
Composite Structures 291 (2022) 115609

Available online 22 April 2022
0263-8223/© 2022 Elsevier Ltd. All rights reserved.

Free vibration analysis of functionally graded graphene nanocomposite 
beams partially in contact with fluid 

Helong Wu a,*, Yilin Li a, Long Li b, Sritawat Kitipornchai c, Lin Wang d, Jie Yang e,* 

a College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 
b Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 
c School of Civil Engineering, the University of Queensland, Brisbane, St Lucia 4072, Australia 
d School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 
e School of Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083, Australia   

A R T I C L E  I N F O   

Keywords: 
Free vibration 
Graphene nanocomposite 
Functionally graded material 
Fluid-structure interaction 
Generalized differential quadrature 

A B S T R A C T   

This paper presents the free vibration analysis of functionally graded graphene platelets reinforced composite 
(FG-GPLRC) beams partially in contact with fluid based on the first-order shear deformation theory (FSDT). By 
considering the 3D-random orientation of graphene platelets (GPLs), the 3D Halpin-Tsai model is introduced to 
calculate the elastic modulus of graphene nanocomposites. The fluid velocity potential and hydrodynamic 
loading are determined by virtue of variable separation method. The equations of motion are derived by using 
Hamilton’s principle and the natural frequencies are determined by the multidomain generalized differential 
quadrature (GDQ) approach together with an iterative scheme. Parametric studies are carried out to evaluate the 
influences of GPL distribution pattern, weight fraction and dimension, fluid depth and density, beam geometry 
and end supports on the free vibration behaviour of FG-GPLRC beam-fluid interaction systems. Results show that 
the beam-fluid interaction reduces the fundamental frequency most, but it hardly affects the first order vibration 
mode.   

1. Introduction 

Graphene, a two-dimensional (2D) monolayer of carbon atoms, 
possesses extraordinary physical and mechanical properties [1], such as 
superior thermal conductivity [2], large surface area [3], exceptionally 
high elastic modulus and tensile strength [4]. These merits, along with 
nanoscale effect and interface chemistry [5], enable graphene and its 
derivatives desirable reinforcing materials for polymer composites. As a 
result, graphene/polymer nanocomposites have raised substantial in-
terests among research and engineering communities [6–8], and such 
nanocomposites have found a variety of applications such as flexible 
electronics [9], biosensor technology [10], energy storage devices [11], 
as well as aerospace engineering [12]. 

One of the most recent advances in graphene nanocomposites is the 
functionally graded graphene nanocomposites, in which graphene or its 
derivatives are nonuniformly dispersed according to preset patterns so 
that the material properties are designable and can be tailored to meet 
multifunctional requirements [13–15]. Yang and his coauthors [16–19] 
demonstrated that the load capacity and vibration performance of 

nanocomposite beams and plates can be further enhanced via the 
gradient distribution of graphene platelets (GPLs) in the polymer matrix. 
Subsequently, mechanical behaviours of functionally graded graphene 
nanocomposite structures under various loading circumstances have 
been widely studied in the past few years, such as bending, buckling and 
vibration analyses of arches [20], beams [21,22], plates [23–25], and 
shells [26,27]. Readers can refer to the review paper by Zhao et al. [28] 
for more related works in this area. 

In terms of vibration analysis, Feng et al. [29] studied the nonlinear 
free vibration of functionally graded GPL-reinforced composite (FG- 
GPLRC) beams and suggested that the natural frequencies are signifi-
cantly increased by adding a very low content of GPLs. Song et al. [30] 
explored the same problem by additionally considering the effects of 
edge crack and elastic foundation and found that the edge crack 
considerably reduces the linear and nonlinear frequencies. Wang et al. 
[31] analysed the free vibration of functionally graded graphene- 
reinforced composite (FG-GRC) beams using a 2D elasticity theory and 
claimed that the effect of graphene distribution pattern is sensitive to the 
slenderness ratio. Shen et al. [32,33] employing a two-step perturbation 
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technique evaluated the nonlinear vibration of FG-GRC laminate beams 
and plates resting on elastic foundations in thermal environments. Their 
results show that the temperature elevation reduces fundamental fre-
quency but increases the nonlinear-to-linear frequency ratio. This was 
further confirmed by Kiani [34] who examined the large amplitude vi-
bration of FG-GRC plates under thermal loadings using a nonuniform 
rational B-spline (NURBS) based isogeometric finite element method. 
Reddy et al. [35] reported the free vibration analysis of FG-GPLRC plates 
based on the first order shear deformation theory (FSDT) and finite 
element approach. Qaderi et al. [36] extended this work by including the 
effect of temperature rise according to the higher order shear defor-
mation theory (HSDT) and Navier solution. 

Fluid-structure interaction is an essential consideration in the design 
of many engineering systems, such as automobile, aircraft, bridges, and 
marine vessels, where functionally graded graphene nanocomposites 
may be incorporated in the form of beam, plate, or shell owing to the 
advantages of high specific strength, excellent corrosion resistance and 
multifunctionality. There have been many researches on the fluid-
–structure interaction vibration of functionally graded material (FGM) 
structures. For example, Khorshidi and Bakhsheshy [37] studied the 
vibration of FGM plates partially in contact with a bounded fluid using 
the Rayleigh-Ritz method. Shahbaztabar and Ranji [38] presented a free 
vibration analysis of FGM plates on elastic foundation and coupled with 
fluid. Li et al. [39] investigated the free vibration of FGM beams with 
variable thickness based on the FSDT. The similar problem for variable 
thickness FGM circular columns was analysed by Houmat [40] using the 
three-dimensional (3D) elasticity theory. In these two studies, the beam 
and column are vertically submerged in an infinite fluid. Thinh et al. 
[41] dealt with the free vibration of FGM plates horizontally immersed 
in fluid. As far as the authors aware, no work has been reported on the 
fluid–structure interaction analysis of functionally graded nano-
composite structures. In addition, the aforementioned studies on FG- 
GPLRC and FG-GRC structures assumed that graphene nanofillers are 

2D-randomly oriented or unidirectionally aligned in the polymer, which 
may lead to big discrepancy since in reality the graphene nanofillers are 
randomly oriented and dispersed in three dimensions (3D) due to the 
constraints of manufacture technology. 

This paper aims to fill the research gap by assessing the interaction 
vibration of FG-GPLRC beams partially in contact with fluid. The 3D 
Halpin-Tsai model is introduced to take into account the 3D-random 
orientations of GPL nanofillers in the polymer. Governing equations of 
free vibration are derived by employing Hamilton’s principle and then 
solved by the generalized differential quadrature (GDQ)-based iterative 
scheme, together with a multidomain technique that is used to overcome 
the discontinuity of computation domain. Parametric studies are carried 
out to highlight the influences of GPL and fluid parameters, such as GPL 
gradient pattern, concentration and dimension, fluid depth and density, 
on the free vibration behaviour of FG-GPLRC beam-fluid systems. Nat-
ural frequency results of FG-GPLRC beams in air and fully in contact 
with fluid are also presented for a comparison study. 

2. Theoretical modelling 

2.1. Beam-fluid interaction system 

Let us consider an FG-GPLRC beam-fluid interaction system as 
illustrated in Fig. 1. The beam of length L and thickness h is partially in 
contact with the fluid of depth Lf. The origin o of the Cartesian coordi-
nate system is located at the bottom centre of the beam (z = 0), and the 
× and z axes are along the vertical and horizontal directions, 
respectively. 

The beam is composed of perfectly bonded GPLRC layers of equal 
thickness that are made from a mixture of GPL reinforcements and epoxy 
matrix. It is assumed that GPL reinforcements are randomly oriented and 
uniformly dispersed in each layer but the concentration changes in a 
layer-wise manner along the beam thickness. As shown in Fig. 1, four 
distribution patterns (X, U, O and A) are considered in present study and 
are characterized in order by [19]. 

Pattern X : V(k)
GPL = 2V*

GPL|2k − NL − 1|/NL (1)  

Pattern U : V(k)
GPL = V*

GPL (2)  

Pattern O : V(k)
GPL = 2V*

GPL(1 − |2k − NL − 1|/NL ) (3)  

Pattern A : V(k)
GPL = V*

GPL(2k − 1)/NL (4)  

where V(k) GPL is the GPL volume fraction of the kth layer (k = 1, 2, …, 
NL), and NL is the total number of layers of the beam; V* GPL is the total 
GPL volume fraction and is given by. 

V*
GPL =

WGPL

WGPL + (ρGPL/ρm)(1 − WGPL)
(5)  

in which WGPL is the total GPL weight fraction, ρGPL and ρm are the mass 
densities of GPLs and matrix, respectively. 

Fig. 1. Configuration and coordinate of an FG-GPLRC beam-fluid interac-
tion system. 

Fig. 2. Schematic diagram of nanocomposites with GPLs of different orientations.  
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2.2. 3D Halpin-Tsai model 

Previous studies assumed that graphene nanofillers are either uni-
directionally aligned or 2D-randomly oriented and dispersed in the 

matrix, as shown in Fig. 2a and 2b. However, this is not often the real 
case and the nanofillers are 3D-randomly oriented and dispersed 
(Fig. 2c) because of the constrains of manufacture technology. As a 
result, the 2D Halpin-Tsai model often overestimates the elastic modulus 
of graphene nanocomposites when compared to the experimental test. In 
this section, the 3D Halpin-Tsai model is introduced to evaluate the 
elastic modulus of nanocomposites with 3D-randomly oriented GPLs. 

To begin with, we consider the composite with unidirectionally 
aligned GPLs, as illustrated in Fig. 2(a). The elastic modulus of unidi-
rectional composites can be predicted by the Halpin-Tsai equation as 
[42]. 

Eii =
1 + ξiηiVGPL

1 − ηiVGPL
Em, ηi =

EGPL − Em

EGPL + ξiEm
, (i = 1, 2, 3) (6)  

where Em and EGPL are elastic moduli of the matrix and GPLs, respec-
tively. ξi is the shape factor depending on the nanofillers’ geometry and 
loading direction. By comparing with the Mori-Tanaka theory, van Es 
[43] suggested that the Halpin-Tsai equation (6) should be used for 
platelet fillers with the following shape factors: 

ξ1 = 2aGPL/3tGPLfor E11, ξ2 = 2bGPL/3tGPL for E22 , ξ3 = 2 for E33

(7)  

in which E11 and E22 are the in-plane elastic moduli, and E33 the out- 
plane modulus of unidirectional composites, respectively. aGPL, bGPL 
and tGPL are the length, width and thickness of GPLs in order. 

To simulate the 2D-random composite, the unidirectional composite 
in Fig. 2(a) is randomised around the 3-axis. As a result, the orientations 
of GPLs are uniformly distributed between 0◦ and 90◦ in the lamina as 
indicated in Fig. 2(b). Laminate theory shows that the in-plane elastic 
modulus of composites with 2D-randomly oriented fillers can be esti-
mated by [44,45]. 

E2D = 0.375E11 + 0.625E22 (8)  

while the out-plane elastic modulus E33 is not changed after the ran-
domising procedure around the 3-axis. It should be noted that for a 
correct calculation E11 in Eq. (8) is always taken to be the highest elastic 
modulus of the sheet [43]. 

To obtain the 3D-random composite, the 2D-random composite is 
repeatedly randomised around other axes by turns. After several ran-
domising steps, the elastic modulus of composites with 3D-randomly 
oriented GPLs can be calculated by repeatedly using the 2D Halpin- 
Tsai equation (8). To illustrate the calculation, a few steps of the ran-
domising procedure starting with the unidirectional composite are 
presented as follows: 

1st step, randomise around 3-axis: 

E(1)
33 = E33  

E(1)
11 = E(1)

22 = 0.375E11 + 0.625E22 

2nd step, randomise around 2-axis: 

E(2)
22 = E(1)

22 = 0.375E11 + 0.625E22  

E(2)
11 = E(2)

33 = 0.375E(1)
11 + 0.625E(1)

33 = 0.141E11 + 0.234E22 + 0.625E33 

3rd step, randomise around 1-axis: 

E(3)
11 = E(2)

11 = 0.141E11 + 0.234E22 + 0.625E33  

E(3)
22 = E(3)

33 = 0.375E(2)
22 + 0.625E(2)

33 = 0.229E11 + 0.381E22 + 0.391E33 

4th step, randomise around 3-axis: 

E(4)
33 = E(3)

33 = 0.229E11 + 0.381E22 + 0.391E33  

E(4)
11 = E(4)

22 = 0.375E(3)
11 + 0.625E(3)

22 = 0.174E11 + 0.289E22 + 0.537E33 

E

V

E E
d

et al

Fig. 3. Elastic modulus of graphene/polymer nanocomposites.  

Table 1 
Fundamental frequencies (Hz) of an X-GPLRC beam-fluid interaction system 
with varying numbers of grid points (WGPL = 1.0%, L/h = 10, h = 0.1 m, ρf =

1000 kg/m3).  

N C-F C-C  

Lf/L = 0 Lf/L = 0.5 Lf/L = 1.0 Lf/L = 0 Lf/L = 0.5 Lf/L = 1.0 

5  42.95  43.86  24.93  269.3  203.2  124.8 
7  45.49  44.35  26.06  266.9  205.9  121.4 
9  45.46  44.36  26.09  267.0  205.8  120.4 
11  45.46  44.36  26.10  267.0  205.7  119.9 
13  45.46  44.36  26.12  267.0  205.7  119.7 
15  45.46  44.37  26.14  267.0  205.7  119.5  

Table 2 
Comparison of fundamental frequency parameters (ω = ΩL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
I10/A110

√
) for FG- 

CNTRC beams in air (L/h = 25, V*
cn = 0.17).  

CNTRC H-H C-C  

Present Wu et al. [50] Present Wu et al. [50] 

X  0.8729  0.8729  1.4751  1.4750 
U  0.7387  0.7386  1.3326  1.3325 
O  0.5474  0.5474  1.0833  1.0834  

Table 3 
Comparison of fundamental frequency parameters (ω =

̅̅̅̅
ω

√
, 

ω = ΩL2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρsh/EI

√
) for a cantilever isotropic homogeneous beam-water inter-

action system.  

Lf/L Source ρfL/ρsh   

5 8 10  

0.5 Present  1.8564  1.8519  1.8475  
Xing et al. [51]  1.8620  1.8544  1.8493  
Eftekhari and Jafari [52]  1.8620  1.8543  1.8492  

0.8 Present  1.7243  1.6616  1.6244  
Xing et al. [51]  1.7311  1.6654  1.6275  
Eftekhari and Jafari [52]  1.7309  1.6651  1.6273  

1.0 Present  1.5336  1.4308  1.3777  
Xing et al. [51]  1.5391  1.4340  1.3801  
Eftekhari and Jafari [52]  —  —  —  
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5th step, randomise around 2-axis: 

E(5)
22 = E(4)

22 = 0.174E11 + 0.289E22 + 0.537E33  

E(5)
11 = E(5)

33 = 0.375E(4)
33 + 0.625E(4)

11 = 0.194E11 + 0.324E22 + 0.482E33 

…….It can be found that after 12 steps the elastic moduli in all three 
directions converge to the same value as 

E(12)
11 = E(12)

22 = E(12)
33 = E3D = 0.184E11 + 0.306E22 + 0.510E33 (9)  

For the composite filled with circular fibres (E22 = E33), the above 
equation is reduced to 

E3D = 0.184E11 + 0.816E22 (10)  

while for that reinforced with circular GPLs (E11 = E22), Eq. (9) can be 
rewritten as 

E3D = 0.49E11 + 0.51E33 (11)  

Accordingly, the shape factors for circular GPLs can be expressed as 

ξ1 = 2dGPL/3tGPLfor E11, ξ2 = 2dGPL/3tGPL for E22 , ξ3

= 2 for E33 (12)  

where dGPL is the average diameter of circular GPLs. 
Fig. 3 shows the elastic moduli of graphene/polymer nano-

composites with different sources. The material properties used in this 
example are Em = 0.1 GPa, EGPL = 1.0 TPa, dGPL = 1 μm, tGPL = 0.8 nm. It 
is seen that the 2D Halpin-Tsai equation dramatically overestimates the 
elastic modulus of graphene/polymer nanocomposites, while the 3D 
Halpin-Tsai predictions agree well with the experimental data of Zhao et 
al. [46]. This indicates that graphene nanofillers are more inclined to be 
3D-randomly dispersed in the polymer matrix, rather than 2D-randomly 
oriented. 

The other material properties of GPLRCs are calculated by the rule of 
mixture as. 

ν = νmVm + νGPLVGPL (13)  

ρ = ρmVm + ρGPLVGPL (14)  

in which ν and ρ denote the Poisson’s ratio and mass density, with 
subscripts “GPL” and “m” representing GPL and matrix, respectively. Vm 
is the volume fraction of the matrix and is given by 

Vm = 1 − VGPL (15)  

2.3. Hydrodynamic functions 

It is assumed that the fluid is incompressible, inviscid and irrota-
tional, such that the fluid motion is governed by the Laplace equation: 

∂2Φ
∂x2 +

∂2Φ
∂z2 = 0 (16)  

where Φ(x, z, t) is the fluid velocity potential and t the time. By using the 
method of variable separation, the velocity potential can be expressed as 

Table 4 
Fundamental frequencies (Hz) of C-F FG-GPLRC beams with different GPL distribution patterns and weight fractions in air and fully in contact with fluid (L/h = 10, ρf 
= 1000 kg/m3).  

WGPL In air Fully in contact with fluid  

X U A O X U A O  

0.0%  26.92  26.92  26.92  26.92  15.48  15.48  15.48  15.48  
0.5%  37.34  34.34  33.51  31.04  21.47  19.75  19.27  17.86  
1.0%  45.46  40.44  38.37  34.68  26.12  23.25  22.07  19.95  
1.5%  52.35  45.74  42.48  37.98  30.07  26.29  24.43  21.85  

L h
L L

W

Fig. 4. Decrease percentage of the fundamental frequency of FG-GPLRC beam- 
fluid systems. 

Table 5 
First three natural frequencies (Hz) of X-GPLRC beams with different boundary 
conditions in air and fully in contact with fluid (WGPL = 1.0%, L/h = 10, ρf =

1000 kg/m3).  

BCs In air Fully in contact with fluid  

Ωa
1 Ωa

2 Ωa
3 Ωf

1 Ωf
2 Ωf

3 

C-F  45.46  268.4 693.6  26.12  154.9  470.8 
C-H  190.9  572.1 1087  87.81  354.4  768.5 
C-C  267.0  669.3 1187  119.7  374.5  858.6  

W L h

L L

Fig. 5. Decrease percentage of the first three natural frequencies of the X- 
GPLRC beam-fluid system. 
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Φ = Φx(x)Φz(z)Ṫ(t) (17)  

in which the overdot denotes the differential with respect to time t. 
For the flow analysis, 1) the influence of free surface wave distur-

bance is neglected; 2) the velocity potential vanishes at infinity; 3) there 
is no vertical motion on the bottom of fluid; 4) the transverse compo-
nents of velocity of the beam and fluid are the same on the beam-fluid 

interaction interface. This implies that the velocity potential must 
satisfy the following boundary conditions: 

Φ|x=Lf
= 0, Φ|z=+∞ = 0,

∂Φ
∂x

⃒
⃒
⃒
⃒

x=0
= 0,

∂Φ
∂z

⃒
⃒
⃒
⃒

z=h/2
=

∂W
∂t

, (18)  

in which W(x, t) = w(x)T(t) is the vibrational deflection of the beam. By 
substituting the above boundary conditions and Eq. (17) into Eq. (16), 
we can obtain the expression of fluid velocity potential as 

Φ =
∑∞

n=1
ancos(λx)e− λz⋅Ṫ(t) (19)  

where the coefficients an and λ are given by 

an = −
2ekh/2

kLf

∫ Lf

0
w(x)cos(λx)dx (20)  

λ =
(2n − 1)π

2Lf
, (n = 1, 2, 3, …). (21) 

The hydrodynamic pressure due to the fluid motion, P(x, z, t), is then 
determined by the Bernoulli’s equation as. 

P(x, z, t) = − ρf
∂Φ
∂t

(22)  

in which ρf is the mass density of the fluid. By virtue of Eqs. (19)-(21), 
the above equation is rewritten as 

Fig. 6. Vibration mode shapes of C-F X-GPLRC beams in air and fully in contact with fluid.  

P

x
L

W
L h L L

Fig. 7. Hydrodynamic pressure of the C-F X-GPLRC beam fully in contact 
with fluid. 
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P(x, z, t) =
4ρf

π
∑∞

n=1

1
2n − 1

cos
(2n − 1)πx

2Lf

∫ Lf

0
w(x)cos

(2n − 1)πx
2Lf

dx⋅T̈(t)

(23)  

2.4. Governing equations 

Let U and W denote the displacements of the beam along the × and z 
directions, respectively. According to the FSDT, the displacement field 
of the beam is of the following form: 

U(x, z, t) = U(x)+ zψ(x, t), W(x, z, t) = W(x, t), (25)  

in which U and W are displacement components on the mid-plane (z = 0) 
along x- and y-axes; ψ is the transverse normal rotation about the x-axis. 
The linear strain components associated with the displacements are then 
given by 

εxx =
∂U
∂x

+ z
∂ψ
∂x

, γxz =
∂W
∂x

+ψ. (26) 

The governing equations of the beam-fluid interaction system can be 
obtained by employing the Hamilton’s principle: 
∫ t2

t1
δ(ΠS − ΠK − ΠW)dt = 0 (27)  

where the strain energy ΠS, kinetic energy ΠK, and the work ΠW done by 
the hydrodynamic load are formulated as follows: 

ΠS =
1
2

∫ L

0

∫ h/2

− h/2

(
Q11ε2

xx + Q55γ2
xz

)
dzdx

=
1
2

∫ L

0

∫ h/2

− h/2

[

Q11

(
∂U
∂x

+ z
∂ψ
∂x

)2

+ Q55

(
∂W
∂x

+ ψ
)2
]

dzdx (28)  

ΠK =
1
2

∫ L

0

∫ h/2

− h/2
ρ
[(

∂U
∂t

)2

+

(
∂W
∂t

)2
]

dzdx =
1
2

∫ L

0

×

∫ h/2

− h/2
ρ
[(

∂U
∂t

+ z
∂ψ
∂t

)2

+

(
∂W
∂t

)2
]

dzdx (29)  

ΠW = −

∫ Lf

0
P⋅Wdx (30)  

Substituting Eqs. (28)-(30) into Eq. (27) and integrating by parts over 
the beam thickness, the governing equations are then derived by setting 
the coefficients of δU, δW and δψ to zero separately and expressed in 
terms of displacements as 

A11
∂2U
∂x2 +B11

∂2ψ
∂x2 = I1

∂2U
∂t2 + I2

∂2ψ
∂t2 (31)  

A55

(
∂2W
∂x2 +

∂ψ
∂x

)

=
(
I1 + If

) ∂2W
∂t2 (32)  

L h
W

¦¸

L L

L h
W

¦¸

L L

L h
W

¦¸

L L

(c)

(a) (b)

Fig. 8. Effect of GPL distribution pattern on the fundamental frequency of FG-GPLRC beam-fluid interaction systems: (a) C-F; (b) C-H; (c) C-C.  
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B11
∂2U
∂x2 +D11

∂2ψ
∂x2 − A55

(
∂W
∂x

+ ψ
)

= I2
∂2U
∂t2 + I3

∂2ψ
∂t2 (33)  

Given that the kth layer of the beam is located between z = zk and z =
zk+1 along the z-axis. The stiffness elements Aij, Dij and inertia related 
terms Ii in the above equations are defined as 

{A11, B11, D11} =

∫ h/2

− h/2
Q11
{

1, z, z2}dz =
∑NL

k=1

∫ zk+1

zk

Q(k)
ij
{

1, z, z2}dz

(34)  

A55 = κ
∫ h/2

− h/2
Q55dz = κ

∑NL

k=1

∫ zk+1

zk

Q(k)
55 dz (35)  

{I1, I2, I3} =

∫ h/2

− h/2
ρ
{

1, z, z2}dz =
∑NL

k=1

∫ zk+1

zk

ρ(k){1, z, z2}dz (36)  

in which κ is the shear correction factor having a value of 5/6; the elastic 
stiffness components Qij are given by 

Q11 =
E

1 − ν2, Q55 =
E

2(1 + ν). (37)  

If in Eq. (32) is the added inertia due to the fluid motion and is formu-
lated as 

If(x) =
4ρf

πw(x)
∑∞

n=1

1
2n − 1

cos
(2n − 1)πx

2Lf

∫ Lf

0
w(x)cos

(2n − 1)πx
2Lf

dx (38) 

Three different end supports are considered in the present analysis, 
namely clamped (C), hinged (H), and free (F). The corresponding 
boundary conditions can be written as 

Clamped : U = 0, W = 0, ψ = 0; (39)  

Hinged : U = 0,W = 0,B11
∂U
∂x

+D11
∂ψ
∂x

= 0  

Free : A11
∂U
∂x

+B11
∂ψ
∂x

= 0, A55

(
∂W
∂x

+ ψ
)

= 0, B11
∂U
∂x

+D11
∂ψ
∂x

= 0. (41)  

3. Solution procedure 

The GDQ method is a highly efficient numerical approach which can 
obtain accurate numerical solutions but requires a very small number of 
grid points [47,48]. It approximates the spatial derivative of a function 
at a given grid point as the weighted linear sum of the function values at 
all grid points generated in the whole domain. In this manner, the dif-
ferential equations are converted to a set of algebraic equations that can 
then be easily solved by a computer program. 

According to the GDQ approximation, the displacement components 
and their mth derivatives with respect to × can be discretised as. 

{U, W, ψ} |x=xi
=
∑N

j=1
lj(xi)

{
Uj, Wj, ψj

}
,

∂m

∂xm {U, W, ψ}
⃒
⃒
⃒
⃒

x=xi

=
∑N

j=1
C(m)

ij
{

Uj, Wj, ψj
}

(42) 

L h
¦¸

L L

W
W
W
W

L h

W
W
W
W

¦¸

L L

W
W
W
W

¦¸

L L

L h

(b)(a)

(c)

Fig. 9. Effect of GPL weight fraction on the fundamental frequency of FG-GPLRC beam-fluid interaction systems: (a) C-F; (b) C-H; (c) C-C.  

H. Wu et al.                                                                                                                                                                                                                                      



Composite Structures 291 (2022) 115609

8

in which lj(x) is the Lagrange interpolation polynomial; {Uj, Wj, ψ j} are 
the values of {U, W, ψ} at × = xj; N is the number of grid points in the ×
direction. C(m) ij are the weighting coefficients of the mth partial de-
rivatives to be determined by the following recursive formulae [49]: 

C(1)
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R(xi)

(xi − xj)R(xj)
, when j ∕= i

∑N

k=1,k∕=i

C(1)
ik , when j = i

(43)  

C(m)

ij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m⋅

(

C(m− 1)
ii ⋅C(1)

ij −
C(m− 1)

ij

xi − xj

)

, when j ∕= i

∑N

k=1,k∕=i

C(m)

ik , when j = i

(44)  

where i, j = 1, 2, …, N, and m = 2, 3, …, N-1. Besides, 

R(xi) =
∏N

j=1,j∕=i

(
xi − xj

)
(45) 

As shown in Fig. 1, the beam is divided by the fluid free surface into 
two parts, namely the fluid (lower) and air (upper) ones. In this case, the 
GDQ method cannot be applied directly due to the discontinuity of 
computational domain. This difficulty can be overcome by use of a 
multidomain technique. The basic ideal of this approach is to decompose 
the whole computational domain into several subdomains, and then in 
each single subdomain the GDQ approximation is applied to discretise 
the derivatives. To this end, the following grid point distributions are 
used for the two subdomains:    

¦¸

L L

L h
W

d t

d t

d t

d t

L h
W

d t

d t

d t

d t

¦¸

L L

L h
W

d t

d t

d t

d t

¦¸

L L

(b)(a)

(c)

Fig. 10. Effect of GPL geometry on the fundamental frequency of FG-GPLRC beam-fluid interaction systems: (a) C-F; (b) C-H; (c) C-C.  

xi=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lf

2

[

1− cos
π(i− 1)
N1 − 1

]

, for thefluidsubdomain :0⩽x⩽Lf , i=1,2,...,N1;

Lf+
L− Lf

2

[

1− cos
π(i− N1 − 1)

N2 − 1

]

, for theairsubdomain :Lf⩽x⩽L, i=N1+1,N1+2,...,N1+N2.

(46)   
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Applying the GDQ approximation (42), the governing equations 
(31)-(33) can be discretised as. 

A11

∑N1

j=1
C(2)

ij Uj +B11

∑N1

j=1
C(2)

ij ψ j = I1Üi + I2ψ̈ i (47)  

A55

(
∑N1

j=1
C(2)

ij Wj +
∑N1

j=1
C(1)

ij ψ j

)

=
[
I1 + If(xi)

]
Ẅi (48)  

B11

∑N1

j=1
C(2)

ij Uj +D11

∑N1

j=1
C(2)

ij ψ j − A55

(
∑N1

j=1
C(1)

ij Wj + ψi

)

= I2Üi + I3ψ̈ i

(49)  

for the fluid subdomain (i = 1, 2, …, N1), and 

A11

∑NT

j=N1+1
C(2)

ij Uj +B11

∑NT

j=N1+1
C(2)

ij ψ j = I1Üi + I2ψ̈ i (50)  

A55

(
∑NT

j=N1+1
C(2)

ij Wj +
∑NT

j=N1+1
C(1)

ij ψ j

)

= I1Ẅi (51)  

B11

∑NT

j=N1+1
C(2)

ij Uj +D11

∑NT

j=N1+1
C(2)

ij ψ j − A55

(
∑NT

j=N1+1
C(1)

ij Wj + ψi

)

= I2Üi + I3ψ̈ i

(52)  

for the air subdomain (i = N1 + 1, N1 + 2, …, NT), in which NT = N1 + N2 

is the total number of grid points in the whole computational domain. {
Üi, Ẅi, ψ̈ i} are the values of second order derivatives of {U, W, ψ } with 
respect to time t at × = xi. Note that the added inertia term If vanishes 
for the air subdomain. Similarly, we can discretise the boundary con-
ditions (39)-(41) at the beam ends as 

Clamped :

{
U1 = W1 = ψ1 = 0 at x = x1,

UNT = WNT = ψNT
= 0 at x = xNT ;

(53)   

Hinged :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1 =w1 =0, B11

∑N1

j=1
C(1)

1j Uj +D11

∑N1

j=1
C(1)

1j ψ j =0 at x=x1,

uNT =wNT =0, B11

∑NT

j=N1+1
C(1)

Nj Uj +D11

∑NT

j=N1+1
C(1)

Nj ψj =0 at x=xNT ;

(54)  

In addition, the interface defines the common boundary of the fluid and 
air subdomains, at which the governing equations (47)-(50) and (51)- 
(53) should be satisfied simultaneously. This requires the displacements 
and stresses to be equal at the interface (x = xN1, xN1+1): 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UN1 =UN1+1, WN1 =WN1+1, ψN1
=ψN1+1;

A11

∑N1

j=1
C(1)

N1 jUj+B11

∑N1

j=1
C(1)

N1 jψ j =A11

∑NT

j=N1+1
C(1)

(N1+1)jUj+B11

∑NT

j=N1+1
C(1)

(N1+1)jψj,

A55

(
∑N1

j=1
C(1)

N1 jWj+ψN1

)

=A55

(
∑NT

j=N1+1
C(1)

(N1+1)jWj+ψN1+1

)

,

B11

∑N1

j=1
C(1)

N1 jUj+D11

∑N1

j=1
C(1)

N1 jψ j =B11

∑NT

j=N1+1
C(1)

(N1+1)jUj+D11

∑NT

j=N1+1
C(1)

(N1+1)jψ j.

(56) 

Substituting the boundary conditions from Eqs. (53)-(55) and the 
compatibility conditions (56) into the governing equations (47)-(52) 
leads to a matrix system of algebraic equations as. 

(M + MF)d̈+Kd = 0 (57)  

where d ={{ui},{wi},{φi}}T (i = 1, 2, …, N). M and K are the mass matrix 
and stiffness matrix, respectively. MF is the added mass matrix due to the 
beam-fluid interaction. Among those, elements in M and K are constant 
associated with material and geometric parameters, while those in MF 
are functions of unknow displacements. For the free vibration analysis, 
the displacement vector d takes the form of 

d = d*eiΩt (58)  

in which d* denotes the vibration mode vector, and Ω is the natural 
frequency. Substitution of Eq. (58) into Eq. (57) gives an eigenvalue 
equation as 
[
K − Ω2(M + MF)

]
d* = 0 (59) 

As the values of elements in MF are dependent on the displacements, 
an iterative procedure is used here to determine natural frequencies of 
the beam-fluid interaction system, with the iterative steps as follows:  

(1) An initial eigenvalue (vibration frequency) and its associated 
eigenvector (vibration mode) of the FG-GPLRC beam in air are 
obtained from eigenvalue equation (59) with the added mass 
matrix MF neglected. 

(2) Using the eigenvector from step (1) to calculate MF, new eigen-
value and eigenvector are obtained from the updated eigenvalue 
equation (59). 

(3) Step (2) continues until the relative error between the eigen-
values obtained from two consecutive iterations is<0.1%, then 

natural frequencies of the beam-fluid system can be obtained. 

4. Results and discussion 

In the following sections, comparison and parametric studies are 

Free :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11

∑N1

j=1
C(1)

1j Uj + B11

∑N1

j=1
C(1)

1j ψ j = 0, A55

(
∑N1

j=1
C(1)

1j Wj + ψ1

)

= 0,

B11

∑N1

j=1
C(1)

1j Uj + D11

∑N1

j=1
C(1)

1j ψ j = 0 at x = x1,

A11

∑NT

j=N1+1
C(1)

Nj Uj + B11

∑NT

j=N1+1
C(1)

Nj ψj = 0, A55

(
∑NT

j=N1+1
C(1)

Nj Wj + ψNT

)

= 0,

B11

∑NT

j=N1+1
C(1)

Nj Uj + D11

∑NT

j=N1+1
C(1)

Nj ψj = 0 at x = xNT .

(55)   
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conducted in order to supply information on the free vibration of FG- 
GPLRC beams in partially contact with fluid. FG-GPLRC beams are 
made from a mixture of epoxy and GPLs, and their material properties 
are as follows: Em = 3.0 GPa, ρm = 1200 kg/m3, νm = 0.34; EGPL = 1.01 
TPa, ρGPL = 1062.5 kg/m3, νGPL = 0.186, dGPL = 1 μm, tGPL = 1 nm. 

4.1. Convergence and comparison 

Prior to parametric studies, convergence and comparison analyses 
are performed to validate the accuracy of the present formulation and 
solution procedure. Table 1 tabulates the fundamental frequencies of an 
X-GPLRC beam-fluid interaction system with varying number of grid 
points. In this example, Lf/L = 0 means that the beam is in air, while Lf/L 
= 0.5 and 1.0 represents that the beam is half and fully in contact with 
fluid, respectively. For simplicity, same number of grid points is selected 
for the fluid and air subdomains, namely N1 = N2 = N. It is shown that 
the present solutions are well convergent when the number of grid 
points is increased to 11. In addition, previous studies [19,23] have 
shown that a multilayer GPLRC beam/plate with 10 layers is sufficient to 
approximate an idea functionally graded beam/plate with smooth 
variation in material properties. Hence, NL = 10 and N = 10 are used in 
all the subsequent numerical examples. 

Fundamental frequency parameters of functionally graded carbon 
nanotube-reinforced composite (FG-CNTRC) beams in air are computed 
and compared in Table 2 with those of Wu et al. [50] using Ritz method, 
in which V*

cn is the total volume fraction of CNTs; I10 and A110 are the 
values of I1 and A11, respectively, of a homogeneous beam made from 

the pure matrix material. Material properties used in this example can be 
found in the reference. In addition, fundamental frequency results of an 
isotropic homogeneous beam-water interaction system are listed and 
compared in Table 3 with those of Xing et al. [51] and Eftekhari and 
Jafari [52]. In this calculation, the elastic modulus of the beam is E =
29.4 GPa; the densities of the beam and water are ρs = 2.4 × 103 kg/m3 

and ρf = 1.0 × 103 kg/m3, respectively. Comparison studies indicate that 
our results are in perfect agreement with those reported in the literature. 
Table 3 shows that the present solutions are slightly lower than the 
existing ones, this is because by using the classical beam theory the 
transverse shear deformation was neglected in the literature. 

4.2. Parametric studies 

In this section, parametric studies are conducted and comprehensive 
numerical results are provided to evaluate the influences of various 
parameters on free vibration behaviour of FG-GPLRC beam-fluid inter-
action systems, such as GPL distribution pattern, weight fraction and 
dimension, fluid density and depth, beam geometry, and boundary 
conditions. Unless otherwise stated, tabular and graphical results are 
presented for the X-GPLRC beam-fluid interaction system with L/h = 10 
(h = 0.1 m), WGPL = 1.0%, dGPL/tGPL = 1000, and ρf = 1000 kg/m3. 

Table 4 tabulates the fundamental frequencies of cantilever FG- 
GPLRC beams in air and fully in contact with fluid. Four distribution 
patterns of GPLs are considered in this case, among which pattern X 
gives the highest fundamental frequency, followed by the patterns U, A, 
and O. Also, the fundamental frequency gradually increases as the GPL 

Fig. 11. Effect of fluid density on the fundamental frequency of FG-GPLRC beam-fluid interaction systems: (a) C-F; (b) C-H; (c) C-C.  
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weight fraction rises. This is due to the fact that dispersing more re-
inforcements in the surface layers results in a higher beam stiffness. 
Compared with the results of the beam in air, the fundamental fre-
quencies of the beam-fluid system are significantly decreased. The 
decrease percentages defined by (Ωa − Ωf)/Ωa × 100% are depicted in 
Fig. 4, where Ωa and Ωf denote natural frequencies of the beams in air 
and in contact with fluid, respectively. It is seen that the decrease per-
centage remains nearly constant (~42.5%) for different GPL distribution 
patterns and weight fractions. This can be explained by the governing 
equation (59) in which the added mass matrix MF characterising the 
beam-fluid interaction is independent of GPL parameters. 

Table 5 gives the first three natural frequencies of X-GPLRC beams 
with different boundary conditions in air and fully in contact with fluid. 
The results show that the beam-fluid interaction declines the natural 
frequencies, and this effect is most pronounced for the first order fre-
quency (Ω1), then the second (Ω2) and third (Ω3) ones. For example, the 
first three frequencies of the C-H beam-fluid system are decreased by 
54.0%, 38.1%, and 29.3% in sequence. Fig. 5 plots the decrease per-
centages of first three natural frequencies for different boundary con-
ditions and shows that the decrease percentage of Ω1 is largest for the C- 
C end support, followed by the C-H and C-F. However, this is inversed for 
Ω3 that is most decreased for the C-F end support, then the C-H and C-C. 
As expected, the rigid end support (C-C) generates greater stiffness and 
thus brings about higher natural frequencies than those soft ones (C-H 
and C-F). 

The influence of fluid on the free vibration is further investigated in 
Fig. 6 by comparing the vibration mode shapes of cantilever X-GPLRC 

beams in air and fully in contact with fluid. As can be seen, the funda-
mental vibration modes of the beam in air and the interaction system 
almost overlap, but the difference becomes more obvious for higher 
vibration modes. This is contrary to the observations in frequency 
analysis that the difference is most remarkable for the fundamental 
frequency, but gets reduced for higher order frequencies. The normal-
ized hydrodynamic pressures corresponding to the first three vibration 
modes are evaluated using Eq. (23) and displayed in Fig. 7. It is observed 
that the higher order hydrodynamic pressure shows a more fluctuant 
mode shape. 

We next investigate the free vibration of FG-GPLRC beams partially 
in contact with fluid. Numerical results, in terms of fundamental fre-
quency Ω plotted against the dimensionless fluid depth Lf /L, are pre-
sented in Figs. 8-12 for the beam-fluid interaction systems with various 
parameters. 

Figs. 8 and 9 depict the effects of GPL distribution pattern and weight 
fraction on the fundamental frequency versus the fluid depth curve, 
respectively. The results indicate that the frequency curves are increased 
by loading more GPLs in pattern X. The fundamental frequency of the C- 
F beam is slightly reduced as the fluid depth Lf/L changes from 0 to 0.4, 
beyond which the frequency is dramatically declined. The reason is that 
increasing the fluid depth leads to a higher hydrodynamic pressure, and 
then reduces the natural frequency. The curves of C-H and C-C beams 
show a similar trend with that of the C-F beam when Lf/L is lower than a 
certain value (~0.6 in Fig. 8), whereafter the effect of fluid depth be-
comes less significant again. In other words, the influence of fluid depth 
is remarkably reduced when the fluid surface approaches to the rigid 

Fig. 12. Effect of slenderness ratio on the fundamental frequency of FG-GPLRC beam-fluid interaction systems: (a) C-F; (b) C-H; (c) C-C.  
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end supports (clamped and hinged). This is owing to the fact that near 
the beam ends the stiffness is enhanced by the rigid end supports, and 
therefore the effect of fluid is considerably weakened. This is also 
confirmed in Figs. 10-12. 

Figs. 10 and 11 plot the effects of GPL diameter-to-thickness ratio 
and fluid density on the fundamental frequency of X-GPLRC beam-fluid 
systems, respectively. A greater value of dGPL/tGPL means that each in-
dividual GPL has a larger surface area (keeping tGPL constant) or con-
tains fewer monolayer graphene sheets (keeping dGPL constant). Fig. 10 
shows that the fundamental frequency is raised with an increase of dGPL/ 
tGPL, but this influence tends to be much less pronounced as the value of 
dGPL/tGPL further rises. Fig. 11 indicates that the frequency curves for 
different fluid densities are almost identical when the fluid depth Lf /L <
0.4 for the C-F beam, and Lf /L < 0.2 for the C-H and C-C beams, beyond 
which the frequency curves are lowered as the fluid density increases. 
This is because a higher fluid density enlarges the values of elements (If) 
in the added mass matrix MF, and consequently reduces the natural 
frequency. 

Fig. 12 investigates the influence of slenderness ratio on the funda-
mental frequency versus fluid depth curves and four cases of L/h = 6, 8, 
10, 12 are considered here. A larger slenderness ratio weakens the beam 
stiffness, and accordingly reduces the fundamental frequency. In addi-
tion, the frequency curves become less steep as the slenderness ratio 
increases, implying that a greater slenderness ratio diminishes the effect 
of fluid depth on the fundamental frequency. 

5. Conclusion 

The free vibration of FG-GPLRC beams partially in contact with fluid 
has been investigated within the framework of FSDT and Hamilton’s 
principle. The 3D Halpin-Tsai model is introduced to estimate the elastic 
modulus of graphene nanocomposites. The fluid velocity potential is 
obtained by using the method of variable separation. Governing equa-
tions of free vibration are discretised by the multidomain GDQ approach 
and then solved by a standard iteration procedure. Tabular and graph-
ical results are presented to illustrate the influences of GPL distribution 
pattern, concentration and dimension, fluid depth and density, beam 
geometry, as well as boundary conditions on the free vibration charac-
teristics of FG-GPLRC beam-fluid interaction systems. The main findings 
are concluded as follows:  

(1) By considering the 3D-randomly oriented GPLs, the 3D Halpin- 
Tsai model gives a reasonable estimation of the elastic modulus 
of graphene nanocomposites.  

(2) Compared to the beam in air, the natural frequencies of the beam 
fully in contact with fluid are significantly decreased, but the 
decrease percentage remains constant for different GPL distri-
bution patterns and weight fractions.  

(3) The beam-fluid interaction reduces the fundamental frequency 
most, but it hardly affects the first order vibration mode shape. 
Also, the fundamental frequency declines as the fluid depth in-
creases; however, this effect is considerably weakened when the 
fluid surface is close to the rigid end supports of the beam.  

(4) The fundamental frequency of the interaction system grows with 
an increase of GPL diameter-to-thickness ratio, yet this influence 
becomes much less pronounced as dGPL/tGPL further increases.  

(5) A larger fluid density leads to a greater added mass and results in 
a lower fundamental frequency, but this effect can be neglected 
when the fluid depth is small. 
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