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Metallic glasses (MGs) constitute an emerging class of advanced structural materials due to their excellent mechanical prop-
erties. However, brittle failure at room temperature and the resultant complicated fracture behavior greatly limit their wide
engineering applications. Over the past decades, the deformation and fracture in ductile or brittle mode referring to material
compositions, load conditions, sample size, etc., have been widely studied, and significant progress has been made in under-
standing the failure behavior of MGs. Micromechanisms of fracture have been revealed involving shear banding, cavitation and
the nature of the crack tip field. The ductile-to-brittle transition and inherent governing parameters have been found. To well
describe and predict the failure behavior of MGs, failure criteria for ductile and brittle MGs have been established empirically or
based on atomic interactions. In this paper, we provide a detailed review of the above advances and identify outstanding issues in
the failure of MGs that need to be further clarified.
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1. Introduction

In solid-state science, one of the fundamental and most
fascinating themes is the contrasting states of order and
disorder. Materials in a disordered state have no long-range
structural order and present quite a different deformation
mechanism from crystalline solids. Instead of the dislocation
mechanism, localized shear-driven rearrangements of atoms
or molecules accommodate plastic deformation in disordered
materials [1-3]. The mysteries within the disordered structure
and the resultant deformation behavior have aroused great
interest from researchers, but numerous problems remain
elusive [4-8]. Metallic glasses (MGs) are new disordered
materials with extremely high strengths but poor room-
temperature ductility. Their limited plastic straining under
tension impedes their wide application as advanced struc-
tural materials. In recent decades, substantial research efforts
have been paid to the deformation and failure behavior of

MGs, which is one of the most fundamental problems of
these materials and has led to great progress in understanding
their underlying physics [9-22].
Attributed to their short-range ordered structures, MGs

exhibit a number of fundamental and unique mechanical
behavior traits [11,23-26], such as obvious pressure sensi-
tivity in yielding, shear dilatancy during deformation, and
multiple failure modes. MGs may fail in ductile or brittle
mode by necking [27], shear banding [12,28-31], or cavita-
tion [15,32-34]. Combining experimental and computational
studies, researchers have attempted to clarify the deforma-
tion and failure behavior at the macroscale, such as multiple
fracture modes and tension-compression asymmetry, and at
the microscale, i.e., flow unit, microdeformation modes, and
fracture morphologies [11,12,21,35]. Some basic under-
standings have been received. The two fundamental unit
processes in MGs are regarded to be shear transformation
zones (STZs) [2,3] and tension transformation zones (TTZs)
[15,36]. The origin of shear band formation is attributed to a
thermomechanical coupling mechanism [28,37]. The shear
band propagates in a simultaneous mode due to a shear
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displacement jump mechanism [38-41] or in a progressive
mode analogous to crack propagation and induces cracking
[29,42-45]. The plastic zone, which is a critical region ahead
of the crack tip, governs the formation and propagation of
shear bands or cracks, which construct a bridge between
microdeformation and the overall failure behavior [19,46-
49]. The inherent correlations of the macroductility or
toughness with material parameters and atomic structure
have been uncovered [14,50-52]. By taking the unique traits
of fracture behavior into account, failure criteria were de-
veloped that comprehensively describe tensile or both tensile
and compressive failure phenomena in MGs [14,52-54]. In
this review, we focus on the failure behavior and criteria of
MGs, including the related advances, and several critical
issues need to be further clarified.

2. Ductile or brittle failure behavior

Initiated from the onset of irreversible deformation, the
failure of the material covers the whole process from yield-
ing to final fracture. Failure modes can be generally classi-
fied as ductile or brittle, which are determined by the extent
of plastic deformation. Generally, fracture ensues im-
mediately after yielding with little plasticity in brittle failure,
while apparent plastic deformation is displayed before final
fracture in ductile mode. MGs lack strain hardening and
intrinsic crack propagation barriers, such as grain boundaries
in crystalline metals and alloys, but can dissipate plastic
energy by localized shear bands, in contrast to oxide crystal
glasses [12]. Their fracture ability is normally intermediate
between traditional brittle and ductile materials. A wide
range of toughness from ~1 MPa m1/2 to ~100 MPa m1/2 was
displayed in MGs depending on their components; MGs can
be very brittle with a mode I fracture toughness KIc similar to
silicate glasses and ceramics, while MGs can behave very
toughly with KIC akin to high toughness crystalline metals
[17,50,55,56]. Such complexities in the deformation and
failure phenomena of MGs are exhibited at both the macro-
and microscales.
The ductile or brittle behavior presented by MGs is found

to depend on a number of factors, such as alloy composition,
cooling rate, structural relaxation, loading state, and sample
size [27,29,51,57-61]. Under uniaxial tensile conditions,
most monolithic MGs will fracture catastrophically with
almost zero macroscopic plasticity at room temperature, with
a few exceptions reported in nanoscale size samples [27] or
some MGs with low Tg. In contrast, under uniaxial com-
pression, limited and even large plasticity can be found in
MGs [58,62,63]. These show an obvious tension-compres-
sion asymmetry. In addition to this plasticity/ductility dif-
ference, the perplexing failure asymmetry between tension
and compression observed in MGs is also manifested by the

failure mode and strength. Under tensile loading, shear
failure or normal tensile fracture (quasi-cleavage) are two
typical modes, while under compression, MGs fail by shear
or splitting (Table 1). The shear plane of traditional crys-
talline metals is usually along the direction of the maximum
shear stress, which is 45° with respect to the loading axis.
MGs fail along the plane at angle 45° < θT ≤ 90° under
tension and 0° < θC ≤ 45° under compression (Table 1). This
implies that in addition to the deviatoric stresses, pressure or
normal stress also plays a critical role in the failure of MGs
[23,64-66]. As observed from numerous experimental in-
vestigations, the failure strength of MGs in uniaxial tension
(σT) is usually smaller than that in uniaxial compression (σC)
(Table 1), which is called the strength-differential (S-D) ef-
fect [67,68]. Several reasons have been found to induce this
effect, such as nonlinear interactions between dislocations or
interstitial solute atoms [69] or shear-caused dilatation [70].
It is believed that the S-D effect should be taken into account
for a full description of failure behaviors in MGs.
The fracture toughness or plasticity of MGs, closely re-

lated to shear banding and crack branching around the crack
tip, is accompanied by different characteristic fracture
morphologies [17-19,46,50,96-100]. The ductile failure in
MGs is generally controlled by strain [47] and may lead to
several typical fracture patterns, including microscale cells,
river-like vein patterns, or dimples [13,15,97,101-103]. The
plastic zone in front of the crack tip plays a decisive role in
the resultant fracture behavior. The Taylor instability process
of a fluid meniscus was found to be a reason for these pat-
terns [15,97]. In contrast, crack initiation in brittle MGs
starts from cavity nucleation ahead of the crack tip and is
usually under the control of stress [18]. Whether brittle
fracture via cavitation occurs in MGs was reported to depend
on the competition between the cavitation stress and the
hydrostatic stress ahead of the crack tip [32,34]. Relative
smooth fracture surfaces with nanoscale corrugations or
featureless mirror zones are usually displayed in brittle
fracture due to a local cleavage mechanism [15,104-107]. A
random creation of cavities or voids at the microscale was
revealed to lead to quasi-brittle corrugation patterns
[106,107]. In very brittle MGs, the local softening mechan-
ism still holds true. Xi et al. [97] reported the microductile
fracture pattern, i.e., dimple structures in Mg-based MGs,
and presented that fracture toughness is clearly correlated
with plastic zone size for MGs. This implies that a local
softening mechanism might occur along with the fracture of
both brittle and ductile MGs but at different length scales.

3. Failure mechanisms

Ductile or brittle failure behavior in MGs highly depends on
three basic microdeformation modes, namely, shear banding,
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necking and cavitation. From initial stable homogeneous
deformation to unstable flow, MGs experience instability.
How do different kinds of deformation instabilities occur,
and how do they evolve and result in the final fracture? Over
the last decades, researchers have paid great attention to
these fundamental questions and provided deep insights into
the origin and propagation of shear banding, the formation
and growth of cavitation, shear band multiplication and
necking. Moreover, the analysis of the crack tip field pro-
vides a new perspective on the inherent connection between
macrodeformation and micromechanisms.

3.1 Shear banding

One of the major micromechanisms in the deformation of
MGs is inhomogeneous deformation by concentrating severe

plastic strain into nanoscale shear bands [1-3,15,28,37,43,
100,108-112]. As precursors to crack formation, the loca-
lized plastic regions render very limited ductility before
catastrophic failure under unconstrained loadings, such as
tensile testing [87]. Under constrained loading, such as
compression, indentation and bending, the shear banding
process does not always behave in a runaway manner but in a
stable serrated flow mode through shear band multiplication
[29,62,86,113,114]. The nature of shear banding, referring to
its formation, propagation and multiplication, is critical to
reveal the mechanisms underlying the failure of MGs. To
date, there have been significant advances in understanding
the behavior of shear bands in MGs, and numerous works
have focused on the origin and propagation of individual
shear bands [12].
Although how shear banding of MGs originates from the

Table 1 Failure strengths and angles of MGs in tension and compression [14]

Composites
Failure strengths Failure angles

Ref.
σT (GPa) σC (GPa) θT (°) θC (°)

Pd77.5Cu6Si16.5 1.44 1.51 50 45 [71]
Pd78Cu6Si16 1.45 1.54 55 45 [72]
Pd40Ni40P20 1.46 1.78 50 41.9 [73]

1.6 1.74 56 42 [74,75]
Zr40.1Ti12Ni9.3Cu12.2Be26.4 1.98 2.0 51.6 40.8 [76]
Zr41.2Ti13.8Ni10Cu12.5Be22.5 1.8 2.0 55 44 [15]

1.8 1.95 56 42 [77]
1.89 1.9 – – [78]

Zr52.5Ni14.6Al10Cu17.9Ti5 1.65 1.88 54 44 [79]
1.66 1.82 60 42.5 [80]
1.66 1.76 56 42 [81]

Zr55Al10Cu30Ni5 1.53 1.77 53 41 [82]
1.6 1.8 – – [83]
1.51 1.82 – – [84]

Zr56.2Ti13.8Nb5.0Ni5.6Cu6.9Be12.5 1.487 1.669 59 45 [85]
Zr57Cu15.4Ni12.6Al10Nb5 1.2 1.8 – – [86]
Zr59Cu20Al10Ni8Ti3 1.58 1.69 54 43 [87]
Zr60Al10Cu20Pd10 1.68 1.88 55 45 [88]
Zr60Al10Cu25Ni5 1.63 1.76 – – [82]
Co80Nb14B6 2.88 3.47 – – [73]
Cu60Zr30Ti10 2.0 2.15 – – [89]
Cu60Hf25Ti15 2.13 2.16 – – [89]
Pd80Si20 1.33 – 90 – [90]

(Al84Y9Ni5Co2)0.95Sn5 – – 90 [91]
La62Al14(Cu,Ni)24 0.55 0.56 90 40-45 [92]

Zr52.5Ni14.6Al10Cu17.9Ti5 – – 90 [93]
Zr59Cu20Al10Ni8Ti3 – – 90 [93]

Zr80Pd20 – – 90 [94]
Zr55Al10Ni5Cu30 Break or split [93]
Ti50Cu20Ni23Sn7 Break or split [93]

Fe65.5Cr4Mo4Ga4P12C5B5.5 Break [95]
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atomic structure still lacks a precise physical picture, it is
well accepted that the formation and self-organization of
flow events, which are essentially local arrangements of
atoms around free volume sites, termed STZs or flow defects
[2,3,115-119], lead to shear localization [11,117,120,121].
Both theoretical and experimental studies have demonstrated
the localized and cooperative nature of shear transformation
[3,115,122]. The specific characteristics of STZs have been
widely investigated [122-125], i.e., their shape and size, the
activation energy for the transformation, their correlations
with local structure and the macrodeformation. Pan et al.
[122] reported experimental characterization of STZs for
MGs. They investigated the activation kinetics of shear
transformations by nanoindentation at different rates, and the
activation volume was derived from the strain-rate sensi-
tivity. The STZ volumes of the selected MGs were then es-
timated to vary from 2.5 to 6.6 nm3 based on the cooperative
shearing model of Johnson and Samwer [115]. Generally,
STZs in MGs require activation energy of several tenths of
eV and display a diameter of ~1 nm, which contains a few
tens to a few hundred atoms. It has been suggested that a
large STZ volume facilitates plasticity [122,126]. Due to the
extreme tempo-spatial scale of shear banding, the atomistic
mechanism of plastic localization is difficult to properly
resolve by experimental means, and computational simula-
tions provide a powerful tool to unveil the shear banding
mechanism at the atomic level. Simulations show that STZs
prefer to activate in regions involving weakly bonded atoms.
As their induced elastic fields have long-range interactions
with each other, STZs prefer to occur as directional quasi-
linear avalanches rather than as independent, random events
[123,124]. Şopu et al. [127] identified how an STZ generates
a structural perturbation in the surrounding material and then
triggers the activation of the neighboring STZ. The catalytic
self-assembly of STZs is illustrated in Fig. 1, which reveals a
two-unit mechanism for STZ percolation. The autocatalytic
generation of successive strong strain and rotation fields
induces STZs to percolate each other and then leads to the
formation of a shear band. From the perspective of the strain
gradient, Tian et al. [128] proposed that structural hetero-
geneity, or more specifically, the strain gradient, drives the
coalescence of the existing activated regions, eventually in-
itiating shear bands. As displayed in Fig. 2, the local fivefold
symmetry (L5FS) and the local von Mises strain (ηMises)
evolve with the macroscopic shear strain γ. In the beginning,
STZs are mostly activated in low L5FS regions (Fig. 2a), and
as deformation proceeds, STZ activation regions are broa-
dened and coalesce along some specific directions (Fig. 2b).
The strain gradient fields (Fig. 2c) and the structural features
(Fig. 2b) show good consistency. Large strain gradient zones
then percolate (Fig. 2d) and play a critical role in driving
shear banding.
For decades, the onset condition of shear banding in MGs

and its underlying mechanism have aroused considerable
debate. The concept of “free volume” was introduced to
describe the plastic flow of MGs, and a steady-state in-
homogeneous flow model was proposed by Spaepen [1].
Free volume dynamics, i.e., Stress-driven creation and dif-
fusion annihilation of free volume, are found to play a
dominant role in shear instability [2,3,110]. A general the-
oretical framework was established by Huang et al. [108] to
characterize the inhomogeneous deformation in MGs, where
the onset condition for shear instability solely relies on free
volume. Another popular viewpoint is that shear band for-
mation in MGs is attributed to thermal softening, similar to
adiabatic shear bands in crystalline alloys [79,129]. How-
ever, because of rapid thermal conduction, adiabatic heating
was reported to be impossible in MGs [130,131]. Using high-
speed infrared cameras, it was measured that the temperature
within the shear band only rises by approximately 0.55 K
within 1 ms [47]. Compared with the sole effect of free vo-
lume or heat, a thermomechanical coupled effect on shear
band formation was proposed [28,132]. Several coupled
thermomechanical finite-deformation constitutive frame-
works were developed to model the homogeneous de-
formation or localization in MGs [133,134]. Dai and co-
workers [28,37,132] established a new theoretical frame-
work to describe the thermomechanical deformation of MGs.
They carried out a rigorous linear perturbation analysis on
three types of instabilities, namely, free-volume softening,
thermal softening and coupling softening, and derived the
corresponding onset criteria. It was pointed out that shear-

Figure 1 Illustration of the two-unit mechanism for STZ percolation: a at
small loads, the STZ near the notch experiences a small distortion, which
has a negligible effect on the neighboring matrix, b the STZ is activated at a
higher load, and collective vortex-like motion is caused, and c the fol-
lowing STZ is activated once the stress exceeds the threshold value [127].
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band instability is attributed to coupling softening, where
stress-driven free volume softening plays the dominant role
while thermal softening promotes the process [37]. This
mechanism was verified experimentally by Brennhaugen et
al. [135]. They introduced a new experimental approach to
detect the localized boiling of liquid nitrogen by the heat
generated in shear banding and found that heating follows
the operation of the shear band.
The direction of shear band formation as an important

feature of shear banding relies on material types and loading
states. As mentioned before, the shear band angles of MGs
normally deviate from the direction of the maximum shear
stress because the macroscopic yield behavior of MGs is
pressure-sensitive and does not obey the classical pressure
insensitive forms [23,64,65,73,116,136,137]. From a con-
tinuum point, shear banding is actually a physically material
unstable event, which can be treated like the appearance of
instability in the macroscopic constitutive description of
inelastic deformation. For pressure-sensitive dilatant mate-
rials, Rudnicki and Rice [24] derived both the general onset
condition and orientation of the shear band in the stress space
by tying the bifurcation theory. Based on this, Gao et al.
[138] predicted the shear band angle for MGs, where the
pressure coefficient and the dilatancy factor play critical

roles. Ruan et al. [139] established a constitutive model ad-
dressing the physical origin of shear banding, where the
atomic structural change was embodied by the plastic strain
and the associated dilatation for MGs. They derived the
conditions for the onset of shear banding instability, which
enables the explicit calculation of the shear band inclination
angle. New constitutive accounting for pressure sensitivity,
dilatancy and structural evolution was introduced by Chen
and Dai [140]. Combining the bifurcation theory, they de-
rived the critical condition and direction for shear band
formation in MGs under a general stress state, which con-
nects the microscopic origin and the loss-of-ellipticity in-
stability in the constitutive law in continuum mechanics.
Once initiated, the shear band will propagate and result in

subsequent fracture; therefore, the propagation speed and
mode are basic issues to be determined. Early experiments
on shear band speed were carried out by using high-speed
cinematography or linear variable differential transformers
[141]. However, due to the limitations of the temporal and
spatial resolution, only a few and limited datum points were
recorded and were not sufficient to determine the shear band
speed. To improve it, Song and Nieh [41] introduced strain
gauges capable of capturing small strains (~10−5) with a high
data acquisition rate (~2000 Hz) and directly measured the

Figure 2 Evolution of local von Mises strain and L5FS with macroscopic shear strain. Deformation patterns at a γ = 0.05 (before yielding) and at b γ = 0.15
(right before the emergence of the shear band), respectively. Strain gradient fields in the z direction immediately c before and d after shear band formation,
respectively [128].
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strain change as a function of time during compression tests
of Zr-based MGs. Microsize serrations were found in the
obtained displacement-time curves, in which a three-step
(acceleration, steady-state, and deceleration) process was
uncovered in shear band propagation. The shear band speed
varies in different stages, and the maximum is calculated to
be 800 μm/s. Wright et al. [142] measured the temporal and
spatial evolution of strain during the serrated flow of Pd-
based MGs under quasi-static compression through a similar
but advanced experimental approach. Strain gauges were
affixed to all four sides of the specimen, and a piezoelectric
load cell was located near the specimen. The strain and load
could then be acquired at rates of up to 400 kHz. The shear
band velocity was estimated to be approximately 0.002 m/s
based on the assumption that the entire shear plane displaces
simultaneously. If the displacement occurred as a localized
propagating front, the velocity of the front was given to be
approximately 2.8 m/s. The shear band speed of 1-10 m/s
was also calculated by combining the acoustic emission
method [143]. Regarding the actual mode of shear band
propagation, there are two viewpoints following that of
Wright et al. [142]. One considers that shear occurs si-
multaneously across the entire shear plane, termed the shear
displacement jump mechanism [38-41]. The other favor is
that the shear front progressively propagates across the shear
plane from one end of the sample to the adjacent free surface,
analogous to crack propagation [29,42-45]. To verify these
two viewpoints, different experimental evidence has been
claimed. The support of the latter scenario stems from ex situ
observations of diffuse shear bands that do not extend fully
across but terminate within the sample [111,143]. Song and
Nieh [41] found the growth rates of the shear offsets on either
side of the sample to be equal, supporting the former me-
chanism. The serrated flow in the compression of MGs was
attributed to an intermittent, stick-slip mechanism with re-
peated cycles of initiation, propagation, and arrest
[38,40,41,117,144].
Instead of individual dominant shear bands, multiple shear

bands are found in the deformation of MGs under con-
strained loads along with considerable plastic deformation.
Due to its remarkable improvement of plasticity, shear band
multiplication has aroused intense scientific and technolo-
gical interest from scientists [16,30,62,113,117,139,145-
147]. In MGs, there are several ways to realize shear band
multiplication, such as introducing structural heterogeneity
[57,148-154], adopting constrained loading modes
[16,30,62,111,113,145,155,156], or controlling the sample
size and machine stiffness [42,43,157]. In the multiplication
process, two basic processes are involved, i.e., shear band
nucleation and growth. The former triggers the production of
new shear bands, while the latter will speed the failure of
MGs. Analogous to those observed in crystalline metals,
multiple sets of shear bands in MGs are organized in char-

acteristic patterns, where the shear band spacing and offset
vary with global strain, strain rate, normal stress, and sample
dimension [29,30,86,133,147]. A strong size effect on mul-
tiple shear bandings has been revealed in MGs [16,29,145].
To predict shear band spacing, several prevailing theories,

which are original for multiple thermoplastic shear bands of
crystalline metals, have been developed by Grady and Kipp
[158], Grady [159,160], and Wright and Ockendon [161].
Based on these pioneering works, the early models for shear
band spacing and offset in MGs are usually based on mo-
mentum diffusion or energy balance. Conner et al. [145]
demonstrated that shear band spacing and offset scale with
the thickness of the MG plate under bending due to a strain
relaxation near the shear band. Considering a balance be-
tween the energy dissipated along with shear bands and the
macroscopic dissipation, Ravichandran and Molinari [16]
proposed an analytical model to predict the scaling laws of
shear band spacing and offset in MGs over a wide range of
size scales when subjected to plane-strain bending. A ther-
momechanical model based on momentum diffusion was
established for the evolution of shear band spacing in MGs
under dynamic loading, and it was revealed that normal
stress plays a crucial role in shear band formation [147]. Wei
et al. [162] extended the analysis by Conner et al. [145] of
bands in bent plates. By introducing the micromechanics of
individual shear bands, they found that both shear band
spacing and offset decrease as Poisson’s ratio increases to-
ward a more uniform deformation.
Significant size effects and tension-compression asym-

metry are presented in the self-organization of collective
shear bands in MGs under in situ four-point bending tests
[29]. From three basic processes, namely, momentum dif-
fusion, energy conservation and structural evolution, Chen et
al. [29] developed an analytical model for the evolutionary
dynamics of multiple shear banding for MGs. They derived
the analytical solutions of shear band spacing, shear offset,
and failure strain for the bending case, which is in good
consistency with the experimental observations. The in-
homogeneous size effect of plasticity is revealed by a tran-
sition from weak ((h*)−2/3) to strong ((h*)−2) size dependence
of failure strain with decreasing sample thickness h* (Fig. 3).
In the figure, ∆u is a critical value of the shear offset. The
shear band is assumed to transform into a mixed mode crack
when the shear offset in the mature shear band exceeds ∆u
[16,145]. Both prediction lines for different values of ∆u
show the same change trend, but the blue line for larger ∆u
exhibits a better plastic deformation capability. To uncover
the underlying mechanism of the cooperative behavior of
multiple shear bands, an energy competition map was pro-
posed based on the energy dissipation by shear band nu-
cleation and propagation. As elucidated in Fig. 4, the energy
dissipated per unit change of shear band spacing (measured
by /*

0
*, in the blue curve) or shear offset (characterized by
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/*
0
*, in the red curve) varies with the sample thickness h*.

Both energies grow monotonically with increasing h* and
equal to 0

* at the critical sample thickness hc*. The compe-
tition between these two dissipation energies determines
which process takes priority. This result indicates that shear
band nucleation would be more active when h h<* c*, while

shear band propagation plays a dominant role when h h>* c
*.

The transition from shear band nucleation to propagation is
in accordance with the variation in the size dependence of
plastic strain (Fig. 3), which provides a new insight into the
size effect of plasticity in MGs.

3.2 Necking

To attain a better plasticity, multiple shear bands or even
homogeneous plastic deformation is preferred in MGs. Al-
though most MGs show negligible tensile ductility under
tension, superplasticity has been obtained under special
conditions through a ductile fracture mode of necking.
During necking, the material experiences homogenous de-
formation before the final fracture. A reduction in material
size will promote shear band multiplication or even cause a
transition from shear localization to homogeneous de-
formation when the size is reduced to hundreds of nan-
ometers [22,27,163-168]. Once the sample size is smaller
than the critical value of shear band thickness, a shear band
cannot be formed, and homogeneous plastic flow and
necking instability occur [165]. Guo et al. [27] presented
significant uniform elongation and extensive necking beha-
vior in Zr-based MGs with dimensions on the order of
100 nm by using an in situ tensile test in a transmission
electron microscope (TEM) (Fig. 5). Jang and Greer [167]
reported a superior strength of 2.25 GPa and ductility of
~25% in 100 nm-diameter Zr-based MG nanopillars. They
pointed out that a highly localized-to-homogeneous de-
formation mode change occurs at a 100 nm diameter and
presented a phenomenological model of two competing
processes for brittle-to-homogeneous deformation. This cri-
tical length scale on the order of ~100 nm was further con-
firmed by Zhou et al. [168] through atomistic simulation and
theoretical analysis. They proposed that the critical size re-
quired for the transition from shear banding to homogeneous
deformation in MGs is determined by shear band energy and
surface stress. At high temperatures close to or above the
glass transition, MGs usually experience homogeneous vis-
cous flow. These size- and temperature-dependent de-
formation properties suggest that applications on small

Figure 3 Plastic strain to fracture varies with sample thickness for ∆u =
10 μm (red solid line) and ∆u = 50 μm (blue solid line). The analytical
prediction is consistent with experimental data [146] for Vit-1 and other
similar compositions [29].

Figure 4 Energy dissipation map for shear band nucleation and growth as
a function of sample thickness [29].

Figure 5 MGs experience necking behavior during the in situ TEM tensile tests. Necking starts early from the “notches” on the surfaces in the virgin sample
(indicated by the white arrow in a) and then b-d develops gradually to e final failure [27].

121449-7Y. Chen, et al. Acta Mech. Sin., Vol. 38, 121449 (2022)



length scales or high temperatures can take advantage of the
enhanced plasticity of MGs [166].
In addition to the extrinsic factors (i.e., sample size, tem-

perature), ductility can also be improved by adjusting the
intrinsic factors (i.e., microstructure). Hofmann et al. [148]
introduced MG-matrix composites with enhanced global
ductility and necking failure. The inhomogeneous micro-
structure with isolated dendrites would impede the extension
of shear bands and promote the formation of dense multiple
shear bands, which effectively stabilizes the glass against
catastrophic failure and leads to relatively homogeneous
deformation before final failure.

3.3 Cavitation

Ductile to brittle transition has been widely reported in the
deformation of MGs [15,50]. This is not only reflected by the
macroplasticity but also strongly suggested by the observa-
tion of distinct fracture surface morphologies in MGs [15].
Coarser patterns are usually found in ductile fracture surfaces
with deep ridges on the micrometer length scale, while na-
noscale periodic corrugations are exhibited in brittle fracture
surfaces. Through statistical characterization of fracture
surfaces, Bouchaud et al. [169] reported exotic multiaffine
isotropic scaling properties of the fracture surfaces in Zr-
based MGs. The mismatch between the two facing fracture
surfaces shows that fracture occurs mostly through the
growth and coalescence of damaged cavities. Jiang et al. [15]
conducted systematic compression, tension and high-velo-
city plate impact experiments on a typical Zr-based MG. An
obvious change in fracture patterns with the strain rates was
observed. At a high strain rate, it was interesting to find
nanoscale dimples and periodic corrugations in tough MGs.
After a broad overview of the fracture patterns of specimens,
a criterion was proposed to predict whether the fracture of
MGs is brittle or plastic, which depends on the curvature
radius of the crack tip and the critical wavelength of me-
niscus instability. If the former is greater than the latter,
microscale vein patterns and nanoscale dimples appear on
crack surfaces; otherwise, local quasi-cleavage with local
softening dominates and produces nanoscale periodic cor-
rugations. The classical STZ is a fundamental unit process
underlying plastic softening but is not sufficient to explain
these two distinct phenomena. A collective atomic motion,
namely, TTZ, was then proposed as the basis of quasi-clea-
vage (Fig. 6). Energy dissipation in the fracture of MGs was
revealed to be determined by STZs and TTZs ahead of the
crack tip. The alternative activation of TTZs and STZs in
front of the crack tip causes the arrest and propagation of a
mode I crack, resulting in the formation of periodic corru-
gations. A ductile-to-brittle transition was also found during
the spallation of a binary MG [36]. The interaction between
void nucleation and growth, which at the atomic scale ori-

ginates from competition between TTZs and STZs, was re-
vealed to control this transition.
Early in 1945, Bishop et al. [170] recognized the existence

of cavitation instabilities and presented cavitation limits in
elastic-plastic solids under stress conditions consistent with
spherical and cylindrical symmetries. Thereafter, limit states
for cavitation under symmetric stress states or general ax-
isymmetric stressing were analyzed [171-173]. As a ductile
failure mechanism under highly constrained plastic flow,
cavitation instabilities are usually considered a process in
which elastic energy stored in the remote field drives the
plastic expansion of the void [173]. However, quite a dif-
ferent case is found is MGs. The cavitation mechanism of the
fracture behavior in brittle MGs was unveiled byMurali et al.
[33] through atomistic simulations. In contrast to extensive
shear banding leading to ductile failure in the CuZr MGs, an
intrinsic cavitation mechanism near crack tips governs brittle
fracture in FeP glass (Fig. 7). The main reason for the ob-
served cavitation behavior in the brittle MGs is attributed to a
high degree of atomic-scale spatial fluctuations in the local
properties. Further simulations by Murali et al. [174] showed
that spontaneous cavitation in MGs tends to occur pre-
ferentially inside an inclined localized softening zone ema-
nating from a crack tip or under unequal biaxial tension, and
the nucleation and coalescence of the cavity then cause the
crack to extend and lead to brittle fracture. The spatially
fluctuating curvature-dependent surface energy, termed the
Tolman length effect, was also found to be an important
factor influencing cavitation in MGs [175]. Huang et al.
[176] unveiled that sites with loose packing atomic clusters
in MGs would facilitate the nucleation of microvoids. Re-
cently, the cavitation mechanism underlying the fracture

Figure 6 Schematic of two fundamental atomic motions in MGs: a a
classical STZ and b an envisioned TTZ [15].
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behavior of glasses was verified experimentally by Shen et
al. [177]. They experimentally presented the cavitation-
dominated cracking process in MGs through a precise
characterization of the nucleation, growth, and coalescence
of growing cavities (Fig. 8). Further studies were carried out
in nonmetallic PC and SiO2 glasses, where cavitation-in-
duced nanopatterns are also prevalent, suggesting the pre-
sence of nanoscale ductility in the macroscopic brittle
fracture of glasses. This work provides a direct and clear
picture of how fractures proceed in glasses and paves the
way for a deep understanding of the failure of disordered
materials.
To explain these cavitation behaviors in MGs, several

models of cavitation instability, void nucleation and growth
have been developed [21,32,34,178-180]. The first con-
tinuum model of cavitation for MGs was established by
Huang et al. [178]. They introduced a single-stage light gas
gun and designed a special plate-impact experiment.
Through impact tests on a Zr-based MG, microvoids were
found to nucleate in the material during spallation. Based on
free-volume theory, they proposed a microvoid nucleation
model of MGs and revealed that nucleation of microvoids at
the early stage of spallation in MGs is attributed to diffusion
and coalescence of free volume, in which high mean tensile
stress plays a dominant role. Thereafter, Huang et al. [179]
further presented a theoretical description of cavitation in-
stabilities and void growth dynamics undergoing remote
hydrostatic tension. An explicit expression of the critical
pressure for cavitation instability was derived from theore-
tical analysis of the material elastic-viscoplastic response. As
shown in Fig. 9, cavitation instability prefers to occur in
solids with a relatively high-pressure sensitivity coefficient.
To characterize the dominant factors in dynamic void

growth, they proposed a dimensionless number, which con-
sists of three different time scales (namely, the inertial time
scale tinertial, the loading time scale ta and the relaxation time
scale tr). Via finite difference method simulations, see Fig.
10, it was found that at the rise stage of the loading history,
the growth process is governed by the competition between
the inertial effects and the loading rate effects. The dominant
factor transitions from inertial effects to viscous effects when
I t t= / < 101 inertial a

2. When the viscous effects start to work,
the loading rate effects are gradually weakened, leading to a
higher void growth rate and the disappearance of vibrating
growth. The growth process is manipulated by the compe-
tition between the inertial effect and the viscous effects at the
steady stage. A transition is at I t t= / = 11 inertial r , above
which the inertial effects play the major role and the growth
of voids is restricted. Otherwise, void growth is controlled by
the viscous effect. Moreover, the influences of the surface
energy and thermal effects on void growth were discussed by
introducing dimensionless numbers Iγ and Ith [180]. Iγ de-
notes the ratio of the energy required to form a new void
surface and the energy dissipated by plastic deformation, and
Ith represents the competition between momentum diffusion
and thermal diffusion. The surface energy was found to
significantly restrict void growth at the early stage when Iγ
was large, while the thermal effects first promoted and fi-
nally impeded void growth at the late stage when Ith ≤ 1. It
elucidates the coupling influences of inertia, surface energy
and thermal effects on void growth and the dominant factors
as the process develops.
Material properties in a brittle MG normally exhibit large

spatial fluctuations, which are considered a reason for the
nucleation and coalescence of nanovoids [32,33,176]. Singh
et al. [32] introduced weak zones and proposed a model of a

Figure 7 Numerical results of crack propagation at various applied strains in a-c Fep glass and d-f CuZr glass. The color indicates the local von Mises strain
[33].
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heterogeneous solid to represent a brittle MG. In their model,
the weak zones are treated as periodically distributed regions
that have lower yield strength than the background material.
It was found that the local yield properties of the weak zones

control the critical hydrostatic stress for the onset of cavi-
tation, and this stress threshold is greatly reduced by the
presence of these zones. Moreover, the applied stress state
was revealed to be another important factor influencing the

Figure 8 Experimental observation of the cavitation-dominated fracture process in the Fe-based MG. The experimental setup of inclined indentation is
illustrated in a. b, c Scanning electron microscope images, atomic force microscope topographic image of the zoom-in straight crack (left) and height profiles
of the top 10 cavities (right) after inclined indentation, respectively. d Zoomed-in topographic images of the pink (left) and blue (right) rectangular zones in c.
e, f Topographic images of the crack tip and the cavity ahead of the crack tip, respectively. Inset: height profile of the cavity. g, h Three-dimensional close-up
topographies of another crack tip. i Crack propagation [177].

Figure 9 Cavitation pressure decreases with increasing pressure sensi-
tivity coefficient [179].

Figure 10 Void growth for different rise times with an initial void radius
of 1 μm under the same loading amplitude of 2 GPa [179].
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cavitation behavior of such a heterogeneous plastic solid
with distributed weak zones [34], and it showed that the
cavitation stress of the heterogeneous aggregate is controlled
by the critical value of a nondimensional stress state para-
meter. The cavitation mode would experience a transition
from snap cavitation or smooth bifurcation at a high stress
ratio to unstable bifurcation at a sufficiently low stress ratio.

3.4 Crack-tip fields

Crack-tip fields are crucial in studying the fracture of solids.
There are a number of significant works on the theoretical
solutions of crack tip fields for ideally plastic and power-law
hardening materials. One of the most famous works is from
Rice [181], who raised the path independent J-integral as an
average measure of the crack tip field for elastic and elastic-
plastic materials. Combining the J-integral and the slip line
field analysis, an approximate solution of the plastic zone
was derived for perfectly plastic material [181]. The well-
known Hutchinson-Rice-Rosengren (HRR) singular fields
were then established for a power hardening material
[182,183]. Based on the HRR-type fields, the crack-tip stress
and strain fields with volume preservation of deformation
were presented by Pan and Shih [184,185] for power-law
hardening orthotropic materials under plane-strain and
plane-stress conditions. Considering volumetric deforma-
tion, Hutchinson [186] proposed crack tip fields of the HRR
type for polycrystalline materials undergoing creep-con-
strained grain boundary cavitation. Theoretical and numer-
ical methods have been developed to evaluate the stress
intensity factors (SIFs) ahead of the crack tip [187-189].
Recently, for arbitrarily sized kinked cracks, Liu and Wei
[190] established a theoretical framework to calculate the
stress fields and hence the SIFs. For amorphous solids,
pressure sensitivity and dilatancy are two important traits in
deformation [23,64,140]. Li and Pan [25,26] introduced a
pressure-sensitive yield criterion and the normality flow rule
to describe the deformation of pressure-sensitive dilatant
materials, and derived solutions of the crack tip stress and
strain fields for plane-stress and strain conditions, respec-
tively. Jeong et al. [191] constructed theoretical slip lines
around notches for pressure-sensitive perfectly plastic ma-
terial by utilizing the Drucker-Prager yield criterion. Soft-
ening and orientation hardening were incorporated into a
viscoplastic constitutive model for glassy polymers, and a
finite deformation analysis of the crack tip fields was per-
formed [192]. For pressure-sensitive plastic solids, a 3D fi-
nite element analysis of mode I crack tip fields was
conducted by Subramanya et al. [193] under small-scale
yielding (SSY) conditions. These works might provide a
theoretical basis and useful methods for the study of crack tip
fields in MGs.
Early works referring to the crack tips of MGs focused on

their correlation with fracture toughness. Lowhaphandu and
Lewandowski [194] carried out single-edge-notched bending
experiments on MGs with various notch radii, and the frac-
ture toughness was revealed to increase linearly with the
square root of the notch-root radius. Through tensile tests on
notched bars of Vit-1 MGs, Flores and Dauskardt [23] found
flat fracture surfaces in the central region but a “shear lip”
near the edges of the notch root. At some point in the interior
of the notched region, the mean positive stress attains a
critical value that leads to void nucleation. Compared with
the low fracture toughness reported in mode I loading, a
much higher mode II fracture toughness was measured,
which indicates that normal or mean stresses play a sig-
nificant role in the deformation process at the crack tip [47].
The crack field behavior of MGs under both mode I and
mixed mode loading was investigated by Tandaiya et al. [20]
through four-point bending. Figure 11 shows the process of
shear band-mediated plastic flow followed by crack initia-
tion at the notch root for the mode I case. From the fracto-
graphs, the critical size of the process zone of ~60 μm was
identified. What is interesting is that within this critical size,
cracks grow stably inside a dominant shear band, irrespective
of the structural state and mode mixity.
Many quantitative understandings of the crack tip behavior

for MGs were mainly from numerical simulations. Tandaiya
et al. [48,49] carried out finite element simulations to study

Figure 11 Optical micrographs of the shear bands ahead of a the notch tip
in the mode I case before crack initiation and b the crack trajectory along
the curved shear band ABC [20].
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mode I crack tip fields in MGs under plane-strain and SSY
conditions, incorporating a continuum elastic-viscoplastic
constitutive theory developed by Anand and Su [195]. Ac-
cording to their simulations, higher internal friction is re-
vealed to enhance the plastic strain ahead of the notch tip but
lead to a substantial decrease in the opening stress, which
enlarges the plastic zone and promotes toughening of MGs.
In contrast, a higher value of Poisson’s ratio refers to a
smaller plastic zone and plastic strain ahead of the notch tip.
Henann and Anand [196] modified the Anand-Su theory to
account for the softening and dilatational volumetric elastic
response of MGs. Detailed finite-element simulations were
conducted to investigate fracture initiation at the notch tip in
MGs under mode I, plain-strain, and SSY conditions. They
predicted that the fracture toughness increases linearly with
the square root of the notch tip radius and decreases as the
ratio of the elastic shear modulus to the bulk modulus G/K
increases, consistent with those observed in experiments
(Fig. 12) [196].
Mix-mode (I and II) crack-tip fields of MGs were in-

vestigated by Tandaiya et al. [19] for plane-strain and SSY
conditions. The mode II component of loading was found to
be an important influencing factor on crack tip behavior. As
it increases, the maximum plastic zone extent is greatly en-
hanced, the stresses are lowered and the plastic strain levels
are significantly improved near the notch. The influence of
internal friction on the plastic zones, notch deformation,
stress and plastic strain fields was examined as a function of
the mode mixity parameter. Rycroft and Bouchbinder [197]
used a simple version of the STZ model coupled to an ad-
vanced Eulerian level set formulation to analyze the crack tip
behavior of a blunted straight notch under plane-strain con-
ditions in MGs. The existence of an elastoplastic crack tip
instability for sufficient relaxed glasses was revealed to
cause a marked drop in fracture toughness.

Theoretical work on the crack tip plastic zone of MGs was
conducted by Chen and Dai [46]. Different from the tradi-
tional theoretical description of the plastic zone, pressure
sensitivity μ, shear dilatancy β and structural evolution were
introduced to analyze the plastic zone in MGs. An analytical
solution of the plastic zone for mode I cracks under plane-
strain conditions was first derived by combining J-integral
and slip line field analysis. The pressure sensitivity and shear
dilatancy show obvious effects on the stress and strain dis-
tributions ahead of the crack tip (Figs. 13-15). The en-
hancement of pressure sensitivity and shear dilatancy would
lead to a decrease in the stress components and thereby the
effective and mean stresses. The shear plastic strain almost
concentrated in the fan region is larger than the radial and
tangential strains. Instead of a single characteristic size of the
plastic zone (i.e., diameter), two characteristic length scales,
namely, the maximum radius Rmax and the radius along the
crack line direction Rx, were raised, relating to shear flow
instability and cavitation, respectively. The critical values of
the mode I SIF and the plastic zone size at crack initiation
were obtained. As shown in Fig. 16, when the value of the
dilatancy factor decreases, both the fracture toughness and
critical size of the plastic zone increase. When the value of
Poisson’s ratio increases, the fracture toughness increases,
but Rmaxc has a minor change and Rxc decreases. Furthermore,
Chen and Dai [46] proposed a dimensionless shape factor Λc
(defined as the ratio of Rxc to Rmaxc) of the plastic zone and
presented a ductile-to-brittle transition map for MGs (Fig.
17). From the map, with the increase of β or the reduction of
v, Λc grows, corresponding to a variation of critical plastic
zone from “slender” to “chubby”. It was pointed out that
different plastic zone shapes prefer different microfailure
modes, and the “slender”-to-“chubby” variation of the cri-
tical plastic zone leads to the ductile-to-brittle transition in
MGs.

Figure 12 The variation of plane-strain fracture toughness a with the ratio G/K and b with notch-root radius [196].
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It is worth noting that the brittle versus ductile fracture
mechanism in terms of cavitation and shear banding is not
unique for MGs but was also reported in other amorphous
materials. Ding et al. [198] performed atomic simulations on
the fracture behavior of amorphous lithiated silicon and re-
ported a brittle-to-ductile fracture mechanism transition in
this material. They found that the ratio between critical
stresses for cavitation and plastic yield grows with increasing
lithium content, leading to a transition from intrinsic na-
noscale cavitation to extensive shear banding ahead of the
crack tip.

4. Inherent parameters governing ductile-to-
brittle transition

Early in 1954, Pugh proposed the quotient of bulk modulus
to shear modulus K/G as an indication of the extent of the
plastic range for a pure metal based on a dislocation me-
chanism. He pointed out that a high value of K/G is asso-

ciated with malleability or good ductility. Rice and Thomson
[199] derived a dimensionless parameter Gb/γs (b is the
Burgers vector and γs is the surface energy) representing
whether a crack is atomically sharp or blunt, and a larger
value of Gb/γs corresponds to a more brittle mode. Kelly et
al. [200] predicted ductile or brittle failure in crystalline
solids by the theoretical cleavage-to-shear strength ratio.
They revealed that when the ratio of the maximum tensile
stress to shear stress is larger than the theoretical cleavage-
to-shear strength ratio, the material will fail in a pure brittle
mode; otherwise, it will fracture with plastic flow. The above
parameters all represent the competition between shear and
cleavage through the elastic modulus or strength. From the
viewpoint of the Griffith criterion, Gao et al. [201] estab-
lished a critical length scale of the fracture process zone,
below which the fracture strength of a cracked crystal is
identical to that of a perfect crystal.
As mentioned above, a single governing parameter is

normally used to characterize ductile or brittle failure in
crystalline solids. For MGs, are these parameters still ef-

Figure 13 a Radial, b tangential, and c shear stress distributions in the plastic zone. d The angular distributions of stress components for different values of
μ and β [46].
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fective in describing ductility? Schroers and Johnson [51]
reported a pronounced global plasticity measured in mono-
lithic Pt-based MG under both bending and unconfined
compression loading conditions and suggested that the good
ductility of Pt-rich MG is correlated with its large Poisson’s
ratio v. The high Poisson’s ratio is thought to cause the tip of
a shear band to extend rather than initiate a crack. Le-
wandowski et al. [50] collected extensive experimental data
on the elastic moduli and toughness of MGs (Fig. 18) and
found a similar correlation between plasticity and G/K for
MGs. The critical G/K is in the range of 0.41-0.43 (or,
equivalently, the critical v = 0.31-0.32), where a large drop
occurs in fracture energy with increasing G/K, and fracture
energy approaches the toughness of oxide glasses. This in-
trinsic correlation between mechanical properties and elastic
moduli provides an important clue to improve the plasticity
of MGs by alloying with elements with low G/K or high v as
constituents.

To achieve a unified description of tensile fracture in MGs,
Zhang and Eckert [52] proposed a ratio of the critical normal
fracture stress to the shear fracture stress, analogous to that of
Kelly et al. [200]. The tensile fracture mode or ductility was
revealed to vary with this ratio, and a transition was found
when it reached 2 / 2.
The available theories with a single controlling factor

provide significant insights into the plastic behavior in MGs.
However, since a significant tension-compression asym-
metry is presented in MGs [87], two or more parameters may
be required to fully characterize both tensile and compressive
plasticity.
In addition to Poisson’s ratio, Poon et al. [202] argued that

another influencing factor on the intrinsic plasticity of MGs
was the local shear modulus fluctuation. They pointed out
that structural relaxation could lead to dual adverse effects on
ductility by increasing the local shear modulus and reducing
fluctuation.

Figure 14 a Effective and b mean stress distributions in the plastic zone. The angular distributions of c the effective stress and d the mean stress for
different values of μ and β [46].
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Taking the short-range order into account, Chen et al. [14]
proposed two inherent parameters that cooperatively control
whether MGs yield in a ductile manner or fracture in brit-
tleness. One is the shear-to-normal strength ratio α char-
acterizing the shear resistance between atomic layers. The
value of α for MGs is normally larger than that of poly-
crystalline metals since the shear between two atomic layers
in MGs always needs to push surrounding atoms apart be-
cause of the lack of long-range order and distinct slip sys-
tems. The other is the strength-differential factor βSD, which
measures shear-caused dilatation. The motion of an atomic
cluster is illustrated in Fig. 19 [14]. Under an external load,
the atomic cluster would experience shear or quasi-cleavage
processes. Which one being first activated depends on the
difficulty of shear (measured by α) and shear-caused dila-
tation (characterized by βSD). Shear transformation would be
easier to take place as the normal tensile strength is far larger
than the shear strength. Otherwise, dilatation-induced ten-
sion would cause bond rupture in a quasi-cleavage manner
due to weak atomic bonding (Fig. 19).

5. Failure criteria

The classical Tresca or von Mises criteria, both of which
only predict shear failure, are not satisfactory for predicting
the diverse failure modes of MGs [58]. The Mohr-Column
(M-C) criterion, which takes the normal stress effect into
account, has been widely used in the study of the yielding or
fracture behavior of MGs [64,73,87,203-205]. However, this
criterion predicts that the failure plane has a symmetric de-
viation from 45°; in reality, an asymmetric deviation is
usually observed in MGs [87,137]. For the different failure
modes of MGs, how can they be described in a satisfactory
and unified fashion? To explain the tensile behavior of MGs,
Zhang and Eckert [52] proposed a unified tensile fracture
criterion for MGs, as expressed by

/ + / 1, (1)2
0
2 2

0
2

where σ0 and τ0 are the critical normal fracture stress and the
shear fracture stress, respectively. The tensile failure is re-
garded to be controlled by both the normal stress σ and the

Figure 15 a Radial, b tangential, and c shear strain distributions in the plastic zone [46].
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shear stress τ. The ratio = /0 0 was raised as a critical factor
that can unify various tensile fracture cases. The dependence
of σT and θT on the ratio is displayed in Fig. 20. Points A
and B represent the position of the Tresca criterion at 0
and the position of the von Mises criterion at = 3 / 3, re-

spectively. The unified tensile fracture criterion predicts the
Mohr-Coulomb fracture at 0 < < 2 / 2 (Region C) and
the normal tensile fracture at 2 / 2 (Region D).
Qu et al. [53] introduced inclined notches with different

inclination angles to a series of Zr-based MG specimens to

Figure 16 Isolines of mode I a fracture toughness, b Rmaxc, and c Rxc as a function of shear dilatancy β (μ = β) and Poisson’s ratio v [46].

Figure 17 Isolines of shape factor Λc as a function of shear dilatancy β (μ
= β) and Poisson’s ratio v [46].

Figure 18 The correlation of fracture energy Gf with elastic modulus ratio
for the as-cast MGs [50].
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achieve control of the normal stress acting on the tensile
fracture planes. Through tensile experiments, it was revealed
that, compared with the M-C criterion, the ellipse criterion
presents a better prediction for the tensile fracture behavior
of the investigated Zr-based MG in a wide normal stress
range.
It is noted that the criteria mentioned above are mostly

empirical or semiempirical, and the physical origin under-
lying these failure criteria is unclear. Moreover, for a full
prediction of both tensile and compressive mechanical fail-
ure in MGs, a generalized criterion is urgently required.
From the nature of short-range order in MGs, Chen et al. [14]
built the connections between macroscopic failure and the
unique atomic structure, and derived a unified failure cri-
terion as:

( / + ) + ( / ( )) = 1, (2)0 SD
2

0
2

which involves three critical factors: The shear-to-normal
strength ratio = /0 0, the S-D factor SD, and the gen-

eralized normal strength 0. The failure criterion geome-
trically constructs the eccentric ellipse-like failure envelope
in the τ-σ stress space, as displayed by Fig. 21. Distinct
failure modes correspond to ellipses of different shapes de-
pending on α and βSD. Figure 21a denotes shear failure with
45° < θT < 90° and 0° < θC < 45°, while Fig. 21b represents
normal tensile fracture with θT = 90° and =T

max
T . Based on

the failure criterion, a failure map (Fig. 22) was further de-
veloped. In the map, the diverse failure modes (i.e., shear
failure (I) and normal tensile fracture (II) in tension and shear
failure (III) and splitting (IV) in compression) can be well
unified. It also predicts the asymmetrical deviation of failure
angles from 45° under uniaxial tension and compression. The
transition from ductile failure to ideally brittle failure is re-
vealed to be controlled by both factors α and βSD.

Figure 19 Schematic illustration of shear failure along the easiest shear direction and local quasi-cleavage fracture along the normal direction at the atomic
scale [14].

Figure 20 Tensile fracture strength σT and tensile shear fracture angle θT
vary with the ratio [52].

Figure 21 Eccentric ellipse-like failure envelope in the τ-σ stress space: a
shear failure with 45° < θT < 90° and 0° < θC < 45° and b normal tensile
fracture with θT = 90° [14].

121449-17Y. Chen, et al. Acta Mech. Sin., Vol. 38, 121449 (2022)



Based on the unified tensile fracture criterion, Qu and
Zhang [54] considered the effect of external conditions and
developed a more general fracture criterion that can be ex-
pressed by

+ = , (3)2 2 2
0
2

where is an extrinsic parameter characterizing the effect of
external loading. This criterion can be used for various ex-
ternal loading cases, and it is reduced to Eq. (1) when =1.
Thereafter, regarding the material’s failure as an energetic
competition between shear and cleavage, a “generalized
energy criterion” was proposed, and it was verified to be
effective in predicting the tensile failure of MGs [206].
Song et al. [207] studied the torsional properties of Zr-

based MGs. By comparing the experimental results with
predictions from those classical criteria (i.e., Tresca, Mohr-
Coulomb, and von Mises) and the newly developed ellipse
and eccentric ellipse criteria [14,52], they proposed that the
ellipse and eccentric ellipse criteria are more appropriate in
describing the yield behavior of Zr-based MGs. The ec-
centric ellipse criteria first raised in MGs [14] were extended
to amorphous materials and found to be essential for the
tensile-shear failure of amorphous materials [208].

6. Closing remarks

The present review has summarized the current advances of
the failure behavior and criteria in MGs. Although there have
been a good number of studies on the failure of MGs, many
problems still remain to be resolved and further clarified.
Some of the outstanding issues in this connection that need to
be investigated are listed below.
Although the onset conditions for shear banding or cavi-

tation have been established, a general criterion to predict

what kinds of instability modes occur is still absent. The
inherent correlations between the atomic structure and these
distinct instability modes remain elusive.
Shear band is regarded as a precursor of crack. However,

convincing experimental evidence is still lacking on how a
crack initiates from a shear band. To address this critical
issue, more advanced experimental techniques are expected
to obtain details on the spatial and temporal evolution of the
shear band, the nucleation of nanovoids within the shear
band, and the onset of microcracking.
The correlations of Poisson’s ratio, pressure sensitivity and

dilatancy factors with fracture toughness and ductility have
been broadly revealed experimentally and theoretically, but
the physical meaning and atomic basis for these governing
parameters have not yet been clarified. The inherent relations
among these parameters and their coupling effects on de-
formation and fracture need further study to explain the
complex failure phenomena in MGs.
The crack tip field is a core problem in the study of solid

fractures. The stress and strain distribution and plastic zone
ahead of the crack tip determine the microfailure modes and
induce distinct morphologies of the fracture surface. To date,
a major understanding of the crack tip field of MGs comes
from simulation and theoretical analysis, and only a few
experimental works have derived limited information on the
crack tip field. Delicate experiments satisfying the demand
of spatial and temporal scales of crack tip fields in MGs are
required to capture the evolution of the plastic zone, shear
banding or cavitation ahead of the crack tip for both ductile
and brittle failure to provide direct clues for different mi-
cromechanisms.
Crack instability and branching are the fundamental en-

ergy dissipation processes during dynamic fracture. For MGs
of different toughness and ductility, their cracking behavior
shows quite different traits, which are governed by the
competition between the creation of a new fracture surface
and the localized plastic flow ahead of the crack tip. Effec-
tive criteria need to be established to predict crack initiation,
propagation and branching based on a clear physical picture
of cracking.
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非晶合金失效行为与准则
陈艳, 戴兰宏

摘要 非晶合金具有优异的力学性能, 是一类新兴的先进结构材料. 然而, 该材料常温下表现的脆性断裂与复杂断裂行为极大地限

制了其工程应用. 在过去的几十年, 国内外学者针对非晶合金的延性或脆性变形与断裂, 其中涉及材料成分、加载条件、样品尺寸

等, 开展了广泛研究, 并在非晶合金失效行为认识上取得了重要进展. 剪切带、孔洞化和裂纹尖端场本质等微观断裂机制被一一揭

示. 延脆转变行为与其内在的控制参数被发现. 为了有效描述和预测非晶合金的失效行为, 研究者们分别基于经验或从原子间相互

作用出发, 建立了延性和脆性非晶合金的失效准则. 在本文中, 我们对以上进展进行了回顾和评述, 并提出了非晶合金失效有待进

一步研究和厘清的重要问题.

121449-23Y. Chen, et al. Acta Mech. Sin., Vol. 38, 121449 (2022)

https://doi.org/10.1016/j.actamat.2009.08.031
https://doi.org/10.1103/PhysRevLett.109.194301
https://doi.org/10.1016/j.nanoen.2015.10.002
https://doi.org/10.1080/14786437408213555
https://doi.org/10.1080/14786436708220903
https://doi.org/10.1073/pnas.0631609100
https://doi.org/10.1073/pnas.0631609100
https://doi.org/10.1063/1.2952827
https://doi.org/10.1016/S1359-6454(03)00396-3
https://doi.org/10.1016/j.intermet.2004.07.001
https://doi.org/10.1016/j.actamat.2015.08.008
https://doi.org/10.1038/srep23359
https://doi.org/10.1016/j.intermet.2017.03.008
https://doi.org/10.1115/1.4036943

	Failure behavior and criteria of metallic glasses 
	1.��� Introduction
	2.��� Ductile or brittle failure behavior
	3.��� Failure mechanisms
	3.1��� Shear banding
	3.2��� Necking
	3.3��� Cavitation
	3.4��� Crack-tip fields

	4.��� Inherent parameters governing ductile-to-brittle transition
	5.��� Failure criteria
	6.��� Closing remarks


