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Introduction

Double cantilever beams (DCBs) are widely used to study the
mode-I fracture behavior of carbon fiber–reinforced plastics
(CFPRs) and adhesives as well as to measure the fracture toughness

for further design critical values. In the quasi-static loading regime,
the theory for DCBs was well developed, and standardized test
methods were established, such as ASTM D5528 (ASTM 2016)
for mode-I interlaminar fracture toughness of CFPRs and ISO
25217 (ISO 2009) for mode-I fracture toughness of structural ad-
hesives. Note that all these standardized tests are for crack initiation
toughness (CIT).

In the dynamic loading regime, for stationary cracks, the dy-
namic effect was only investigated by the kinetic energy of quasi-
static motion without consideration of structural vibrations or wave
propagations (Smiley and Pipes 1987; Blackman et al. 1996). It
was not until the authors’ recent studies (Chen et al. 2020a, b,
c, d, 2021b) that structural vibration and flexural wave propagation
were incorporated explicitly to study the dynamic effect and crack
driving force. An accurate solution for the dynamic energy release
rate (ERR) was given, and therefore, the CIT value can be deter-
mined accurately from experimental measurements. For propagat-
ing cracks in DCBs under high loading rates, the crack propagates
in a “stick-slip” fashion (Blackman et al. 1995; Friedrich et al.
1989; Kanninen 1974; Kanninen et al. 1977; Sun et al. 2008;
Davidson and Anthony 2012; Davidson et al. 2012), that is, with
nonsmooth crack propagation as a mixture of stable growth, fast
unstable growth, and arrest. Accordingly, the crack arrest toughness
(CAT) should be determined as a lower bound to maintain a propa-
gating crack once the crack starts to propagate. It seems that cur-
rently the only analytical solution to study a propagating crack in
DCBs was from Blackman et al. (1996), but their solution was only
for steady-state crack propagation and cannot be used to study the
crack arrest phenomenon nor to predict the CAT value.

Based on the authors’ previously developed analytical theory for
stationary cracks on elastic foundations (Chen et al. 2020b) under
high loading rates and the developed technique (Chen et al. 2020a)
of crack tip energy conservation to address moving boundaries as
the crack propagates, the theory of dynamic crack propagation
along an elastic interface in DCBs is developed in this paper.
The main achievement of this study is the analysis of the fracture
behavior of propagating cracks along linear elastic interfaces, ex-
tending the authors’ previous publications (Chen et al. 2020a, b) for
stationary cracks or cracks at rigid interfaces. To the best
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knowledge of the authors, this has not been achieved before ana-
lytically. Afforded by the developed theory herein, the “stick-slip”
manner of crack propagation can be studied and quantified with
respect to the evolution of the dynamic ERR; and the developed
theory can also be applied to measure the CIT and CAT values
for CFRPs or adhesives in the context of DCB structures.

The theory is developed in the section “Theory” with analytical
derivation of dynamic ERR in the section “Dynamic ERR for a
Propagating Crack along Elastic Interface,” derivation of correction
factor for dispersion in the section “Correction Factor for
Dispersion,” and methods of determining the foundation stiffness
in the section “Determination of Foundation Stiffness.” In the sec-
tion “Numerical Verification,” the developed analytical theory is
verified against published results from the finite-element method
(FEM) (Liu et al. 2018), which simulated two experimental results
from Blackman et al. (1995, 1996). Conclusions are given in the
section “Conclusion.”

Theory

In this section, the dynamic ERR for a propagating crack along an
elastic interface in a symmetric DCB is derived analytically. The
DCB configuration is shown in Fig. 1(a): the total length of the
DCB is (Lþ a), the crack length is a, the uncracked length is
L, the total thickness is 2h, the foundation stiffness of the elastic
interface is k, and v is the applied high constant loading rate with vt
being the displacement. In Fig. 1(b), the coordinates are prescribed
such that the crack tip is at x ¼ L and deflections take place in the
x-z plane, denoted as wFDðx; tÞ and wFRðx; tÞ, respectively, for
foundation-supported and free beam sections.

According to Chen et al. (2020b), the deflections for
foundation-supported and free beam sections are

wFDðx; tÞ ¼ −vX∞
i¼1

Hi

ωi
WFD

i ðxÞ sinðωitÞ þ vtFFDðxÞ ð1Þ

wFRðx; tÞ ¼ −vX∞
i¼1

Hi

ωi
WFR

i ðxÞ sinðωitÞ þ vtFFRðxÞ ð2Þ

where Hi represents the coupling between free vibration and ap-
plied opening velocity; WFD

i ðxÞ and WFR
i ðxÞ are the ith normal

mode for free vibration for foundation-supported and free-vibration
sections, respectively; and FFDðxÞ and FFRðxÞ are respective shift-
ing functions. The derivation of these deflections is given in
Appendixes I–III, while the derivation of the angular natural fre-
quency ωi is given in Appendix II.

For a stationary crack, based on the corrected global approach
with account for flexural wave propagation, the dynamic ERR is
derived in Chen et al. (2020b) as

G ¼ 9EIv2t2fUst
ba4

− v2t
b

X∞
i¼1

ð−1Þi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da
sinðωitÞ ð3Þ

where fUst is the static ERR reduction factor for linear elastic inter-
face; the derivation of the dynamic ERR is given in Appendix IV.

Dynamic ERR for a Propagating Crack along Elastic
Interface

According to Freund (1990), the dynamic ERR for a propagating
delamination is the product of the dynamic ERR for a stationary
crack and a factor determined by the crack propagating speed
and material properties, which is ð1 − ȧ2=C2

0Þ, where ȧ is the crack
propagating speed, and C2

0 ¼ E=ρ. Therefore, at crack initiation for
a crack length of a1, the dynamic ERR is

G1 ¼
9EIv2t2fUst

ba41

�
1 − ȧ21

C2
0

�

− v2t
b

�
1 − ȧ21

C2
0

�X∝
i¼1

ð−1Þi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da1
sin

��
1 − ȧ1

Ci
p

�
ωit

�

ð4Þ

where the coefficient of ð1 − ȧ1=Ci
pÞ modifying natural frequency

is due to the Doppler effect (Chen et al. 2020a) with Ci
p being the

phase speed of the ith mode flexural wave; that is, when the ith
mode flexural wave propagates toward a propagating crack with
a crack propagating speed of ȧ1, the frequency observed by the
crack tip decreases with increasing crack propagating speed.

If the crack propagates from the current crack length of a1 to a2
for a time interval Δt, a small beam section of length ða2 − a1Þ is
formed as shown in Fig. 2. It is worth noting that in Eq. (4), the
expression of the first term GU

st (the ERR component due to strain
energy of quasi-static motion, also see Appendix IV) stays the
same, but the expression of the second term Gvib (the ERR com-
ponent due to vibration) needs further investigation since the beam
is a kind of highly dispersive waveguide, that is, the wave profile
experiences extreme distortion as the flexural waves travel.

The ERR component due to vibration is Gvib ¼ FvibðΩÞ=Ȧ0

(Freund 1990), where FvibðΩÞ is the energy flux into a crack tip
contour of Ω, and Ȧ0 is the rate of crack area increment with
Ȧ0 ¼ bȧ; and combining Eq. (4), the energy flux for crack length
a1 is

L

(a) (b)

a

2h

vt

vt

vt
aL

k

x

z

0

Elastic interface with
foundation stiffness k

h

Fig. 1. (a) Schematic of DCB specimen; and (b) prescribed coordinate system.
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F1ðΩÞ ¼ bȧ1Gvibða1Þ

¼ −v2tȧ1
�
1− ȧ21

C2
0

�X∝
i¼1

ð−1Þi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da1
sin

��
1− ȧ1

Ci
p

�
ωit

�

ð5Þ

Note that when the crack propagates from a1 to a2 (even for
a1 ≈ a2), the energy flux F2ðΩÞ ≠ F1ðΩÞ; this is due to the dis-
persive nature of beams that flexural waves with higher frequencies
travel faster and those with lower frequencies travel slower. There-
fore, the first mode flexural wave, with the lowest natural fre-
quency, functions like a modulation of the other mode flexural
waves. When considering the energy density concept and crack
tip energy conservation as laid out in Chen et al. (2020a), the en-
ergy flux at the delamination of a2 is

F2ðΩÞ ¼ −v2tȧ1
�
1 − ȧ21

C2
0

�

×
X∝
i¼1

fið−1Þi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da1
sin

��
1 − ȧ1

Ci
p

�
ωit

�
ð6Þ

where fi is a correction factor for dispersion given in the section
“Correction Factor for Dispersion.” Therefore, the ERR component
due to vibration for crack length of a2 is

Gvibða2Þ ¼
F2ðΩÞ
bȧ2

¼ −v2t ȧ1
ȧ2

�
1 − ȧ21

C2
0

�

×
X∝
i¼1

fið−1Þi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da1
sin

��
1 − ȧ1

Ci
p

�
ωit

�
ð7Þ

If ða2 − a1Þ is small and ȧ2 ≈ ȧ1, Eq. (7) can be written as

Gvibða2Þ ¼
F2ðΩÞ
bȧ1

¼ −v2t
�
1 − ȧ21

C2
0

�

×
X∝
i¼1

fið−1Þi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da1
sin

��
1 − ȧ1

Ci
p

�
ωit

�
ð8Þ

Note that the condition to derive Eq. (8) as well as Eq. (9) (fol-
lowing) is based on the limiting condition that the propagating
crack is about to advance, and in this condition, the changes of

the crack length and crack propagating speed are small. Combin-
ing the ERR component due to strain energy of quasi-static mo-
tion GU

st [the first term in Eq. (4)], the dynamic ERR for a
propagating crack along the elastic interface in DCBs after initia-
tion is

G ¼ 9EIv2t2fUst
ba4

�
1 − ȧ2

C2
0

�

− v2t
b

�
1 − ȧ2

C2
0

�X∝
i¼1

ð−1Þifi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da
sin

��
1 − ȧ

Ci
p

�
ωit

�

ð9Þ

Eq. (9) is derived for the plane-stress condition. For the plane-
strain condition, the effective Young’s modulus of E=ð1–ν2Þ should
be used.

Correction Factor for Dispersion

When deriving the ERR component due to vibration, a correction
factor for dispersion fi is introduced to address the dispersive
nature of beams in determining ERR. The energy flux modified by
this factor gives the accurate assessment of the energy supplied to
the crack tip for further crack growth. According to Chen et al.
(2020a, b), this correction factor is the ratio between the phase
speed of the first mode flexural wave C1

p and the group speed
of the ith mode flexural wave Ci

g, indicating that the first mode
flexural wave functions as the modulation of the other flexural
waves, which are determined by the boundary conditions of a
newly formed crack increment i.e., the beam section of ða2 − a1Þ
shown in Fig. 2. The phase speed of the first mode flexural wave is
C1
p ¼ ffiffiffiffiffi

ω1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðρAÞ4

p
and the group speed of the ith mode flexural

wave isCi
g ¼ 2

ffiffiffiffiffi
ωi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðρAÞ4

p
, and, therefore, the correction factor

for dispersion is

fi ¼
C1
p

Ci
g
¼ 1

2

ffiffiffiffiffi
ω1

ωi

r
ð10Þ

For the propagating crack shown in Fig. 2, the elastic foundation
allows crack tips (x ¼ a1 and x ¼ a2) to rotate and the boundary
conditions for the crack increment ða2 − a1Þ are more free than
completely fixed-fixed; an elastic foundation, however, does not
allow the crack tips to rotate completely free, suggesting the boun-
dary conditions do not achieve a pinned-pinned configuration.
Therefore, fixed-fixed and pinned-pinned boundary conditions are
two limiting boundary conditions for the newly formed crack incre-
ment, between which cases should the correction factor for
dispersion fi be derived. It is, therefore, assumed that fi can be
taken as an average value of those fixed-fixed and pinned-pinned
boundary conditions with the value shown in Table 1. Note that for
fixed-fixed and pinned-pinned boundary conditions, Eq. (10) be-
comes fi ¼ λ1=ð2λiÞ, where λi is the ith eigenvalue, which can

Fig. 2. Delamination propagation from a1 to a2 over time interval Δt
on elastic interface.

Table 1. Correction factor for dispersion for propagating crack

Mode number 1 2 3 4 5 i > 5

Fixed-fixed 0.5 0.30115 0.21509 0.16729 0.13687
1.50562
ð2iþ 1Þ

Pinned-pinned 0.5 0.25 0.16667 0.125 0.1
1

2i

Elastic foundation 0.5 0.257558 0.19088 0.14615 0.11844
5.011iþ 1

4ið2iþ 1Þ

© ASCE 04022029-3 J. Aerosp. Eng.
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be derived by solving the frequency equations of coshðλiÞ cosðλiÞ −
1 ¼ 0 for the fixed-fixed configuration and sinðλiÞ ¼ 0 for the
pinned-pinned configuration.

Determination of Foundation Stiffness

The conventional method to determine the foundation stiffness, that
is, the Young’s modulus, of the resin of CFRPs and adhesives re-
quires a tensile test of “dog bone” specimens as standardized in ISO
527 (ISO 2019) and ASTM D638 (ASTM 2015). However, it is not
easy to test adhesives, which could not be made into such a tensile
specimen, for instance, the structural adhesive films. Therefore, an
alternative method to test DCB configuration to derive foundation
stiffness is desirable.

Considering the quasi-static component in deflection in Eq. (2),
the external force under quasi-static loading rate is found to be
P ¼ −vtEIFFRð3ÞðLþ aÞ, and then the compliance is C ¼ vt=P.
Combining Eqs. (30) and (35), this compliance calibration method
gives the relationship between compliance and foundation stiffness
(represented by γ) as

ð2a3 − 6CEIÞγ3 þ 6a2γ2 þ 6aγ þ 3 ¼ 0 ð11Þ
where γ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k=ð4EIÞ4
p

, and, therefore, the foundation stiffness
is k ¼ 4γ4EI.

It is suggested by Eq. (11) that the foundation stiffness can be
derived by parallel quasi-static tests of the DCB rather than by test-
ing the adhesive directly.

Alternatively, it is worth noting that if the DCB is analyzed by
assuming a fixed boundary condition at the crack tip as indicated in
ASTM D5528 (ASTM 2016) without using the elastic foundation
approach, additional crack length Δ (Hashemi et al. 1989) is re-
quired to compensate for crack tip rotation by regressing multiple
compliances against crack lengths. If this additional crack lengthΔ
is derived, the foundation stiffness k can also be derived by the
method given in Chen et al. (2021a), which is

Δ ¼ 1

γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2a3γ3 þ 6a2γ2 þ 6aγ þ 3Þ2

4ðaγ þ 1Þ2
4

s
− a ð12Þ

However, thought should be given when using Eq. (12) when it
is derived under the plane-stress condition. For the plane-strain
condition, the Young’s modulus should be replaced by the effective
Young’s modulus of E=ð1–ν2Þ) and the unit width should be used
to derive foundation stiffness via k ¼ 4γ4EI.

Numerical Verification

Numerical simulations of a DCB of PEEK/carbon fiber under 6.5
and 10.0 ms−1 opening rates in Liu et al. (2018) for experiments in
Blackman et al. (1995, 1996) were used to verify the developed
theory in the section “Theory,” i.e., the analytical solution for
Eq. (9) of dynamic ERR for propagating crack along elastic inter-
face. Note that before crack initiation, i.e., a stationary crack,
Eq. (3) was employed to calculate the dynamic ERR.

The considered material properties and DCB geometry are listed
in Table 2.

Liu et al. (2018) also provided CIT and CAT values for these
two cases by parametric studies to match the experimentally de-
rived crack-versus-time curves: in the 6.5 ms−1 opening rate case,
the CIT was 1,400 Nm−1 and CAT was 670 Nm−1; in the
10.0 ms−1 case, they were 1,300 Nm−1 and 300 Nm−1, respec-
tively. These toughness values were not required to calculate the
dynamic ERR employing the theory developed in the section
“Theory,” they were plotted only in the respective cases for com-
parison. Note that the CIT and CAT values could not be obtained
from the experiments since there was no analytical theory based
on dynamics to post-process the experimental data; this is the
aim of this study, to develop such a theory. In addition, the numeri-
cal solution of ERR computed in Liu et al. (2018) provides the ERR
time response in detail, and this is ideal to validate the developed
theory.

The foundation stiffness is derived by the quasi-static load-
versus-time curve of DCB, that is, Fig. 8(a) in Blackman et al.
(1995), which provides a compliance of 1=28,382 m=N. According
to Eq. (11), the compliance calibration method gives the foundation
stiffness k ¼ 1.18 GPa. Alternatively, Eq. (12) can be used with the
Δ ¼ 3.6 mm provided in Blackman et al. (1995), giving k ¼
0.96 GPa. The two methods of determining foundation stiffness
provide similar results. In the following verifications, k ¼ 1.18 GPa
is employed.

The crack length-time curves from the FEM simulations in Liu
et al. (2018) were employed as the input data to calculate the re-
spective physical quantities and, finally, the ERR was determined
by Eq. (9). The detailed implementation is shown in Fig. 3.
1. Numerical verification for DCBs under 6.5 ms−1 opening rate

The theoretical solution of dynamic ERR for the DCB test under
6.5 ms−1 opening rates was plotted against time in Fig. 4 while the
corresponding crack length from Liu et al. (2018) was plotted on
the secondary axis.

Generally, the analytical solution shows an excellent ability to
capture the fracture behaviors, such as initiation, propagation, arrest,
and reinitiation. (1) Initiation: Before the crack starts to propagate,
i.e., for the stationary crack, dynamic ERR builds up with respect to
time under the applied constant opening rate. When it reaches the
CIT value at t ¼ 1.04 ms approximately, the crack starts to propa-
gate, (2) Arrest: As the crack propagates, there is a constant drop of
the dynamic ERR with its value under CIT, but the crack still prop-
agates until the dynamic ERR comes to the CAT value at about
t ¼ 3.46 ms. Once the dynamic ERR gets to the CAT value, the
crack stops propagating, i.e., crack arrest, and (3) Reinitiation: After
crack arrest, with the applied constant opening rate, the dynamic
ERR starts to climb up again until it rises to the CIT value at
t ¼ 4.98 ms, and the crack starts to propagate again.

Apart from the excellent ability to capture the fracture behavior,
the developed theory can also be applied to measure the CIT and
CAT values. Note that the developed analytical theory gives a
slightly higher ERR compared with the FEM result. This is reason-
able since the FEM model employed a three-dimensional (3D) for-
mulation with the anisotropic material properties with E11 ¼
115 GPa and E22 ¼ 8 GPa, making the FEM model less stiff than
the analytical model with a one-dimensional (1D) plane-strain con-
dition. This gives a higher prediction for the CIT value in the ana-
lytical solution, particularly when the crack length is relatively
short, i.e., at crack initiation. But as the crack propagates, the

Table 2. Material properties and DCB geometry

Longitudinal modulus Poisson’s ratio Effective Young’s modulus Thickness Width Crack length

E11 ¼ 115 GPa ν ¼ 0.28 E11=ð1–ν2Þ ¼ 124.78 GPa h ¼ 1.5 mm b ¼ 20 mm Taken from Liu et al. (2018)

© ASCE 04022029-4 J. Aerosp. Eng.
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stiffness of the DCB arm decreases; so, the difference of ERR be-
tween the developed theory and FEM result is not significant. The
developed theory also gives an accurate prediction of the reinitia-
tion toughness. The relative differences of the CIT values from the
developed theory and FEM simulation are 36.8% and 3.2%, respec-
tively, for initiation and reinitiation, while the relative difference for
the CAT value is 3.9%.

It is worth noting that before crack initiation, the ERR predicted
by the analytical solution in Eq. (3) shows more oscillation than
that that predicted with the FEM simulation. This may be due
to the fact that the analytical solution considered the energy flux
into the crack tip contour locally, but the FEM used an interfacial
thick level set (ITLS) formulation to evaluate the ERR nonlocally
over a damaged band. This averages out the oscillating nature of
stress at the crack tip and might be suitable to study the crack
propagation behavior (Liu et al. 2018). After the crack initiation,
there is a good agreement between the developed theory for a

propagating crack and the FEM simulation in Liu et al. (2018); this
is the major focus of this work - to develop a theory for cracks
propagating along elastic interfaces. Also note that Eq. (3) was veri-
fied by local FEM methods such as the cohesive zone model
(CZM) and virtual crack closure technique (VCCT) in Chen et al.
(2020b) for a stationary crack. Further discussion of the local and
nonlocal FEM methods is beyond the scope of this study.
2. Numerical verification for DCBs under 10.0 ms−1 opening rate

The theoretical solution of dynamic ERR for the DCB test under
10.0 ms−1 opening rate is plotted against time in Fig. 5 with the
corresponding crack length from Liu et al. (2018) plotted on the
secondary axis.

It is seen in Fig. 5 that the analytical solution is in good agree-
ment with results from the FEM as expected. But a slightly higher
dynamic ERR is with the analytical solution due to the reasons dis-
cussed. The relative difference of the CIT values from the devel-
oped theory and FEM simulation is 27.5% for the crack initiation.

Fig. 3. Flowchart of implementation of developed theory to determine ERR.

Fig. 4. Evolution of dynamic ERR and crack length for 6.5 ms−1
opening rate based on FEM results for crack length and crack propa-
gating speed using analytical solution for elastic interface.

Fig. 5. Evolution of dynamic ERR and crack length for 10.0 ms−1
opening rate based on FEM results for crack length and crack propa-
gating speed using analytical solution for elastic interface.
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The two verifications show an excellent agreement of the ERR
predicted by the developed theory and the results from FEM sim-
ulations (Liu et al. 2018) for a propagating crack. Before the crack
initiation and for the CIT value, a discrepancy is seen between the
two methods, and the possible reasons for this were examined:
(1) a stiffer analytical model, compared to the FEM model,
and (2) the local assessment of crack initiation in the analytical
model in contrast to a nonlocal treatment of fracture in the FEM
model.

Conclusion

The dynamic mode-I ERR of cracks propagating along a linear
elastic interface in a symmetric DCB is derived with accounting
for structural vibration, wave propagation, and the Doppler effect
along with the assumption of crack tip energy conservation. Con-
sidering the beams as highly dispersive waveguides, a correction
factor for dispersion is derived as an average of two limiting boun-
dary conditions to assess the energy supplied to the crack tip for
crack growth. In addition, one new method of compliance calibra-
tion for the determination of foundation stiffness is derived and pre-
sented alongside an alternative method from the authors’ previous
work.

The developed theory is then verified against FEM simulations
of two experimental cases from the literature, demonstrating the
excellent ability of the developed theory to capture crack propa-
gating behaviors such as initiation, propagation, arrest, and rein-
itiation. These crack propagating behaviors are related to the
CIT and CAT values, indicating that the developed theory can
be applied to measure the CIT and CAT values for CFRPs and
adhesives.

To the best of the authors’ knowledge, this work presents the
analytical solutions of dynamic ERR for propagating cracks on lin-
ear elastic interfaces for the first time. Since the analytical solution
can be used to study the fracture behavior as well as to measure CIT
and CAT values, they are expected to be useful to both engineers
and researchers working with layered materials, joints, and bonds
to predict dynamic fracture behavior and to determine interface
material properties.

Appendix I. Derivation of Deflections

The deflections of the foundation-supported and free beam sections
are derived by solving the governing equations (Rao 2007)

EIwð4Þðx; tÞ þ ρAẅðx; tÞ þ kwðx; tÞ ¼ 0 ð13Þ

EIwð4Þðx; tÞ þ ρAẅðx; tÞ ¼ 0 ð14Þ
Since the beam system is under the time-dependent boundary

condition, Grant’s method (Grant 1983) is employed by introduc-
ing the shifting functions, and deflections of respective beam sec-
tions take the following form:

wFDðx; tÞ ¼ wFD
fv ðx; tÞ þ FFDðxÞvt ð15Þ

and

wFRðx; tÞ ¼ wFR
fv ðx; tÞ þ FFRðxÞvt ð16Þ

where wFD
fv ðx; tÞ and wFR

fv ðx; tÞ are the free-vibration components;
and FFDðxÞ and FFRðxÞ are the shifting functions.

Therefore, combining Eqs. (13) and (15) and forcing the homo-
geneous conditions, the governing equations for the free-vibration

component of the foundation-supported beam section and the shift-
ing functions are derived

EIwFDð4Þ
fv ðx; tÞ þ ρAẅFD

fv ðx; tÞ þ kwFD
fv ðx; tÞ ¼ 0 ð17Þ

EIFFDð4ÞðxÞ þ kFFDðxÞ ¼ 0 ð18Þ

Similarly, the governing equations for the free-vibration compo-
nent of the free beam section and the corresponding shifting func-
tions by combining Eqs. (14) and (16) are

EIwFRð4Þ
fv ðx; tÞ þ ρAẅFR

fv ðx; tÞ ¼ 0 ð19Þ

FFRð4ÞðxÞ ¼ 0 ð20Þ

Appendix II. Solutions of Free-Vibration
Components

By the method of separation of variables, the solutions for wFD
fv ðx; tÞ

and wFR
fv ðx; tÞ in Eqs. (17) and (19) are

wFD
fv ðx; tÞ ¼

X∝
i¼1

WFD
i ðxÞTiðtÞ ð21Þ

wFR
fv ðx; tÞ ¼

X∝
i¼1

WFR
i ðxÞTiðtÞ ð22Þ

where WFD
i ðxÞ and WFR

i ðxÞ are the ith normal mode for the
foundation-supported and free beam sections, respectively; and
TiðtÞ is the time-dependent modal displacement of the ith normal
mode.

Combining the boundary conditions and introducing natural fre-
quency ωi together with wavenumbers αi and βi, the ith normal
modes for the foundation-supported and free beam sections as well
as the modal displacement are

WFD
i ðxÞ ¼ Ci1½coshðαixÞ sinðαixÞ − sinhðαixÞ cosðαixÞ�

þ Ci2 sinhðαixÞ sinðαixÞ ð23Þ

WFR
i ðxÞ ¼ Ci3 sinh½βiðx − L − aÞ� þ Ci4 sin½βiðx − L − aÞ�

ð24Þ

TiðtÞ ¼ Tið0Þ cosðωitÞ þ
Ṫið0Þ
ωi

sinðωitÞ ð25Þ

where Ci1, Ci2, Ci3, and Ci4 are coefficients to be determined
by the boundary and orthogonality conditions in Eq. (26); αi
and βi are 4α4

i ¼ k=ðEIÞ − ω2
i ρA=ðEIÞ and β4

i ¼ ω2
i ρA=ðEIÞ; and

Tið0Þ and Ṫið0Þ are the initial modal displacement and velocity,
respectivelyZ

L

0

ρAWFD
i ðxÞWFD

j ðxÞdxþ
Z

Lþa

L
ρAWFR

i ðxÞWFR
j ðxÞdx ¼ δij

ð26Þ

By applying the continuity condition at the crack tip, x ¼ L, the
following system of equations is derived:
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2
666666666666664

�
coshðαiLÞ sinðαiLÞ
− sinhðαiLÞ cosðαiLÞ

�
sinhðαiLÞ sinðαiLÞ sinhðβiaÞ sinðβiaÞ

2αi sinhðαiLÞ sinðαiLÞ αi

�
sinhðαiLÞ cosðαiLÞ
þ coshðαiLÞ sinðαiLÞ

�
−βi coshðβiaÞ −βi cosðβiaÞ

2α2
i

�
sinhðαiLÞ cosðαiLÞ
þ coshðαiLÞ sinðαiLÞ

�
2α2

i coshðαiLÞ cosðαiLÞ β2
i sinhðβiaÞ −β2

i sinðβiaÞ

4α3
i coshðαiLÞ cosðαiLÞ 2α3

i

�
sinhðαiLÞ cosðαiLÞ
− coshðαiLÞ sinðαiLÞ

�
−β3

i coshðβiaÞ β3
i cosðβiaÞ

3
777777777777775

0
BBBBB@

Ci1

Ci2

Ci3

Ci4

1
CCCCCA ¼

0
BBBB@

0

0

0

0

1
CCCCA ð27Þ

For this homogeneous system of linear equations to have nonzero solutions, the determinant of the coefficient matrix must be zero. Let Di
be the determinant of the coefficient matrix of Eq. (27). From Di ¼ 0, the wavenumbers αi and βi can be determined and, thus, the natural
frequency ωi via 4α4

i ¼ k=ðEIÞ − ω2
i ρA=ðEIÞ or β4

i ¼ ω2
i ρA=ðEIÞ.

As for the initial values of the ith modal displacement and velocity, it is found that Tið0Þ ¼ 0 and

Ṫið0Þ ¼ −vHi ð28Þ
where Hi ¼ ∫ L

0 ρAW
FD
i ðxÞFFDðxÞdxþ ∫ Lþa

L ρAWFR
i ðxÞFFRðxÞdx.

Appendix III. Solutions of Shifting Functions

The shifting functions are obtained by solving governing equations Eqs. (18) and (20), giving

FFDðxÞ ¼ P1½coshðγxÞ sinðγxÞ − sinhðγxÞ cosðγxÞ� þ P2 sinhðγxÞ sinðγxÞ ð29Þ

FFRðxÞ ¼ P3ðx − L − aÞ3 þ P4ðx − L − aÞ þ 1 ð30Þ
where the coefficients P1, P2, P3, and P4 are

P1 ¼
−6½coshðγLÞ cosðγLÞ þ aγ sinhðγLÞ cosðγLÞ − aγ coshðγLÞ sinðγLÞ�

P0

ð31Þ

P2 ¼
−6½sinhðγLÞ cosðγLÞ þ coshðγLÞ sinðγLÞ þ 2aγ coshðγLÞ cosðγLÞ�

P0

ð32Þ

P3 ¼
−γ3½coshð2γLÞ þ cosð2γLÞ þ 2�

P0

ð33Þ

P4 ¼
3γfa2γ2½coshð2γLÞ þ cosð2γLÞ þ 2� þ 2aγ½sinhð2γLÞ þ sinð2γLÞ� þ ½coshð2γLÞ − cosð2γLÞ�g

P0

ð34Þ

with P0 ¼ f2a3γ3½cosð2γLÞ þ coshð2γLÞ þ 2� þ 6a2γ2½sinð2γLÞ þ sinhð2γLÞ� þ 6aγ½coshð2γLÞ− cosð2γLÞ� þ 3½sinhð2γLÞ− sinð2γLÞ�g.

Note that for the product of the foundation stiffness k and the
length of the foundation-supported beam section L is large enough
to satisfy tanh ð2γLÞ ≈ 1 (that is, γL ⪆ 3 so that tanh
ð6Þ ≈ 0.999999), P3 in Eq. (33) approximates to

P3 ¼
−γ3

2a3γ3 þ 6a2γ2 þ 6aγ þ 3
ð35Þ

Appendix IV. Derivation of Energy Release Rate

Combining the results from Appendixes I to IV, the total deflections
of the foundation-supported and free beam sections are given in
Eqs. (1) and (2), respectively. These deflections provide the total
mechanical energy Π ¼ ΠU

st þΠvib þ ΠK
st, where ΠU

st is the strain
energy component due to static motion, ΠK

st is the kinetic energy
component due to static motion, and Πvib is the vibrating energy
component

ΠU
st ¼ − 1

2
EIv2t2FFRð3ÞðLþ aÞ ð36Þ

ΠK
st ¼

1

2
ρA

Z
L

0

½FFDðxÞv�2dxþ 1

2

Z
Lþa

L
½FFRðxÞv�2dx ð37Þ

Πvib ¼ −v2 X∞
i¼1

H2
i cosðωitÞ þ

1

2
v2

X∞
i¼1

H2
i ð38Þ

Correspondingly, the ERR components due to each energy term
above are

GU
st ¼ − dΠU

st

bda
¼ 9EIv2t2fUst

2ba4
ð39Þ

where fUst ¼ 4a4γ4ðaγ þ 1Þ2=ð2a3γ3 þ 6a2γ2 þ 6aγ þ 3Þ2
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GK
st ¼ − dΠK

st

bda
¼ − 33ρAv2fKst

280b
ð40Þ

which is found to be small compared to the other ERR components
and can be omitted; and

Gvib ¼
FvibðΩÞ

bȧ
¼ v2t

2b

X∞
i¼1

ð−1Þi
ffiffiffiffiffi
ω1

ωi

r
H2

i
dωi

da
sinðωitÞ ð41Þ

which is derived by Freund’s energy flux method as well as a con-
sideration of flexural wave propagation in beams as dispersive
waveguides, and where

dωi

da
¼ 2βi

�∂Di

∂L − ∂Di

∂a
� ffiffiffiffiffiffi

EI
ρA

s ,�
−∂Di

∂αi

β3
i

4α3
i
þ ∂Di

∂βi

�
ð42Þ

where Di is the determinant of coefficient matrix of Eq. (27).
Therefore, combining results from Appendixes I to IV, the ERR

is obtained as shown in Eq. (3)
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Notation

The following symbols are used in this paper:
A = area of cross section of beam section;
a = crack length;
ȧ = crack propagating speed;
b = width of beam;

Ci
g = group speed of the ith mode flexural wave;

C1
p = phase speed of the ith mode flexural wave;
E = Young’s modulus;

FFDðxÞ = shifting function for foundation-supported beam
section;

FFRðxÞ = shifting function for free beam section;
G = total energy release rate;

Gvib = ERR component due to vibration;
GU

st = ERR component due to the strain energy of quasi-static
motion;

h = thickness of beam;
I = second moment of area of beam section;
L = length of foundation-supported beam section;
t = time;
v = applied constant displacement rate;

wFDðx; tÞ = deflection for foundation-supported and free beam
section;

WFD
i ðxÞ = ith normal mode for foundation-supported beam

section;

wFRðx; tÞ = deflection for free beam section;
WFR

i ðxÞ = ith normal mode for free beam section;
αi = wavenumber for foundation-supported beam section;
βi = wavenumber for free beam section;
ν = Poisson’s ratio;
ρ = density; and
ωi = angular frequency of the ith vibration mode.
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