langmuir turbulence than pure shear-driven turbulence owing to the strong
linear superimposition effect (figure 8). To study the effect of full-depth LCs on the
skewness of τT+

12 , we decompose S(τ12
T+) into two components as

S(τT+
12 ) =

∫ ∞

−∞
(τ12

T+)3P(τ12
T+) dτ12

T+

σ 3(τ12T+)

=

∫ ∞

−∞

∫ ∞

−∞
(τ12

T+)3P(uL+, τ12
T+) duL+ dτ12

T+

σ 3(τ12T+)
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S(τT+
12 ) SN(τ12

T+) SP(τ12
T+)

Case 1 1.212 0.283 0.929
Case 7 1.282 0.368 0.914

Table 2. Skewness of τT+
12 and its components defined by (4.4) in shallow-water Langmuir turbulence (case

1) and pure shear-driven turbulence (case 7).

6

4

2

(a) (b)

0

6

8

4

2

0

Filled: case 1
Hollow: case 7

K(τ12)′+ Tk1 Lk1 I1k1 I2k1 K(τ32)′+ Tk3 Lk3 I1k3 I2k3

Figure 10. Comparison of the kurtosis components of (a) τ ′+
12 and (b) τ ′+

32 in (4.5) between shallow-water
Langmuir turbulence (case 1) and pure shear-driven turbulence (case 7). The red and blue coloured bars indicate
an increase and reduction in the values in case 1 compared with those in case 7, respectively.

=

∫ ∞

−∞

∫ 0

−∞
(τ12

T+)3P(uL+, τ12
T+) duL+ dτ12

T+

σ 3(τ12T+)︸ ︷︷ ︸
SN(τ

T+
12 )

+

∫ ∞

−∞

∫ ∞

0
(τ12

T+)3P(uL+, τ12
T+) duL dτ12

T+

σ 3(τ12T+)︸ ︷︷ ︸
SP(τ

T+
12 )

. (4.4)

Here, the relationship P(τ12
T+) = ∫ +∞

−∞ P(uL+, τ12
T+) duL+ is applied, and the

integration is then decomposed into those over positive and negative values of uL+,
respectively. In (4.4) the subscripts ‘N’ and ‘P’ are used to denote the contributions
from the wall shear stress fluctuations under the conditions of uL+ < 0 and uL+ > 0,
respectively. Table 2 lists the values of S(τ12

T+), SN(τ12
T+) and SP(τ12

T+). As shown,
the reduction in S(τ12

T+) in shallow-water Langmuir turbulence is mainly caused by
the decrease in SN(τ

T+
12 ). This phenomenon is related to the strong suppression effect

of full-depth LCs on τ12
T+ in the region with negative uL+, which is the feature of

the nonlinear modulation effect of full-depth LCs distinct from that of CCs (figure 5).
In summary, full-depth LCs cause the attenuation of S(τ12

′+) through the reduction in
the contribution proportion of the background turbulence part τ12

T+ to σ(τ12
′+) and the

reduction in the skewness of the background turbulence part S(τ12
T+), which are attributed

to the strong linear superimposition effect and nonlinear modulation effect, respectively.
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The impacts of full-depth LCs on τ32
′+ are not investigated, because the skewness of τ32

′+
is zero in both shallow-water Langmuir turbulence and pure shear-driven turbulence.

In the rest of § 4, we discuss the kurtosis K(τ ′+
i2 ). Figure 10 compares the kurtoses of

τ12
′+ and τ32

′+ between shallow-water Langmuir turbulence (case 1) and pure shear-driven
turbulence (case 7). It is observed that both K(τ ′+

12 ) and K(τ ′+
32 ) are attenuated in

shallow-water Langmuir turbulence, indicating less extreme wall shear stress fluctuations
in the presence of full-depth LCs. Similar to the analyses of skewness, the impacts of
full-depth LCs on the kurtosis are investigated by decomposing K(τ ′+

i2 ) into

K(τ ′+
i2 ) = 〈(τT+

i2 )4〉
σ 4(τ ′+

i2 )︸ ︷︷ ︸
TKi

+ 〈(τL+
i2 )4〉

σ 4(τ ′+
i2 )︸ ︷︷ ︸

LKi

+ 4〈(τT+
i2 )3τL+

i2 〉
σ 4(τ ′+

i2 )︸ ︷︷ ︸
I1Ki

+ 6〈(τT+
i2 )2(τL+

i2 )2〉
σ 4(τ ′+

i2 )︸ ︷︷ ︸
I2Ki

+ 4〈τT+
i2 (τL+

i2 )3〉
σ 4(τ ′+

i2 )︸ ︷︷ ︸
I3Ki

, i = 1 or 3, (4.5)

based on the triple decomposition (2.7) and the definition of the kurtosis. The components
TKi and LKi represent the contributions from the background turbulence and full-depth
LCs, respectively. The other three terms represent the contributions of the nonlinear
interaction between the background turbulence and full-depth LCs, among which I3Ki is
trivial according to the definition of the triple decomposition given by (2.4). The non-zero
components of K(τ ′+

i2 ) in (4.5) are compared between shallow-water Langmuir turbulence
and pure shear-driven turbulence in figure 10. For both τ12

′+ and τ32
′+, the reduction in

their kurtoses in the presence of full-depth LCs stems from the attenuation of TKi.
Based on the expression of TKi in (4.5) and the definition of K(τT+

i2 ), we derive that
TKi equals the multiplication of σ 4(τT+

i2 )/σ 4(τ ′+
i2 ) and K(τT+

i2 ). As shown in figure 8, the
linear superimposition effect of full-depth LCs leads to the reduction in σ 4(τT+

i2 )/σ 4(τ ′+
i2 ).

Meanwhile, as shown in table 3, K(τT+
i2 ) also reduces in shallow-water Langmuir

turbulence. The reduction in K(τT+
i2 ) suggests that the events of extreme τT+

i2 diminish
in the presence of full-depth LCs, which is related to the strong suppression effect of
negative uL+ on τT+

i2 . To demonstrate this point, K(τT+
i2 ) is decomposed into KN(τ

T+
i2 )

and KP(τ
T+
i2 ) conditioned upon the negative and positive uL+, respectively,

K(τT+
i2 ) =

∫ ∞

−∞

∫ 0

−∞
(τT+

i2 )4P(uL+, τT+
i2 ) duL+ dτT+

i2

σ 4(τT+
i2 )︸ ︷︷ ︸

KN(τ
T+
i2 )

+

∫ ∞

−∞

∫ ∞

0
(τT+

i2 )4P(uL+, τT+
i2 ) duL+ dτT+

i2

σ 4(τT+
i2 )︸ ︷︷ ︸

KP(τ
T+
i2 )

, (4.6)

which is similar to the decomposition in (4.4). Table 3 compares the values
of KN(τ

T+
i2 ) and KP(τ

T+
i2 ) between shallow-water Langmuir turbulence and pure
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K(τT+
12 ) KN(τ12

T+) KP(τ12
T+) K(τT+

32 ) KN(τ32
T+) KP(τ32

T+)

Case 1 5.656 1.044 4.612 5.784 1.155 4.629
Case 7 5.941 1.441 4.500 6.748 1.785 4.963

Table 3. Kurtosis of τT+
i2 and its components defined by (4.6) in shallow-water Langmuir turbulence (case 1)

and pure shear-driven turbulence (case 7).

shear-driven turbulence. The values of KP(τ12
T+) are close to each other in these two

flows, while the values of KN(τ12
T+) are notably smaller in the presence of full-depth LCs

owing to the stronger suppression of τT+
i2 by full-depth LCs in the region with negative

uL+ (figure 5). Therefore, it is the linear superimposition effect and nonlinear modulation
effect of full-depth LCs that are responsible for the reduction in the probability of extreme
wall shear stress fluctuations.

The above analyses address the second question raised in § 1. Our results indicate
that the strong linear superimposition effect of full-depth LCs on the wall shear stress
fluctuations enhances their mean square value, while the combination of the strong
nonlinear modulation effect and linear superimposition effect of full-depth LCs suppresses
their skewness and kurtosis. From the analyses in this section and in § 3, we conclude
that the dual effects of full-depth LCs on wall shear stress fluctuations are important
for both their spatial distributions and statistics. Next in § 5, scaling analyses of the dual
effects are performed to develop a predictive model for the wall shear stress fluctuations
in shallow-water Langmuir turbulence.

5. Scaling and modelling of wall shear stress fluctuations

This section aims to develop a predictive model for the streamwise and spanwise wall
shear stress fluctuations in shallow-water Langmuir turbulence. Predictive models for
the LCs part and background turbulence part of wall shear stress fluctuations are first
developed based on the scalings of the linear superimposition effect and nonlinear
modulation effect of full-depth LCs, respectively. Then, the predictive model of wall
shear stress fluctuations is assessed using cases 1–6. At last, the effects of LCs at low
turbulent Langmuir number and high wavenumber of water waves in cases 8 and 9 are
studied.

5.1. Scaling and predictive model of LCs part

As analysed in § 3.2, the LCs part of wall shear stress fluctuations τL+
i2 varies linearly

with the LCs part of velocity uL+
i at y/h = 0.1 in shallow-water Langmuir turbulence (see

figures 5 and 7). To confirm this linear relationship for uL+
i at other y/h and under various

flow conditions, we examine the correlation coefficient between uL+
i ( y, z, t) and τL+

i2 (z, t)
in cases 1–6, which is defined as

CuL
i ,τ

L
i2
( y) = 〈uL+

i ( y, z, t)τL+
i2 (z, t)〉√

〈(uL+
i ( y, z, t))2〉

√
〈(τL+

i2 (z, t))2〉
, i = 1 or 3. (5.1)
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0.4
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Case 1
Case 2
Case 3
Case 4
Case 5
Case 6

y/h

0 0.5 1.0
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12
CwL,τL

32

0 0.5 1.0

(b)(a)

Figure 11. Profiles of (a) CuL,τ12L and (b) CwL,τ32L in shallow-water Langmuir turbulence under various flow
conditions (cases 1–6 listed in table 1).

Figure 11 shows the vertical profiles of CuL,τ12L( y) and CwL,τ32L( y). As shown, in the
bottom quarter of the water column (0 < y/h < 0.5), CuL,τ12L and CwL,τ32L are larger
than 0.8 in all cases with full-depth LCs (cases 1–6 in table 1). The high correlation
coefficients in shallow-water Langmuir turbulence suggest that a linear function of uL+

i
can approximately estimate τL+

i2 , viz.

τL+
i2 (z, t) ≈ αi( y)uL+

i ( y, z, t), i = 1or 3. (5.2)

The coefficient αi( y) can be calculated using the linear stochastic approximation method
as

αi( y) = CuL
i ,τ

L
i2
( y)

√
〈(τL+

i2 (z, t))2〉√
〈(uL+

i ( y, z, t))2〉
. (5.3)

Figure 12 shows the profiles of α1( y) and α3( y) in cases 1–6 for 0 < y/h < 0.5. The
discrepancy of αi( y) among different cases is marginal. Therefore, the LCs part of wall
shear stress fluctuations τL+

i2 can be scaled and predicted by the LCs part of the velocity
uL+

i measured in the bottom quarter of the water column.
Because full-depth LCs are uniform in the streamwise direction and well organized in

the spanwise direction, τL
i2 can also be predicted by the velocity uL

i at a different spanwise
location. To confirm this, the two-point correlation coefficient CuL

i ,τ
L
i2
( y,
z), defined as

CuL
i ,τ

L
i2
( y,
z) = 〈uL+

i ( y, z +
z, t)τL+
i2 (z, t)〉√

〈(uL+
i ( y, z, t))2〉

√
〈(τL+

i2 (z, t))2〉
, i = 1 or 3, (5.4)

is studied. Figures 13(a) and 13(b) display the distribution of CuL
i ,τ

L
i2
( y,
t) in case

1 as an example. The results in cases 2–6 are similar. As shown, CuL
i ,τ

L
i2
( y,
t) is

larger than 0.8 for −0.5 < 
z/h < 0.5. Additionally, the corresponding linear coefficients
αi( y,
z), defined similar to (5.3), show insignificant variation for −0.5 < 
z/h < 0.5
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Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
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0 0.2 0.4
α1

0.5

0.4

0.3

0.2

0 0.2 0.4
α3

(b)(a)

Figure 12. Profiles of coefficients (a) α1 and (b) α3 computed by (5.3) in shallow-water Langmuir turbulence
under various flow conditions (cases 1–6 listed in table 1).
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(c) (d )

Figure 13. Contours of (a,b) the two-point spatial correlation coefficient CuL
i ,τ

L
i2
( y,
z) and (c,d) the linear

coefficients αi( y,
z) in case 1. In (a,c) i = 1, and in (b,d) i = 3. In (a,b) the solid and dashed black lines
indicate CuL

i ,τ
L
i2
( y,
z) = 0.8 and = −0.8, respectively.

(figure 13c,d). Therefore, the velocity uL
i ( y, z +
z, t) with −0.5 < 
z/h < 0.5 can be

used in (5.2), indicating that the velocity uL
i at a specific location in the outer layer can

provide more predictive values.
In wall turbulence without waves, there is a time delay between LSMs and the wall

shear stresses owing to the propagation of the information from the outer layer to the
bottom (Mathis et al. 2013; Scherer et al. 2022). We also explore the time delay based on
the spatial–temporal correlation coefficient, defined as

CuL
i ,τ

L
i2
( y,
t) = 〈uL+

i ( y, z, t +
t)τL+
i2 (z, t)〉√

〈(uL+
i ( y, z, t))2〉

√
〈(τL+

i2 (z, t))2〉
, i = 1 or 3, (5.5)

in shallow-water Langmuir turbulence. Figure 14 displays CuL
i ,τ

L
i2
( y,
t) in case 1. There

exists a ridge in the contours of CuL
i ,τ

L
i2
( y,
t) with a negative slope, indicating that
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Figure 14. Contours of the spatial–temporal correlation coefficient CuL
i ,τ

L
i2
( y,
t) in case 1. In (a,b) i = 1 and

3, respectively. The black dashed lines represent the ridges of the contours.

τL
i2 is induced by a top–down mechanism of uL

i similar to the finding of Scherer et al.
(2022) in open channel flow without waves. However, compared with the rapid decline
of the spatial–temporal correlation found in the open channel (Scherer et al. 2022),
the spatial–temporal correlation coefficients in figure 14 are larger than 0.8 for −2 <

tuw/h < 2 and 0 < y/h < 0.5. This result is consistent with the observation in the works
of Shrestha & Anderson (2020) and Deng et al. (2020), that is, the intensities and spanwise
locations of full-depth LCs are persistent for a period of 100 < tuw/h < 300. Therefore,
the velocity uL

i at ( y, z, t +
t) can also be used to predict the wall shear stress τL
i2 at (z, t)

for 0 < y/h < 0.5 and −2 < 
tuw/h < 2.
In canonical wall turbulence the large-scale streamwise velocity and streamwise wall

shear stress fluctuation also satisfy a linear relationship (Mathis et al. 2013). The value
of the linear coefficient found in canonical wall turbulence at y+ = 3.9

√
Reτ is 0.0898

(Mathis et al. 2013), close to α1 at y/h = 0.1, which is approximately 0.0845, in
shallow-water Langmuir turbulence (figure 12a). However, full-depth LCs induce stronger
streamwise velocity than LSMs (Deng et al. 2019). Consequently, full-depth LCs impose
a more significant linear superimposition effect on the wall shear stress fluctuations than
LSMs, which is partially responsible for the distinct spatial patterns of wall shear stress
fluctuations in shallow-water Langmuir turbulence depicted in figure 3.

5.2. Scaling and predictive model of the background turbulence part
In this section we derive a predictive model for the background turbulence part of wall
shear stress fluctuations τT+

i2 based on the scaling of the nonlinear modulation effect
of full-depth LCs on τT+

i2 and the properties of the demodulated counterpart of τT+
i2 .

Furthermore, the predictive model is utilized to quantitatively measure the impacts of the
LCs part of the streamwise velocity uL+ on the statistics of τT+

i2 , which is an important
component of the statistics of the wall shear stress fluctuations τ ′+

i2 .

5.2.1. Scaling of the nonlinear modulation effect of LCs
As analysed in § 3.2, the background turbulence part of wall shear stress fluctuations,
τT

i2, is modulated by the LCs part of streamwise velocity fluctuations, uL, which shows
an organized spanwise variation. Therefore, the modulation effect of full-depth LCs on
τT

i2 can be measured by the correlation between uL+ and the spanwise variation of the
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magnitude of τT+
i2 . The latter can be quantified using a function defined as

fi(z, t) = (τT
i2)

+
x,rms(z, t)− (τT

i2)
+
rms

(τT
i2)

+
rms

, (5.6)

where the subscript ‘x, rms’ indicates the localized r.m.s. value based on streamwise
averaging.

For τ12
T , the relationship between its spanwise variation f1(z, t) defined above and uL+

can be derived analytically using the scaling of the localized r.m.s. value of the background
turbulence part of streamwise velocity uT+ obtained by Deng et al. (2020). Based on the
definition of wall shear stress (2.6) and the no-slip boundary condition, τT+

i2 and uT+
i

satisfy the following relationship:

τT+
i2 (x, z, t) = lim

δy+→0

uT+
i (x, δy+, z, t)

δy+ ≈ uT+
i (x, δy+, z, t)

δy+ . (5.7)

Here δy+ is a small distance from the water bottom. Therefore, the r.m.s. value and
localized r.m.s. value of τT+

i2 in (5.6) can be approximated as

(τT
i2)

+
rms≈

(uT
i )

+
rms(δy

+)
δy+ (5.8)

and

(τT
i2)

+
x,rms(z, t) ≈ (uT

i )
+
x,rms(δy

+, z, t)

δy+ , (5.9)

respectively. As found in Deng et al. (2020), the vertical profile of (uT)+xt,rms is well scaled
by a localized friction velocity ul in a localized vertical coordinate yl = yul/ν, collapsing
into the profile of (uT)+rms in the vertical coordinate y+, viz.

(uT)xt,rms

ul

(
yν
ul
, z
)

= (uT)rms

uw

(
yν
uw

)
. (5.10)

Here, the subscript ‘xt’ indicates the streamwise and time averaging. The localized friction
velocity ul is defined as

ul =
√
ν
∂(〈u〉 + 〈uL〉t)

∂y
≈
√
ν
∂(〈u〉 + uL)

∂y
= uw

√
1 + τ12L+, (5.11)

where the subscript ‘t’ represents the time averaging and the relationship 〈uL〉t( y, z) ≈
uL( y, z, t) found in Deng et al. (2020) is applied. Additionally, (uT)x,rms = (uT)xt,rms
approximately holds at an equilibrium state. According to this relationship and (5.10), the
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term (uT)+x,rms(δy
+, z) in (5.9) is approximately

(uT)+x,rms(δy
+, z, t) ≈ ul

uw
(uT)+rms

(
δy+ul

uw

)
. (5.12)

Substituting (5.12) into (5.9), and then using the relationships in (5.8) and (5.11), we can
derive that

(τT
12)

+
x,rms≈

u2
l

u2
w

(uT)+rms

(
ulδy+

uw

)
ulδy+

uw

≈ u2
l

u2
w
(τT

12)
+
rms≈(1 + τ12

L+)(τT
12)

+
rms. (5.13)

Further substituting (5.13) into (5.6), and applying the linear relationship between uL+ and
τ12

L+ in (5.2), f1 can be approximated as

f1 ≈ α1uL+, (5.14)

where α1 is given in (5.2).
For (wT)xt,rms, because a simple scaling in a form similar to (5.10) has not yet been

discovered (Deng et al. 2020), it is necessary to scale the modulation effect of full-depth
LCs on τ32

T+ by computing the correlation coefficient between f3 and uL+, defined as

CuL,f3 = 〈uL+f3〉√
〈(uL+)2〉

√
〈( f3)2〉

. (5.15)

As shown in figure 15(a), except for the lowest Reynolds number Reτ = 395 (case 3),
CuL,f3 in the other cases is larger than 0.8 in the bottom quarter of the water column. The
high correlation coefficients suggest that at moderate to high Reynolds numbers, f3 may
be approximated by a linear function of uL+ as

f3 ≈ β3uL+. (5.16)

The parameter β3 is determined by the linear stochastic estimation method as

β3( y) = CuL,f3

√
〈( f3)2〉√

〈(uL+)2〉
. (5.17)

As shown in figure 15(b), β3 is insensitive to the wavenumber of water waves, turbulent
Langmuir number and Reynolds number for cases with Reτ � 700 considered in the
present study.

The relationships given by (5.14) and (5.16) are equivalent to

(τT
i2)

+
x,rms(z, t) ≈ (τT

i2)
+
rms(1 + βi( y)uL+( y, z, t)), (5.18)

which explicitly measure the nonlinear modulation effect of uL+ on the magnitude of τT+
i2

at different spanwise locations. Here, 1 + βiuL+ represents the modulation degree, and βi
is the modulation coefficient with β1 = α1 and β3 given by (5.17). Because the value of
βi is similar among the various cases (except for case 3, which has the lowest Reynolds
number Reτ = 395) as shown previously in figures 12(a) and 15(b), the modulation degree
reduces to be related to uL+, which varies with the Reynolds number, wavenumber of
surface waves and turbulent Langmuir number (Tejada-Martínez & Grosch 2007; Sinha
et al. 2015; Deng et al. 2019).
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(b)(a)
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Figure 15. Profiles of (a) CuL,f3 and (b) β3 in shallow-water Langmuir turbulence under various flow
conditions (cases 1–6 listed in table 1).

The modulation coefficient β1 is close to that in canonical wall turbulence (Mathis et al.
2013). Because of the larger magnitude of uL+ in shallow-water Langmuir turbulence
compared with the large-scale streamwise velocity in canonical wall turbulence, the
modulation effect of full-depth LCs on τ12

T+ is more significant. In canonical wall
turbulence the modulation effects of large-scale streamwise velocity on spanwise wall
shear stress fluctuations have not been reported in the literature. In shallow-water
Langmuir turbulence the modulation effect of full-depth LCs on τ32

T+ is evident, although
it is slightly weaker than that on τ12

T+ because β3 < β1.

5.2.2. Predictive model of the background turbulence part
According to the nonlinear modulation effect of full-depth LCs on the background
turbulence part of wall shear stress fluctuations described by (5.18), we approximate τT+

i2
as

τT+
i2 ≈ (1 + βiuL+)τ ∗+

i2 . (5.19)

Here, τ ∗+
i2 is the demodulated counterpart of τT+

i2 calculated by

τ ∗+
i2 = τT+

i2
1 + βiuL+ . (5.20)

It can be verified, by using (5.20) and (5.18), that the correlation coefficient between uL+
and the spanwise variation of the magnitude of τ ∗+

i2 (which is similar to that of τT+
i2

defined in (5.6)) is near zero, indicating the absence of the nonlinear modulation effect
of full-depth LCs on τ ∗+

i2 . This result is also confirmed by the instantaneous fields of
τ12

∗+ and τ32
∗+ plotted in figures 16(a) and 17(a), respectively. As shown, they exhibit

homogeneous distributions in the x–z plane without obvious nonlinear modulation by
full-depth LCs.

The properties of τ ∗+
i2 are essential for the application of the predictive model. To

illustrate this, we plot the statistics of τ ∗+
i2 in figures 16 and 17. As shown in figures 16(b)
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0.6

0.4
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Figure 16. Properties of the demodulated background turbulence part of wall shear stress fluctuation τ ∗+
12 .

(a) Instantaneous field of τ ∗+
12 obtained from case 1. (b) Probability density function of τ̄ ∗

12. (c) Variation of
the r.m.s. values of τ ∗+

12 with the Reynolds number under different flow conditions (cases 1–6). The black line
represents the logarithmic variation of (τ ∗

12)
+
rms with the Reynolds number.

and 17(b), the probability density functions of the normalized τ ∗+
i2 , defined as τ̄ ∗

i2 =
τ ∗

i2/(τ
∗
i2)rms, of different cases collapse into one curve, indicating that τ̄ ∗

i2 is independent
of the Reynolds number (cases 1–3), wavenumber of surface waves (cases 1, 4 and 5),
and turbulent Langmuir number (cases 1 and 6) considered in this study. Therefore, we
approximate the instantaneous field of τ ∗+

i2 using the product of (τ ∗
i2)

+
rms in different cases

and τ̄ ∗
i2 from case 1 (figures 16a, 17a), viz.

τ ∗+
i2 = (τ ∗

i2)
+
rmsτ̄

∗
i . (5.21)

Computing the r.m.s. values of the terms on the two sides of (5.19) and then using the
relationship in (5.8) results in

(τ ∗
i2)

+
rms = (τT

i2)
+
rms√

1 + β2
i
(
(uL)+rms

)2 ≈ (uT
i )

+
rms(δy

+)√
1 + β2

i
(
(uL)+rms

)2
δy+

. (5.22)

As reported by Sinha et al. (2015) and Deng et al. (2019), the values of (uT)+rms and
(wT)+rms near the bottom increase slightly with the turbulent Langmuir number and
wavenumber of water waves but grow noticeably with the Reynolds number. As a result,
(τ ∗

i2)
+
rms in shallow-water Langmuir turbulence responses to the three non-dimensional

parameters following the response of the near-bottom (uT)+rms and (wT)+rms (figures 16c
and 17c). Ignoring the tiny variation of (τ ∗

i2)
+
rms with the turbulent Langmuir number and

wavenumber, the values of (τ12
∗)+rms and (τ32

∗)+rms in different cases approximately satisfy
logarithmic laws of the Reynolds number denoted in figures 16(c) and 17(c), respectively.
The logarithmic variation may be attributed to LSMs in the background turbulence part
of shallow-water Langmuir turbulence. In canonical wall turbulence, LSMs lead to a
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Figure 17. Properties of the demodulated background turbulence part of wall shear stress fluctuation τ ∗+
32 .

(a) Instantaneous field of τ ∗+
32 obtained from case 1. (b) Probability density function of τ̄ ∗

32. (c) Variation of the
r.m.s. values of τ ∗+

32 with the Reynolds number under different conditions (cases 1–6). The black line represents
the logarithmic variation of (τ ∗

32)
+
rms with the Reynolds number.

logarithmic variation of the r.m.s. value of streamwise wall shear stress fluctuations with
the Reynolds number (Örlü & Schlatter 2011).

Finally, substituting (5.21) into (5.19), τT+
i2 can be predicted as

τT+
i2 = (1 + βiuL+)(τ ∗

i2)
+
rmsτ̄

∗
i . (5.23)

In this predictive model the value of (τ ∗
i2)

+
rms can be approximated using the logarithmic

laws (figures 16c and 17c). The terms βi and τ̄ ∗
i are almost constant in the various cases of

full-depth LCs and can thus be approximated using those obtained from case 1. Therefore,
τT+

i2 can be reconstructed using uL+ measured in the bottom quarter of the water column.

5.2.3. Scaling of skewness and kurtosis of background turbulence part of wall shear
stress

As analysed in § 3.2, the nonlinear modulation effect of full-depth LCs can alter the
skewness and kurtosis of the background turbulence part of wall shear stresses. In the
following, we use the predictive model in (5.23) to explicitly quantify this effect.

The skewness and kurtosis of τT+
i2 can be calculated based on their definitions as

S(τT+
i2 ) =

〈
(τT+

i2 )3
〉

(
(τT

i2)
+
rms
)3 =

∫
(τT+

i2 )3P(τT+
i2 ) dτT+

i2(
(τT

i2)
+
rms
)3 =

∫ ∫
(τT+

i2 )3P(uL+, τT+
i2 ) duL+ dτT+

i2(
(τT

i2)
+
rms
)3

(5.24)
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and

K(τT+
i2 ) =

〈
(τT+

i2 )4
〉

(
(τT

i2)
+
rms
)4 =

∫
(τT+

i2 )4P(τT+
i2 ) dτT+

i2(
(τT

i2)
+
rms
)4 =

∫ ∫
(τT+

i2 )4P(uL+, τT+
i2 ) duL+dτT+

i2(
(τT

i2)
+
rms
)4 ,

(5.25)

respectively.
According to the Jacobi transformation of the j.p.d.f. and the predictive model in (5.23),

the j.p.d.f. P(uL, τT
i2) can be written as

P(uL+, τT+
i2 ) =

P

(
uL+, τ̄ ∗

i2 = τT+
i2

(τ ∗
i2)

+
rms(1 + βiuL+)

)

(τ ∗
i2)

+
rms(1 + βiuL+)

. (5.26)

Because uL
i and τ̄ ∗

i are independent of each other, the identity P(uL, τ̄ ∗
i2) = P(uL)P(τ̄ ∗

i2)

holds. Thus, the j.p.d.f. P(uL, τT
i2) can be further expressed as

P(uL+, τT+
i2 ) =

P(uL+)P

(
τ̄ ∗

i2 = τT+
i2

(τ ∗
i2)

+
rms(1 + βiuL+)

)

(τ ∗
i2)

+
rms(1 + βiuL+)

. (5.27)

Substituting (5.23), (5.27) and the identity duL+ dτT+
i2 = (τ ∗

i2)
+
rms(1 + βiuL+) duL+ dτ̄ ∗

i
into (5.24) and (5.25), we obtain

S(τT+
i2 ) = S(τ̄ ∗

i2)
〈(1 + βiuL+)3〉

(
√

〈(1 + βiuL+)2〉)3
(5.28)

and

K(τT+
i2 ) = K(τ̄ ∗

i2)
〈(1 + βiuL+)4〉

(
√

〈(1 + βiuL+)2〉)4
. (5.29)

Because P(τ̄ ∗
i2) is almost the same among different cases (figures 16b and 17b), S(τ̄ ∗

i2) and
K(τ̄ ∗

i2) are insensitive to the Reynolds number (Reτ ), wavenumber of surface waves (kh)
and turbulent Langmuir number (Lat). Therefore, the variations of S(τT+

i2 ) and K(τT+
i2 )

under different flow conditions are only determined by the statistics of 1 + βiuL+, which
represents the modulation degree of full-depth LCs on τT+

i2 in (5.23).
The above scaling models can be used to predict the response of S(τT+

i2 ) and K(τT+
i2 ) to

uL+ in shallow-water Langmuir turbulence. Figure 18 compares the values of S(τT+
i2 ) and

K(τT+
i2 ) obtained from the LES results with the predictions S(τT+

i2p ) and K(τT+
i2p ) calculated

by (5.28) and (5.29), respectively, where uL+ is taken at y/h = 0.1 (y+ = 100 for cases 1
and 4–6, y+ = 70 for case 2, and y+ = 39.5 for case 1). As shown, the scaling models
given by (5.28) and (5.29) can satisfactorily predict the values of S(τT+

i2 ) and K(τT+
i2 ).

As Reτ decreases (compare cases 1–3), kh increases (compare cases 1, 4 and 5), or Lat
increases (compare cases 1 and 6), S(τT+

i2 ) and K(τT+
i2 ) increase, while the magnitude of

1 + βiuL+ in the scaling models (5.28) and (5.29) decreases owing to the reduction in
the magnitude of uL+(Deng et al. 2019). As a result, S(τT+

i2 ) and K(τT+
i2 ) increase as the

modulation degree of full-depth LCs scaled by 1 + βiuL+ decreases.
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Case 4 Reτ = 1000 kh = 1.0 Lat = 0.7

Case 5 Reτ = 100 kh = 1.5 Lat = 0.7

Case 6 Reτ = 1000 kh = 0.5 Lat = 0.9
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Figure 18. Comparison of the skewness and kurtosis of τT+
i2 obtained from LES with those predicted by

(5.28)–(5.29) using uL+ taken at the height y/h = 0.1 (y+ = 100 for cases 1 and 4–6, y+ = 70 for case 2, and
y+ = 39.5 for case 1). (a) Skewness of τ12

T+. (b) Kurtosis of τ12
T+. (c) Kurtosis of τ32

T+.

5.3. Assessment of predictive modelling
Based on the predictive models of the LCs part and background turbulence part of
wall shear stress fluctuations in (5.2) and (5.23), respectively, the total wall shear stress
fluctuations τ ′+

i2 can now be predicted by

τ ′+
ip = αiuL+

i + (1 + βiuL+)(τ ∗
i2)

+
rmsτ̄

∗
i . (5.30)

Figure 19 displays an instantaneous field of τ ′+
i2 predicted by (5.30) using uL+ and wL+

at y/h = 0.1 (y+ = 100 in case 1). The prediction reproduces the organized spanwise
variation of wall shear stress fluctuations shown in figure 3. We found that the correlation
coefficient between the predicted field and real field is 0.98 for τ12

′+ and 0.96 for τ32
′+,

confirming the accuracy of (5.30) in predicting the spatial patterns of wall shear stress
fluctuations in shallow-water Langmuir turbulence. The predictive model can be further
validated qualitatively by comparing the predicted statistics with the LES results. As
shown in figure 20, the predicted mean square values, skewness and kurtosis of τ ′+

i2 agree
with the LES results.

The predictive model (5.30) can explain the variation tendencies of the statistics under
different flow conditions in cases 1–6. When the wavenumber of water waves and the
turbulent Langmuir number are fixed, the magnitude of τL+

i2 increases with the Reynolds
number as uL+

i increases (Tejada-Martínez & Grosch 2007; Sinha et al. 2015; Deng et al.
2019), and the amplitude of τ ∗+

i2 also grows with the Reynolds number (figures 16c,
17c). As a result, the mean square value of τ ′+

i2 , σ(τ ′+
i2 ), increases with the Reynolds

number (figure 20a,b). The variation tendencies of the skewness and kurtosis with the
Reynolds number are mainly determined by the interactive components, i.e. I1Si in (4.2)
and I1Ki + I2Ki in (4.5), and the components associated with background turbulence,
i.e. TSi in (4.2) and TKi in (4.5). These components are shown in figure 21. Owing to
the growth of the magnitudes of τL+

i2 and τT+
i2 with the Reynolds number, the interactive

components of the skewness and kurtosis are enhanced. In contrast, TSi and TKi are
attenuated at higher Reynolds numbers (figure 21) because of the reduction in S(τT+

i2 )

and K(τT+
i2 ) by the stronger modulation effect of uL+ (figure 18). Because of the above
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Figure 19. Predicted wall shear stress fluctuations τ ′+
ip using (5.30) at the same instant as figure 3; (a) τ ′+

1p and
(b) τ ′+

3p using uL+ and wL+ at y/h = 0.1 (y+ = 100 in case 1).

opposing effects, the skewness and kurtosis of τT+
i2 do not vary monotonically with the

Reynolds number (figure 21b,c).
In cases 1–6, as kh increases from 0.5 to 1.5 and Lat increases from 0.7 to 0.9, the

magnitude of τT+
i2 slightly grows because of the growth of (τ ∗

i2)
+
rms (figures 16c and 17c),

but the magnitude of τL+
i2 diminishes because of the decrease in uL+

i (Deng et al. 2019).
Consequently, the mean square value of τ ′+

i2 , σ(τ ′+
i2 ), does not vary monotonically with

kh and Lat (figure 20a). The variations of the components of S(τ ′+
i2 ) and K(τ ′+

i2 ) with the
wavenumber and turbulent Langmuir number are shown in figures 22 and 23, respectively.
Variations in S(τ ′+

i2 ) and K(τ ′+
i2 ) with kh and Lat are determined by the background

turbulence part, namely, TSi in (4.2) and TKi in (4.5), respectively. As analysed in § 4,
TSi (or TKi) is mainly determined by the contribution of the background turbulence part to
the mean square value of the wall shear stress fluctuations σ 2(τT+

i2 )/σ 2(τ ′+
i2 ) and S(τT+

i2 )

(or K(τT+
i2 )). Owing to the reduction in the magnitude of τL+

i2 with increasing kh and
Lat, σ 2(τT+

i2 )/σ 2(τ ′+
i2 ) increases. Meanwhile, because S(τT+

i2 ) and K(τT+
i2 ) grow as kh or

Lat increases (figure 18) owing to the reduction in the modulation degree of τT+
i2 by uL+,

TSi and TKi increase with kh and Lat. Thus, it can be concluded that at a fixed Reynolds
number, the increases of S(τ ′+

i2 ) and K(τ ′+
i2 ) with kh or Lat are caused by the reductions in

the linear superimposition effect and the nonlinear modulation effect of full-depth LCs.
We note that the predictive model in (5.30) also suggests a potential approach to

improve the traditional wall-layer model in shallow-water Langmuir turbulence. Although
the full-depth LCs can move laterally in the spanwise direction over longer time periods
(Gargett & Wells 2007; Shrestha & Anderson 2020), they remain stationary in their
spanwise movement during time scales 100 < tuw/h � 300 (Gargett & Wells 2007;
Shrestha & Anderson 2020; Deng et al. 2020), which is much longer than the characteristic
time scales of energetic background turbulence (tuw/h � 1) (Ganapathisubramani et al.
2012). Therefore, full-depth LCs impose a persistent effect on the bottom with an
organized spanwise distribution of wall shear stresses. Owing to the salient impact of
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Case 1 Reτ = 1000 kh = 0.5 Lat = 0.7

Case 3 Reτ = 395 kh = 0.5 Lat = 0.7

Case 4 Reτ = 1000 kh = 1.0 Lat = 0.7

Case 5 Reτ = 1000 kh = 1.5 Lat = 0.7

Case 6 Reτ = 1000 kh = 0.5 Lat = 0.9

Case 2 Reτ = 700 kh = 0.5 Lat = 0.7

Figure 20. Comparison of the statistics between the LES result of wall shear stress fluctuations τ ′+
i2 and the

predictions using (5.30) in shallow-water Langmuir turbulence (cases 1–6 in table 1). (a) Mean square values
of τ12

′+. (b) Mean square values of τ32
′+. (c) Skewness of τ12

′+. (d) Kurtosis of τ12
′+. (e) Kurtosis of τ32

′+.
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Figure 21. Comparison of components of (a) skewness of τ12
′+, S(τ ′+

12 ), (b) kurtosis of τ12
′+, K(τ ′+

12 ), and
(c) kurtosis of τ32

′+, K(τ ′+
32 ), in (4.2) and (4.5) at various Reynolds numbers in cases 1–3.
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Figure 22. Comparison of components of (a) skewness of τ12
′+, S(τ ′+

12 ), (b) kurtosis of τ12
′+, K(τ ′+

12 ), and
(c) kurtosis of τ32

′+, K(τ ′+
32 ), in (4.2) and (4.5) at various wavenumbers of surface waves in cases 1, 4 and 5.
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Figure 23. Comparison of components of (a) skewness of τ12
′+, S(τ ′+

12 ), (b) kurtosis of τ12
′+, K(τ ′+

12 ), and
(c) kurtosis of τ32

′+, K(τ ′+
32 ), in (4.2) and (4.5) at various turbulent Langmuir numbers in cases 1 and 6.

full-depth LCs, the characteristics of velocity fluctuations averaged in the regions with
uL > 0 and uL < 0 are significantly different (Tejada-Martínez et al. 2012; Deng et al.
2020). Such spanwise heterogeneity causes the deviation of the locally averaged mean
velocity based on the streamwise and time averaging from the logarithmic law based on
the plane and time averaging (Tejada-Martínez et al. 2012; Deng et al. 2019). As a result,
the conventional wall-layer model based on the logarithmic law is insufficient to describe
the relationship between the spanwise inhomogeneous time-averaged velocity and wall
shear stress in shallow-water Langmuir turbulence. The proposed predictive model (5.30)
connects the spanwise inhomogeneous distribution of wall shear stress fluctuations to the
velocities induced by full-depth LCs and, thus, can be used as an essential supplement
to the logarithmic law. Recently, Howland & Yang (2018) refined the wall-layer model
in canonical wall turbulence utilizing the relationship between the velocity induced by
LSMs and wall shear stress fluctuations proposed by Mathis et al. (2013). Based on the
impacts of full-depth LCs discussed in the present paper, a similar improvement of the
wall-layer model for shallow-water Langmuir turbulence can be pursued, which should be
investigated in the future.

5.4. Effects of LCs on wall shear stress fluctuations under low Lat and large kh
conditions

The above study is conducted based on cases 1–6, where the full-depth LCs are well
organized with a spanwise length scale around 8.3h. In this section the effects of LCs
at low turbulent Langmuir number and high wavenumber of water waves are further
discussed.

Figure 24 displays the instantaneous field induced by full-depth LCs in case 8 for a
low turbulent Langmuir number Lat = 0.3. The spanwise length scale of full-depth LCs
in case 8 is around 5.5h, smaller than that in case 1 (figure 2a) (Shrestha et al. 2018).
Despite the smaller spanwise length scale, the distribution patterns of uL

i in case 8 are
similar to those in case 1, that is, the LCs parts of streamwise and spanwise velocities
are intensified near the water bottom. Figure 25(a) compares the profiles of the linear
superimposition coefficient α1( y) in (5.30) between cases 1 and 8. The coefficient α1 also
equals the nonlinear superimposition coefficient β1. As shown, the coefficient in case 8 is
close to that in case 1. Therefore, full-depth LCs in case 8 impose linear superimposition
and nonlinear modulation effects on wall shear stress fluctuations like those in case 1,
which are quantified by (5.30).

Because the magnitude of uL
i near the water bottom is smaller in case 8 (figure 24) than

in case 1 (figure 2a), the linear superimposition effect of LCs is weaker in case 8 than in
case 1. The weak superimposition effect can be quantified by comparing the mean square
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Figure 24. Instantaneous field of uL

i in case 8 with Lat = 0.3. The contours are uL+ and the vectors are
(vL+,wL+).
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Figure 25. The linear superimposition and nonlinear modulation effects of LCs on wall shear stress
fluctuations in case 8. (a) Comparison of the profiles of the linear superimposition coefficient α1( y) (also
the nonlinear modulation coefficient β1 = α1) in (5.30) between cases 8 and 1. (b) Joint probability density
function P(τT

12, uL) in case 8.

value σ 2(τ ′+
i2 ) between cases 8 and 1 listed in table 4. As shown, σ 2(τL+

i2 ) is smaller in
case 8 than in case 1. The value of σ 2(τT+

i2 ) is insignificantly altered in case 8, although
the background turbulence is enhanced in the upper half of the water column at Lat = 0.3
(Sinha et al. 2015; Shrestha et al. 2018). As a result, σ 2(τ ′+

i2 ) is smaller in case 8 than in
case 1. The nonlinear modulation degree, measured by 1 + βiuL+, is also weaker in case
8 than in case 1. As shown in figure 25(b), the j.p.d.f. P(uL, τT

12) only shows one peak,
because of the small region covered by the negative uL, i.e. low probability of negative uL.
Although the modulation effect of uL on τT

12 is still present in P(uL, τT
12), the suppression

effect of negative uL on τT
12 in case 8 is weaker than in case 1, and becomes comparable

to that in case 7. As analysed in § 5.3, the skewness and kurtosis increase as the linear
superimposition and nonlinear modulation effects of uL

i reduce. Case 8 also follows this
tendency, as the skewness S(τ ′+

i2 ) and kurtosis K(τ ′+
i2 ) in case 8 are smaller than those in

case 1 (table 4).
Figure 26 depicts the instantaneous field of LCs in case 9 (kh = 5.0). In case 9 the

upwelling motions of LCs are much weaker than the downwelling motions, consistent
with the finding of Shrestha et al. (2018). The intensity of wL in case 9 is much weaker
than that in case 1 near the water bottom, while the magnitude of uL near the water bottom
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σ 2(τ ′+
12 ) σ 2(τL+

12 ) σ 2(τT+
12 ) σ 2(τ ′+

32 ) σ 2(τL+
32 ) σ 2(τT+

12 ) S(τ ′+
12 ) K(τ ′+

12 ) K(τ ′+
12 )

Case 1 0.262 0.068 0.194 0.108 0.027 0.081 1.1744 5.0477 5.2829
Case 7 0.249 0.030 0.219 0.097 0.001 0.096 1.333 5.876 6.731
Case 8 0.204 0.009 0.195 0.098 0.007 0.091 1.195 5.274 5.821
Case 9 0.260 0.053 0.207 0.092 0.001 0.091 1.372 6.102 6.778

Table 4. Statistics of wall shear stress fluctuations in cases 1 (Lat = 0.7 and kh = 0.15), 7 (pure shear-driven
turbulence), 8 (Lat = 0.3 and kh = 0.5) and 9 (Lat = 0.7 and kh = 5.0).

2
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|(vL+, wL+)| = 1 uL+
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1
2
3

–2
–30

z/h
Figure 26. Instantaneous field of uL

i in case 9 with kh = 5.0. The contours are uL+ and the vectors are
(vL+,wL+).

in case 9 is comparable to that in case 1, which can also be found by comparing σ 2(τL+
i2 )

between cases 1 and 9 (table 4). One of the dominant features of normal full-depth LCs
is that the strength of the spanwise velocity is comparable to that of streamwise velocity
near the water bottom (Tejada-Martínez & Grosch 2007; Shrestha et al. 2018). Therefore,
compared with full-depth LCs under the conditions of shallow and intermediate water
waves (cases 1–6 and 8), the LCs in case 9 under the condition of deep water wave are
deformed. As a result, the linear superimposition and nonlinear modulation effects of the
deformed LCs on wall shear stress fluctuations in case 9 are distinct from those in cases
1–6 and 8. As shown in table 4, the skewness and kurtosis of τ ′

i2 in case 9, influenced
by both the linear superimposition and nonlinear modulation effects, are larger than those
in case 1 but close to those in case 7. However, according to the predictive model (5.30),
the comparable magnitude of uL in cases 1 and 8 should lead to similar statistics of τ ′

12.
Therefore, the impacts of the deformed LCs on the wall shear stress fluctuations in case 9
with deep water waves cannot be predicted by the model (5.30) developed for Langmuir
turbulence with shallow to intermediate water waves.

In the field, full-depth LCs were observed under the conditions of weak tides,
i.e. uw/u∗ ≈ 1. Martinat et al. (2011), Gargett & Grosch (2014) and Shrestha et al.
(2018) studied the effects of tides by adding a pressure gradient. When uw/u∗ ≈ 1.414,
Shrestha et al. (2018) found that the characteristics of full-depth LCs for various Lat
and kh in the presence of weak tides are similar to those without tides. According to
the above analysis and discussion, although the intensities of the linear superimposition
and nonlinear modulation effects vary with the magnitudes of the LCs parts of streamwise
and spanwise velocities, the effects of full-depth LCs on wall shear stress fluctuations are
qualitatively similar, as the LCs part of the spanwise velocity is as strong as the LCs part
of the streamwise velocity near the bottom. Therefore, the impact of LCs on wall shear
stress fluctuations in the presence of weak tides is expected to be similar to those found in
the present study in the absence of tides.

942 A6-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.343


Wall shear stress fluctuations influenced by LCs

6. Conclusions

In this study the impacts of full-depth LCs on the streamwise and spanwise wall shear
stress fluctuations are systematically investigated using data obtained from wall-resolved
LES of shallow-water Langmuir turbulence. The LCs parts of velocities and wall shear
stress fluctuations are separated from the background turbulence parts using a triple
decomposition technique. The impacts of full-depth LCs on wall shear stress fluctuations
are revealed by the comparison between shallow-water Langmuir turbulence and pure
shear-driven turbulence without full-depth LCs. A new predictive model (5.30) is proposed
to quantify the effects of full-depth LCs on wall shear stress fluctuations under various flow
conditions.

Compared with pure shear-driven turbulence, the instantaneous wall shear stress
fluctuations in shallow-water Langmuir turbulence show organized spanwise variations
correlated to the LCs part of the velocity fluctuations. The streamwise shear stress
fluctuation τ12

′ forms streamwise streaks, in which their signs are the same as the LCs
part of the streamwise velocity uL. The spanwise shear stress fluctuation τ32

′ is low in the
regions with negative uL but exhibits pairs of streamwise streaks of positive and negative
τ32

′ in the regions with positive uL. By analysing the j.p.d.f. between the wall shear stress
fluctuations and the velocity of full-depth LCs, it is found that the combination of the linear
superimposition effect and nonlinear modulation effect of full-depth LCs is responsible for
the organized distributions of the wall shear stress fluctuations.

The statistics of wall shear stress fluctuations are also altered by full-depth LCs.
Compared with pure shear-driven turbulence, the mean square values are enhanced owing
to the linear superimposition effect of full-depth LCs. The skewness and kurtosis of the
wall shear stress fluctuations are attenuated by full-depth LCs through their nonlinear
modulation effect on the background turbulence part of wall shear stress fluctuations and
their strong linear superimposition effect on the LCs part of wall shear stress.

We have also investigated the scaling of the linear superimposition effect and nonlinear
modulation effect of full-depth LCs on wall shear stress fluctuations under various flow
conditions. Based on the high correlation between them, the LCs part of wall shear stresses
can be approximated by the LCs part of velocity, using a linear function, in the bottom
quarter of the water column. The scaling of the nonlinear modulation effect of full-depth
LCs on wall shear stress fluctuations is studied based on the high correlation between
the full-depth LCs part of streamwise velocity and the spanwise variation function of the
background turbulence part of wall shear stress fluctuations. Based on the scaling of the
nonlinear modulation effect, formulae are derived to explicitly measure the effects of uL

on the skewness and kurtosis of the background turbulence part of the wall shear stress
fluctuations. Because the linear superimposition and nonlinear modulation coefficients
vary only within a narrow range, the degrees of the linear superimposition effect and
nonlinear modulation effect of full-depth LCs on the wall shear stress fluctuations can be
treated as being proportional to the magnitude of uL.

Based on the scalings of the linear superimposition effect and nonlinear modulation
effect of full-depth LCs, a predictive model is proposed for wall shear stress fluctuations
in shallow-water Langmuir turbulence. The model, presented in (5.30), utilizes the LCs
part of velocity above the water bottom, which is relatively easy to obtain in practice.
The proposed predictive model can reproduce the organized spatial distribution of wall
shear stresses and accurately predict the statistics of wall shear stresses in the presence of
full-depth LCs under various conditions. The predictive model has the potential to be used
as a supplement to conventional wall-layer models based on the logarithmic law of mean
velocity, to improve turbulence modelling in shallow-water Langmuir turbulence in the
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same spirit as the improvement of the wall-layer modelling in canonical wall turbulence
by Howland & Yang (2018) using the predictive model of Mathis et al. (2013).

We would like to emphasize that while the results of this study are promising, this
study is only a first step towards improved turbulence modelling for coastal flows.
The wall shear stress fluctuations in this study are computed at an idealized smooth
bottom. In reality, the water bottoms are rough. It is still challenging to develop a
simple predictive model for the wall shear stress fluctuations for rough boundaries in
the research community. In rough-wall turbulence it has been found that the linear
superimposition effect and nonlinear modulation effect of LSMs on small-scale turbulence
still exist, although the demodulated near-wall turbulence signals, the superimposition
parameter and the modulation parameter in the predictive model of Mathis et al. (2013)
are different (Anderson 2016; Squire et al. 2016; Basley, Perret & Mathis 2018; Wu,
Christensen & Pantano 2020). As a next step of research in the future, predictive models
for shallow-water Langmuir turbulence over rough bottoms should be developed by
considering the roughness effects on the demodulated near-wall background turbulence
and the degrees of the superimposition and modulation effects of full-depth LCs. This
follow-up work will likely require waiting for an increase in computer and experiment
capabilities.
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