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a b s t r a c t

Based on the vortex-induced vortex theory, the classic paradigm of Theodorsen’s hairpin vortex is
used to analyze the disturbed vorticity and its sign relationship. The hairpin vortex is assumed to
exist in the viscous sublayer of a laminar boundary layer, i.e. , the immediate neighborhood of the
solid walls. Accordingly, the theoretical model is established mainly by ignoring the inertial forces.
The disturbed vorticity field and associated two vorticity sign laws are obtained. The first sign law
reveals that the wall-normal vorticity is actually induced by the streamwise vorticity in the two legs,
as a kind of interaction between the vortex and solid wall. Such induction is completely a result of
the viscous forces, identified as the third viscous effect. Both vorticity sign laws illustrate that the
direction of a vorticity vector in the present hairpin vortex is specific, as is the inclined direction
of the two legs. Furthermore, the intrinsic relationship between the hairpin vortex and other three-
dimensional vortices appearing in external and internal flows at low and laminar Reynolds numbers
is thus established by both sign laws. Then, the generalized Π-type vortex is defined as a category of
a vortex in which the three vorticity components are consistent with both sign laws through quadrant
analysis. In addition, it is theoretically confirmed that the lifting process of the hairpin vortex is
predominantly attributable to the mechanism of the vortex-induced vortex and is thus the typical
linear process due to viscous forces. Other features, such as the varied inclination, third sign law and
self-similarity, are presented in detail.

© 2022 ElsevierMasson SAS. All rights reserved.
1. Introduction

Hairpin vortices are very common in various types of laminar–
urbulent transitional flows [1], such as the zero-pressure gradi-
nt boundary layer of a flat plate at zero incidence, the
tmospheric boundary layer over a nearly smooth desert floor,
he flow in a smooth-walled pipe and turbulent channel flow.
or such a structure of organized motion, the canonical form of
earest-wall flow of concern in this paper is the steady, fully de-
eloped and incompressible boundary layer with a zero pressure
radient.
Generally, for flow past a flat plate at zero incidence, the

xperimental results demonstrating the appearance of hairpin
ortices are shown in the basic sketch in Fig. 1, where the Carte-
ian coordinate system (x, y, z) is established on the plate surface
and the x, y and z coordinates are the streamwise, wall-normal
(or vertical) and spanwise directions, respectively. The transition
in the laminar boundary layer is initially governed by stable
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laminar flow, the instability of traveling, two-dimensional (2-
D) Tollmien–Schlichting (T–S) waves, primary stability theory,
and the appearance of unsteady, laminar and three-dimensional
(3-D) waves due to secondary instabilities and a characteristic
Λ-structure vortex formation [2], as shown in Fig. 1. The 3-
D disturbance with increasing T–S instability waves leads to
the formation of streamwise vortex pairs in the neighborhood
of the laminar boundary layer [3]. This periodic distribution of
streamwise vortex pairs along the span further results in the
redistribution of the streamwise velocity along the span, form-
ing staggered streaks with high and low speeds in the buffer
region [4]. The streaks and the vortices are involved in a self-
sustaining nonlinear cycle [5,6]. Meanwhile, the signal of velocity
fluctuations is characterized by so-called spikes which denote
the appearance of local high shearing regions together with the
point of inflection velocity profiles. With increasing disturbance,
streamwise vortex pairs around low-speed streaks develop into
a horseshoe vortex [7]. The horseshoe vortex is lifted up under
self-induction and elongated due to the external shear flow, and
thus becomes a hairpin vortex.

Over the past several decades, a large number of experimental
and numerical studies have been carried out to investigate the
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Fig. 1. Diagram of the formation of Tollmien–Schlichting waves and horseshoe
nd hairpin vortices in the transition of the laminar boundary layer of a flat
late at zero incidence.

ynamics of the structures populating the logarithmic and outer
egions of turbulent boundary layers. There are several models
or describing the shape of eddies as typical coherent struc-
ures [8], which is typically the predominant role of Townsend’s
ttached eddies [9]. The most widespread model is probably
he hairpin vortex paradigm, which advocates for attached loop-
ike vortices or hairpin vortices. Although there is no unique
nd generally accepted quantitative definition of a hairpin, it is
escribed as a category of vortices consisting of a head (or a
egatively rotating arch, thus with the negative spanwise vor-
icity ωz) oriented in the spanwise direction and two adjacent
legs extending upstream and wall-ward [3]. The classic hair-
pin (or horseshoe) vortex paradigm was originally proposed by
Theodorsen [10], as shown in Fig. 2(a). Such a hairpin vortex
can also be generated by introducing the sinuous perturbation
of the spanwise velocity [11] and an isolated cuboid roughness
and a short duration jet in the boundary layer [12]. Even the
hairpin-packet model, described as the streamwise alignment of
individual hairpin-like vortices and their hierarchical organiza-
tion into a coherent packet, is proposed and accounts for the key
structural and dynamic characteristics [11,13–15].

In addition to complete hairpin vortices, nonsymmetric in-
omplete variants (denoted hooks and canes) have also been dis-
overed in many studies [16–18]. At moderate and high Reynolds
umbers, it is already reported that the observed, much less
rganized structures resemble to some extent the clusters [19,20]
r small-scale, tube-like structures [21] in turbulent channels and
oundary layers. In particular, conditionally averaged structures
xtracted from the near-wall region of the turbulent boundary
ayer only show staggered quasistreamwise vortices [22], without
spanwise head-like structure.
Recently, by performing a number of parallel and spatially

eveloping direct numerical simulations on boundary layers, the
uestion of whether hairpin vortices are a dominant feature of
ear-wall turbulence and which role they play during transition
as been investigated in detail [23]. It is found out that secondary
airpin vortices are only created very shortly by nonlinear self-
nduction after initialization at high Reynolds numbers, including
turbulent viscosity, even with a small amount of the usual
ackground dissipation. Therefore, it is very unlikely that hairpin
ortices, as shown in Figs. 2(b) and 2(c) illustrated by different
eans [23,24], including a forest of hairpins [25], persist in fully
eveloped turbulent boundary layers [22,23,26]. The spatial focus
f the form of hairpin vortices is thus placed on the region close
o or before the point of the laminar–turbulent transition.

Howbeit, the single hairpin eddy is still a useful paradigm

hat explains many observations in wall turbulence. Except for
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the previously discussed experiments and simulations, some the-
oretical models based on Theodorsen’s hairpin vortex paradigm
scattered randomly in the streamwise–spanwise plane with a
hierarchy of sizes are constructed [27–29]. They are analyzed
above the viscous sublayer and mainly in the logarithmic layer.
With appropriately chosen parameters for the hairpin geome-
try and the distribution of the hierarchy, the model reproduces
many aspects of statistical quantities such as the mean velocity,
Reynolds stresses, and spectra. In particular, the hairpin paradigm
provides a mechanism for creating the Reynolds shear stress and
low-speed streaks and for transporting the vorticity of the mean
shear at the wall away from the wall and for transforming it
into a more isotropically distributed small-scale turbulent vor-
ticity, similar to the growth of ramp-shaped hairpin packets or
patterns [11,15,30]. In addition, low-speed streaks in the buffer
layer also play a crucial role in determining the skin friction and
producing turbulent kinetic energy and vorticity because they are
the dominant mechanism in the region where most of the change
in the mean velocity occurs at low Reynolds numbers [30].

In present vortex dynamics with the conservative body forces,
vorticity is only generated on the walls owing to the fluid vis-
cosity. The exception is the small-scale, weak eddies caused by
the turbulence, which can be regarded as a kind of background
vorticity introduced or randomly distributed in the uniform in-
coming flow with a certain turbulent intensity. As mentioned
above, the hairpin vortex also initially appears and grows in the
immediate neighborhood of the walls. Therefore, it is necessary
to establish a physical model to describe the hairpin vortex and
better understand its dynamic behavior in the viscous sublayer,
including the effect on wall turbulence.

In addition, a new physical phenomenon was recently re-
ported through theoretical analysis of the 3-D vorticity field in
an external flow past a bluff body [31,32] and an internal flow
through a pipe [33] with low and laminar Reynolds numbers.
Two universal sign laws for the three components of vorticity
were revealed based on the analysis of an introduced vortex or
vortex pair in the viscous sublayer of a smooth wall where the
viscous forces were dominant. In particular, the mechanism for
the generation of the wall-normal vorticity near the wall, which
is always equivalent to zero at the wall based on the definition
of the vorticity vector, is the so-called vortex-induced vortex, as
an indirect effect of the viscous forces. It is believed that such
an effect is closely related to the existence of a solid wall [33].
Meanwhile, the theoretical model is mainly established and ana-
lyzed in the viscous sublayer as well. Moreover, a recent paper
about counterrotating streamwise vortices, such as small-scale
turbulent eddies or two legs in a hairpin vortex, introduced in
this buffer layer presents a new explanation for the specific sign
of the Reynolds shear stress [34]. Therefore, in terms of the sign of
the vorticity, it seems that there is a certain intrinsic relationship
between the hairpin vortex and other vortices existing in the bluff
body’s wake or in the secondary flow within a pipe.

In present paper, we try to apply the vortex-induced vortex
theory [31] in the basic vortical structure of a single hairpin
paradigm in Fig. 2 to investigate the sign relationships among
three vorticity components in the viscous sublayer, i.e. , the
immediate neighborhood of the solid walls, in a laminar boundary
layer. Here, it is not our attempt to rebuild correlated physical re-
lationships that have already been studied and reported in many
previous works about the hairpin vortex. However, it is mean-
ingful to explore what kind of correlations the theoretical model
constructed in the viscous wall layer can provide or illustrate.
First, in Section 2, the physical model is built and analyzed based
on different boundary conditions, including vorticity decomposi-
tion and some analytical assumptions. Then several features are
obtained and discussed in Section 3 in detail. Conclusions are

finally offered in Section 4.
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Fig. 2. (a) Theodorsen’s conceptualized picture of a hairpin vortex [10]. (b) Isosurfaces of λ2-criterion showing hairpin-like structures in turbulent boundary layers [23].
c) Isosurfaces of vortex strength Q illustrating hairpin-like structures in channel flow [24].
Fig. 3. Schematics of the vorticity field in the hairpin vortex, which is decom-
posed into the disturbed flow field with the disturbed vorticity (ωx, ωy, δωz ) and
he mean shear flow with the vorticity (0, 0, Ωz ).

. Physical model

Before establishing a physical model for describing the hairpin
ortex, the vorticity field in a single hairpin vortex is decomposed
nto two parts. In particular, for the whole vorticity field, some
ssumptions are then proposed or prescribed before presenting
ubsequent governing equations. Finally, the disturbed vorticity
s solved under different boundary conditions in a hairpin vortex.

.1. Vorticity decomposition in a hairpin vortex

As shown in Fig. 3, the vorticity in the hairpin vortex de-
cribed by Theodorsen [10] in Fig. 2(a) could be decomposed
nto two kinds of vorticity fields. One is the disturbed vorticity
ield with three components of vorticity, (ωx, ωy, δωz), in the local
region. The physical mechanism for generating vorticity could be
attributed to the result of introducing a geometric disturbance
and flow perturbation or of the 3-D instability and turbulence.
Here, the physical mechanism is assumed to be the turbulence in
the buffer layer. The main feature is the appearance of a single
streamwise vortex or counterrotating quasistreamwise vortices.
Another is the resultant vorticity in the mean shear flow on
the flat plate. Such flow with time-averaged streamwise velocity
U(y) is almost two-dimensional with a predominantly spanwise
component of vorticity Ωz . The total spanwise vorticity is then
xpressed as ωz = Ωz + δωz . Then, the total vorticity vector ω is
efined as (ωx, ωy, ωz).
Correspondingly, the total velocity field in the buffer layer

an also be decomposed into two parts. One is the disturbed
elocity only induced by the disturbed vorticity. Another is the
ean shear flow (U(y), V = 0,W = 0) associated with vorticity
z(= −dU/dy).
In addition, in terms of the vortex line, the spanwise waviness

f the hairpin vortex mainly results from the local effect of the
treamwise vorticity with opposite signs, ±|ω |, on the originally
x
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Fig. 4. (a) Different regions in the first hairpin vortex along the streamwise
direction. (b) Schematics of streamwise vortex pairs, which are introduced on
the boundary layer of a flat plate at zero incidence, and the induced velocity
field varied along the spanwise direction, which only exists in a spatial range,
(0 ≤ x ≤ λx, 0 ≤ y ≤ h, 0 ≤ z ≤ λ).

2-D spanwise vorticity, while the effect of the vertical vorticity,
±|ωy|, corresponds to the hairpin vortex tilted upward away from
the wall [35].

The disturbed flow field, including the disturbed vorticity
(ωx, ωy, δωz) and correlated velocity u = (u, v, w), is thus investi-
gated and analyzed by establishing a theoretical model based on
the following assumptions.

2.2. Basic assumptions of the disturbed flow field in a hairpin vortex

On the basis of previous results, as shown in Fig. 2, four regions
in the hairpin vortex are classified, as shown in Fig. 4(a):

(1) The first region, Region I, is the initial generation of the
hairpin vortex. The counterrotating streamwise vortices or two
legs are almost attached on the wall and stretched downstream,
as shown in Fig. 2(b). The streamwise length of Region I is λx1. The
streamwise vorticity is much stronger than the vertical vorticity
in terms of the vorticity line.

(2) In the second region, Region II, the legs with a concen-
trated streamwise vorticity are slightly tilted upward away from
the wall. The vertical vorticity increases slowly. The stream-
wise vorticity on the walls decreases but remains nonzero. The
streamwise length is λx2.

(3) When the first hairpin vortex is obviously lifted in Region
III, the streamwise vorticity on the wall is almost reduced to
zero. The vertical vorticity is obviously increased. The streamwise
length is λx3.

(4) Once the first hairpin vortex is greatly lifted, its head is
formed far away from the wall in the fourth region, Region IV.
Meanwhile, the streamwise vorticity in the second hairpin vortex
could be induced or generated below the first hairpin vortex, as
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(

Fig. 5. Estimation of the streamwise vorticity, ωx , in one leg varied along the vertical distance away from the walls in different regions, (a) Region I, (b) Region II,
c) Region III, (d) Region IV-1, and (e) Region IV-2, where Aωx1 and Aωx2 are amplitudes of ωx at the walls, and the vertical height h is shown just for illustration.
a

shown in Figs. 2(b) and 2(c). At the same spanwise position, the
sign of the streamwise vortex in the second hairpin vortex may
be the same as that in the first hairpin vortex, similar to the
case in Fig. 2(b), or opposite to that in the first hairpin vortex
corresponding to the case in Fig. 2(c). The streamwise length is
λx4.

The focus is mainly placed on Regions I, II and III within
the vertical height h to ensure that the flow analysis is mainly
performed in the buffer layer.

Therefore, before presenting the governing equations and
boundary conditions in Regions I, II and III, some assumptions
and preconditions are presented as follows:

(A1) The inertial coordinate system (x, y, z) is established at
the upper surface of the flat plate at zero incidence, as shown in
Fig. 4. The x, y and z coordinates are aligned with the streamwise,
wall-normal (or vertical) and spanwise directions, respectively.
The origin of the coordinates is set to be the start of Region I or
II or III on the wall because the disturbed vorticity is naturally
convected downstream under the effect of inertial forces.

(A2) The density ρ and viscosity µ of the fluid are constants,
as well as the kinematic viscosity ν = µ/ρ. Thus, the flow is
incompressible.

(A3) The local mean shear flow in the boundary layer is fully
developed with only the streamwise velocity U(y).

(A4) The body forces are conservative, e.g. , gravity.
(A5) No energy transportation occurs in the present flow.
(A6) A pair of counterrotating streamwise vortices are intro-

duced as the two legs in the boundary layer and evolve down-
stream, similar to the vortex-induced vortex theory [31]. The
streamwise vorticity ωx is almost uniform along the x-direction
and periodically along the z-direction, as shown in Fig. 4(b). The
streamwise length scale λx is equal to λx1 or λx2 or λx3, while the
spanwise wavelength is λ. They are valid within a specific spatial
range, x ∈ [0, λx], y ∈ [0, h] and z ∈ [0, λ]. Especially, at the start
when x = 0 and y > 0, it is only possible for ωx to be nonzero,
and ωy = δωz = 0, for simplicity without any qualitative change.

(A7) Three typical boundary cases are analyzed, according to
the above Regions I, II and III. As shown in Fig. 5, the streamwise
vorticity in one leg that varies along the y-direction is estimated
in four different regions. In Region I with λx = λx1, the stream-
wise vortices are attached on the wall with the maximal vorticity,
|ωx|y=0 = Aωx1 , in Fig. 5(a). However, in Region II with λx = λx2,
the streamwise vorticity decreases slightly but remains nonzero,
|ωx|y=0 = Aωx2 (< Aωx1 ), in Fig. 5(b). In Region III with λx = λx3, the
streamwise vorticity almost disappears on the wall, i.e. , ωx|y=0 =

0, in Fig. 5(c). In addition, in these typical regions, there is no local
recirculation region or reversed flow.

(A8) The inertial forces can be neglected in the immediate
neighborhood of the solid walls, i.e. , the viscous sublayer with
the vertical height h (equal to 5 viscous lengths). In such a layer,
viscous forces are dominant.
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2.3. Governing equations of the disturbed flow field

However, in present circumstances, based on the above as-
sumptions (A2–A5, and A8), the nondimensional governing equa-
tions for such a disturbed flow field are reduced as:

∇ · u = 0, (1a)

∇p =
1
Re

∇
2u, (1b)

where the symbol ∇ is the gradient operator, u = (u, v, w)
is defined as the disturbed velocity vector, p is the disturbed
pressure, and Re is the Reynolds number based on the incoming
velocity U∞ (= U(y → ∞)), the characteristic length of flat plate
L and kinematic viscosity ν, that is Re = U∞L/ν. All velocities are
scaled by U∞ and the lengths are scaled by L.

The non-slip boundary conditions are prescribed at the walls,
i.e. , u = 0 at y = 0. The solutions are only valid in 0 ≤ x ≤ λx1,2,3,
0 ≤ y ≤ h and 0 ≤ z ≤ λ.

Especially, the disturbed pressure is conveniently eliminated
from the above governing equations. Then the vorticity transport
equation is also reduced as

∇
2ωd = 0, (2)

where ωd = (ωx, ωy, δωz) is the vector of the disturbed vorticity,
defined as ∇ × u.

2.4. Theoretical analysis of the disturbed flow field

Fig. 4(b) shows the schematics of the introduced streamwise
vortex pairs with opposite signs on the upper surface of the flat
plate. The disturbed velocities, particularly for the vertical and
spanwise components v and w, are induced by the introduced
streamwise vortices, according to the Biot–Savart law. Based on
the above assumption (A6) in each region, their distributions are
independent of x and can be assumed as

v(y, z) = −Av(y) cos (βz) , (3a)
w(y, z) = −Aw(y) sin (βz) , (3b)

where Av(y) and Aw(y) are amplitudes of v and w, respectively,
nd β = 2π/λ is the wavenumber. Correspondingly, the bound-

ary conditions for the system of Eq. (1) and under the present
assumptions include the absence of slip in the fluid at the walls:

Av|y=0 = 0, (4a)

Aw|y=0 = 0. (4b)

With the aid of Eq. (3a), the continuity equation, Eq. (1)(a), can
be rewritten as
∂u
∂x

=

(
dAv

dy
+ βAw

)
cos (βz) . (5)

Because of the non-slip boundary condition on the surface, Eq.
(1) gives one limitation for Av , therefore, given by
∂v

⏐⏐⏐ = 0 ⇒
dAv

⏐⏐⏐ = 0. (6)

∂y y=0 dy y=0
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hen we have:

(x, y, z) = Au(x, y) cos (βz) + Cu(y, z)

= x
(
dAv

dy
+ βAw

)
cos (βz) + Cu(y, z), (7)

where Au(x, y) is the amplitude of the disturbed streamwise ve-
locity u, and Cu is an unknown coefficient only related to the
coordinates y and z.

The vorticity transport equation, Eq. (2), is adopted for solving
the three components of the vorticity defined as

ωx =
∂w

∂y
−

∂v

∂z

=

(
−

dAw

dy
− βAv

)
sin (βz) , (8a)

ωy =
∂u
∂z

−
∂w

∂x

= −βx
(
dAv

dy
+ βAw

)
sin (βz) +

∂Cu

∂z
, (8b)

ωz =
∂v

∂x
−

∂u
∂y

= −x
(
d2Av

dy2
+ β

dAw

dy

)
cos (βz) −

∂Cu

∂y
. (8c)

orrespondingly, under the non-slip boundary conditions and
ssumption (A6), we have Cu(y, z) = 0. Hence Eq. (2) reduces to:

(
d2

dy2
− β2

)(
−

dAw

dy
− βAv

)
= 0, (9a)(

d2

dy2
− β2

)(
dAv

dy
+ βAw

)
= 0, (9b)

d2

dy2
− β2

)(
d2Av

dy2
+ β

dAw

dy

)
= 0. (9c)

t can be seen from Eq. (9a) that the z component is just the
pace derivative of the y component. The y and z components
f disturbed vorticity are interdependent. The physical reason for
his is that the continuity of the vorticity satisfies the nondiver-
ence of the vorticity field, i.e. , ∇ · ωd =

∂ωx
∂x +

∂ωy
∂y +

∂δωz
∂z = 0,

where ∂ωx/∂x = 0 is assumed in assumption (A6) in each region.
Only the x and y components are used to determine the unknown
amplitudes Av and Aw under a certain boundary definition.

2.4.1. The first boundary case in region I
In the present case, in assumption (A7), the streamwise vor-

ticity with a maximal amplitude of Aωx1 (> 0) is attached to the
wall, as shown in Fig. 5(a). Thus with the aid of Eqs. (4a)(a) and
(8a)(a), we have:

|ωx|y=0 = Aωx1 , ⇒
dAw

dy

⏐⏐⏐
y=0

= Aωx1 . (10)

At y ≤ h, the exact solutions of Eq. (9a) can be obtained by the
following form:

dAw

dy
+ βAv = C1e−βy, (11a)

dAv

dy
+ βAw = C2

(
eβy

− e−βy) , (11b)

here C1 and C2 are positive constants. Finally, the solutions for
mplitudes Av and Aw are given by

Av =

(
C2 y −

C1
) (

eβy
− e−βy)

+
C1 ye−βy, (12a)
2 4β 2
110
Fig. 6. When y ≤ h, (a) variations in the relative amplitudes, Av , Aw and
Au divided by Aωx1 in Region I with C2 = 2Aωx1 with respect to y and λ,
and correspondingly, (b) variations in the relative amplitudes of the vorticity,
|ωx|/Aωx1 , |ωy|/(xAωx1 ) and |δωz |/(xAωx1 ), along with y at λ = π .

Aw =
1
2β

(
C1

2
+ C2

) (
eβy

− e−βy)
+

C1

2
ye−βy

−
C2

2
y
(
eβy

+ e−βy) , (12b)

ith the following conditions:

1 = Aωx1 , C2 ≥ 2Aωx1 , h =
C1

2βC2
. (13)

The distributions of these amplitudes are represented graph-
ically in Fig. 6(a) with the following specific parameters: the
constant C2 = 2Aωx1 , the different wavelengths λ = π , 2π and
4π , and therefore the resulting different heights hλ=π = 0.125,
hλ=2π = 0.25 and hλ=4π = 0.5. For the sake of the maximum
vorticity generated on the wall, the amplitude Aw is obviously
greater than the amplitude Av at the same height. With the
increasing wavelength of the disturbance, Av is reduced at the
same height, while Aw varies slightly.

The distributions of the three components of disturbed vortic-
ity are given by

ωx = −C1e−βy sin (βz) , (14a)
ωy = −C2βx

(
eβy

− e−βy) sin (βz) , (14b)

δωz = −C2βx
(
eβy

+ e−βy) cos (βz) . (14c)

The relative amplitudes of these disturbed vorticity components
varying along the vertical position y are shown in Fig. 6(b) with
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he example of λ = π . The figure shows that the relative
mplitude of δωz is obviously larger than that of ωx or ωy.

2.4.2. The second boundary case in region II
In the present case, for assumption (A7), the streamwise vor-

ticity with a small amplitude of Aωx2 (> 0 and < Aωx1 ) at the
wall is distributed near the wall, as shown in Fig. 5(b). By similar
Eq. (10) but with amplitude Aωx2 , we have:

dAw

dy
+ βAv = C3eβy

+ C4e−βy, (15a)

dAv

dy
+ βAw = C5

(
eβy

− e−βy) , (15b)

here C3, C4 and C5 are all positive constants. With the help of
he boundary conditions, Eqs. (6) and (4a), the solutions for the
mplitudes Av and Aw are given by

Av =
C3 − C4

4β

(
eβy

− e−βy)
+

C5 − C3

2
yeβy

−
C5 − C4

2
ye−βy, (16a)

w =
C3 + C4 + 2C5

4β

(
eβy

− e−βy)
−

C5 − C3

2
yeβy

−
C5 − C4

2
ye−βy, (16b)

with the following conditions:

C3 + C4 = Aωx2 , C4 < C3 < C5, h <
C3 + C4

β(C5 − C3)
. (17)

The distributions of these amplitudes are represented graph-
cally in Fig. 7(a) with the following specific parameters: the
onstants are C3 =

3
4Aωx2 , C4 =

1
4Aωx2 , and C5 = Aωx2 , the different

wavelengths are λ = π , 2π and 4π , and therefore the resulting
different heights are hλ=π ∼ 2, hλ=2π ∼ 4 and hλ=4π ∼ 8. In
the present Region II, the amplitude Aw is still greater than the
amplitude Av at the same height, very close to the walls. With
the increasing wavelength of the disturbance, Av and Aw are both
reduced at the same height.

The distributions of the three components of the disturbed
vorticity are thus given by

ωx = −
(
C3eβy

+ C4e−βy) sin (βz) , (18a)

ωy = −C5βx
(
eβy

− e−βy) sin (βz) , (18b)

δωz = −C5βx
(
eβy

+ e−βy) cos (βz) . (18c)

s shown in Fig. 7(b), the relative amplitudes of these three
omponents of the disturbed vorticity all increase as the distance
moves away from the wall.

.4.3. The third boundary case in region III
In the present case, the vorticity almost disappears at the wall

ased on assumption (A7), as shown in Fig. 5(c). Such boundary
onditions can be expressed on the basis of Eqs. ((4a)a) and
(8a)a) by

ωx|y=0 = 0, ⇒
dAw

dy

⏐⏐⏐
y=0

= 0. (19)

By comparing the boundary condition of Av from Eq. (6) to the
bove system in Eq. (9a), it can be concluded that the variations
n Av and Aw are identical. The solutions in y ≤ h are given by

Av = Aw = A, (20a)
dA

+ βA = C
(
eβy

− e−βy) , (20b)

dy

111
Fig. 7. When y ≤ h, (a) variations in the relative amplitudes, Av , Aw and Au
divided by Aωx2 in Region II with C3 =

3
4Aωx2 , C4 =

1
4Aωx2 and C5 = Aωx2 with

espect to y and λ, and correspondingly, (b) variations in the relative amplitudes
f the vorticity, |ωx|/Aωx2 , |ωy|/(xAωx2 ) and |δωz |/(xAωx2 ), along with y at λ = π .

where C is a positive constant. Accordingly, the distributions of
he amplitude A near the upper surface are obtained

=
C
2β

(
eβy

− e−βy)
− Cye−βy, (21)

nd illustrated in Fig. 8(a) with different wavelengths. With the
ncreasing wavelength, the amplitude would be reduced at the
ame height.
The disturbed vorticity in the present case is then presented

s

ωx = −C
(
eβy

− e−βy) sin (βz) , (22a)

ωy = −Cβx
(
eβy

− e−βy) sin (βz) , (22b)

ωz = −Cβx
(
eβy

+ e−βy) cos (βz) . (22c)

These amplitude variations are shown in Fig. 8(b) and increase as
y increases.

In the present disturbed vorticity field, Eqs. (14a), (18a) and
(22a) show that the appearance of ωy and δωz downstream (x >

0) is actually induced by the introduced ωx, which interacts with
the walls [33] because ωy and δωz at the start of Regions I, II and
III always disappear in assumption (A6), particularly for ωy owing
to ωy(y = 0) ≡ 0, as stated below in detail. This is the key idea
n the vortex-induced vortex theory [31,33].

In addition, the disturbed vertical vorticity ωy is always pro-
ortional to βx

(
eβy

− e−βy
)
, while δωz is proportional to βx

eβy
+ e−βy

)
, throughout the present three regions. This means
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Fig. 8. When y ≤ h, (a) variations in the relative amplitudes, Av , Aw and
u divided by C in Region III with respect to y and λ, and correspondingly,
b) variations in the relative amplitudes of the vorticity, |ωx|/C , |ωy|/(xC) and
|δωz |/(xC), along with y at λ = π .

that both amplitudes of ωy and δωz would increase with increas-
ing y.

3. Results and discussions

3.1. The first sign law for the disturbed streamwise and vertical
vorticities

From the above specific distribution of the streamwise and
vertical components of the disturbed vorticity under different
circumstances, the first sign law in Regions I, II and III of the
hairpin vortex is obtained. Similar to the previous work [31], by
introducing the first sign variable ϖ1 = ωx · ωy, we have

ϖ1 = C1C2βxe−βy (
eβy

− e−βy) sin2 (βz) ,

in Region I, (23a)
ϖ1 = C5βx

(
C3eβy

+ C4e−βy) (
eβy

− e−βy) sin2 (βz) ,

in Region II, (23b)

ϖ1 = C2βx
(
eβy

− e−βy)2 sin2 (βz) ,

in Region III. (23c)

Or we can rewrite these as follows:

sgn(ϖ ) = 1, (24)
1 i

112
except for some special positions where ϖ1 = 0 (z = 0, 1
2λ and

λ), where the sign function sgn(f ) with nonzero f is stated as

sgn(f ) =

{
1 if f > 0,

−1 if f < 0. (25)

The first sign law is unaffected by the sign of the (disturbed)
panwise vorticity δωz or Ωz and unrelated to the Reynolds
number Re and wavelength λ or wavenumber β .

The physical mechanism responsible for the generation of the
disturbed vertical vorticity ωy with specific signs in the hairpin
vortex is revealed. At first, the disturbed vertical vorticity always
disappears at the walls, as expressed by Eq. (8a)(b) with a nonslip
velocity u = w = 0 at y = 0. Only the streamwise and spanwise
components of the disturbed vorticity, ωx and δωz in Eq. (8a), are
generated and associated with the disturbed shear flow near the
walls, such as ∂w/∂y ̸= 0 and ∂u/∂y ̸= 0 at the walls in Region
I. The first sign law then indicates that in Fig. 3 or 4, +|ωy| is
nduced by introducing +|ωx| in one leg at z =

3
4λ, while −|ωy|

s induced by −|ωx| in another leg at z =
1
4λ. In other words, the

all-normal vorticity near the walls is actually induced by one of
he wall-tangent vorticities at the walls, from the viewpoint of the
orticity generation. These specific signs of ωy are theoretically
etermined by the spanwise distribution of u, i.e. , ∂u/∂z in

Eq. (8a)(b) (see in Section 3.4. Even if the legs of the hairpin vortex
are tilted upward away from the walls in both Regions II and III,
where the streamwise vorticity begins to decrease to zero at the
walls, the vertical vorticity with a specific sign is still induced
by the counterrotating streamwise vortices, advected or evolved
from those in Region I, under the same mechanism of the first
sign law. These special distributions of ωx and induced ωy are well
onsistent with the spacial development of the vortex lines in the
airpin vortex [11,35]. Therefore, the first sign law is valid in the
hole hairpin structure.

.2. The second sign law for the three components of vorticity

First, the 2-D mean shear flow past a flat plate without any
low or geometry disturbance is described. There is only span-
ise vorticity Ωz attached at the walls and convected upward
way from the walls. Such mean shear flow is dominated by the
treamwise velocity U(y). In the viscous sublayer, U(y) is linear,
.e. , U(y) = ηy, where η is a positive coefficient related to
he friction velocity at the wall. As a result, the vorticity Ωz is
ainly determined by −dU/dy, i.e. , Ωz = −η. The sign of Ωz is

hus negative in the whole of Regions I, II and III and is simply
xpressed by

gn(Ωz) = −1. (26)

Then, the effect of the disturbed spanwise vorticity δωz can
e obtained. It is assumed that the magnitude of the disturbed
panwise vorticity |δωz | is less than that of |Ωz | in the mean shear
low, i.e. , |δωz | < |Ωz |, in Regions I, II and III. It is expressed as
gn(Ωz + δωz) = sgn(ωz) = −1. Then, the variation in δωz does
ot have a significant influence on the qualitative distribution
f Ωz . Subsequently, the appearance of δωz can be regarded as
he wavy modification of Ωz , similarly for u(x, y, z) to U(y). For
xample, in Region I in the viscous sublayer, we have

U + u = ηy + C2x
(
eβy

− e−βy) cos(βz), (27a)

z + δωz = −η − C2βx
(
eβy

+ e−βy) cos (βz) . (27b)

n the present situation, as indicated by Eq. (14a)(c), or (18a)(c), or
22a)(c), δωz is negative near z = 0 or λ (the start of the leg) but
ositive near z = λ/2 (the head). Meanwhile, as the wall-normal
istance increases, the amplitude of the disturbed vorticity δωz

ncreases, but the amplitude of Ωz decreases gradually over the
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Fig. 9. Pure mode A illustrated by the isosurfaces of (a) ωx = ±0.3, (b) ωy = ±0.3 and (c) ωz = ±0.3 in the wake of a circular cylinder at t = 872 and Re = 200,
here red and blue colors denote positive and negative values, respectively, and the arrows with the hollow and filled heads denote the vorticity with the specific sign
riginally formed in the upper and lower shear layers, respectively. Note that the cylinder surface is denoted by the gray semi-translucent surface. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Pure mode B illustrated by the isosurfaces of (a) ωx = ±0.2, (b) ωy = ±0.2 and (c) ωz = ±0.2 in the wake of a circular cylinder at t = 931.5 and
e = 300, where red and blue colors denote positive and negative values, respectively, and the arrows with the hollow and filled heads denote the vorticity with
he specific sign originally formed in the upper and lower shear layers, respectively. Note that the cylinder surface is denoted by the gray semi-translucent surface.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
iscous sublayer. Consequently, these coupled effects result in
he increase in the strength of the total spanwise vorticity ωz
= Ωz+δωz) at the start of the leg and lower vertical position but
he strength decreases greatly at the head of the hairpin vortex
nd higher vertical position in Fig. 3. If the magnitudes of ωx and
y in the (x, y)-plane of the two legs are approximately equivalent
o the reduced magnitude of ωz in the head, then the isosurface of
can represent the two legs and the head of the hairpin vortices,

.g. , in Fig. 2(b). However, the start of the legs near z = 0 and
or the region between the two adjacent hairpin vortices along

he z-axis is hard to show in the isosurface of ω because ωz is
ignificantly larger than ωx and ωy (≈ 0) at the lower vertical
ositions.
Based on the above analysis, by introducing the second sign

ariable ϖ2 = ωx · ωy · ωz [31], the second sign law for the three
omponents of the vorticity is then obtained as

gn(ϖ2) = −1, (28)

xcept for at certain positions where ϖ2 = 0 (z = 0, 1
2λ and λ).

t can be seen that such a sign relationship is also independent of
e, λ and β in Regions I, II and III.

.3. Intrinsic relationship with 3-D vortices in external and internal
lows at low and laminar Reynolds numbers

Let us briefly review some features in 3-D vortex-shedding
atterns that appear in external flow (EF) past a bluff body at
ow, laminar Reynolds numbers. The 3-D laminar wake transi-
ion of a circular-section cylinder, caused by 3-D instability, is
irst presented [32,36]. Two sign laws for dominant vorticities in
pure) modes A and B, typically as shown by the arrows with the
ollow and filled arrowheads in Figs. 9 and 10 through direct
umerical simulations, are summarized in the near wakes at
eynolds numbers of 200 and 300, respectively. Among them, the
irst sign law is thus expressed as follows:

gn(ϖ1) =

{
−1, if y < 0,
1, if y > 0, (29)

here regions at y > 0 and y < 0 denote the upper and lower
hear layers, respectively, and the spanwise vortices (including
113
concentrated vortex cores and elongated and stretched braids)
are shed from the upper and lower shear layers, respectively. The
second sign law is exactly the same as that in Eq. (28). These
features are also found in the 3-D laminar wake transition of a
square-section cylinder for (pure) modes A and B at Re = 180
and 250 [37,38], respectively.

Different from the above 3-D instability, some kinds of ge-
ometric disturbances introduced in the straight circular- and
square-section cylinders can also result in the appearance of 3-
D vortex-shedding patterns at low Reynolds numbers [37,39,40].
For example, in the wake of a square-section cylinder with a wavy
stagnation face at Re = 100, such wavy disturbances at a certain
intensity lead to the appearance of a hairpin-like or Ω-like vortex
in the near wake, the complete suppression of Kármán vortices
and both the upper and bottom shear layers extending down-
stream [37,39]. Moreover, these 3-D vortex-shedding patterns
also exist in the wake of a circular-section cylinder with radial
disturbances [40]. Interestingly, similar sign laws for dominant
vorticity components are summarized through careful compar-
isons [32]. In particular, the two sign laws (in the downstream
region x > 0) are exactly the same as those in Eqs. (28) and (29),
typically as shown in Fig. 11 when Kármán vortices are totally
suppressed in the near wake [31].

Recently, through theoretical analysis of the secondary flow
within a circular-section pipe as typical internal flow (IF) at low
and laminar Reynolds numbers, two sign laws for the disturbed
vorticity in the cylindrical coordinate system (z, r, φ) are deter-
mined [33], where the z, r and φ coordinates are the axial, radial
and azimuthal directions, respectively. If the curved wall reaches
a flat plate when the radius R approaches infinity and the local
Cartesian coordinate system is adopted at the wall, then both
sign laws at the downstream regions (z > 0 in IF) are exactly
the same as those in the upper surface of the flat plate, i.e. ,
Eqs. (24) and (28). This indicates that vorticity sign laws are
universal, regardless of the EF and IF, or coordinate systems. For
convenience, the following analysis is mainly conducted in the
downstream region of EF (x > 0), including the upper and lower
plate surfaces and both sides of a bluff body’s wake with and

without geometric disturbances.
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Fig. 11. In a case of Kármán vortices completely suppressed in the wake of
conic cylinder where the radius varies across the span in the Λ form, both

ign laws illustrated by the isosurfaces of the first and second sign variables,
a) ϖ1 = ±0.04 and (b) ϖ2 = ±0.03 at t = 230, non-dimensional wavelength
f 4, dimensionless wave height of 0.8 and Re = 100, where red and blue
olors denote positive and negative values, respectively, and the arrows with
he hollow and filled heads denote ϖ1 and ϖ2 with the specific sign originally
ormed in the upper and lower shear layers, respectively. Note that the cylinder
s denoted by the gray translucent surface.

Fig. 12. Quadrant analysis of the local streamwise and vertical components of
the vorticity, (ωx, ωy), for different types of 3-D vortices tilted upward (+y) or
ownward (−y) in the (x, y)-plane, according to both sign laws in Eqs. (28) and
29), where the dash-dot lines denote |ωx| = |ωy|, and the dashed lines are used
o qualitatively separate the different vortex patterns according to the relative
trength or the ratio of ωy to ωx , and the hollow arrows denote the inclined
irection of vortex lines determined by ωx and ωy in the (x, y)-plane.

Then, the specific vorticity signs in the above vortical struc-
ures can be clarified as follows. Based on the above two sign laws
or the vorticity in a hairpin vortex, we can determine the specific
roup of the vorticity signs. For example, (+|ωx|, +|ωy|, −|ωz |)
xists in one leg tilted upward, while (−|ωx|, −|ωy|, −|ωz |) ap-
ears in another leg tilted downward, as shown in Fig. 2(a).
hey are exactly the same as those existing in the vortices in
ure modes A and B in wakes of circular- and square-section
ylinders [32,36,38], i.e. , the so-called Π− vortex formed in
he upper shear layer and shed in the upper side of the wake.
n addition, there is another kind of vortex that has a differ-
nt group of vorticity signs, that is, (+|ωx|, −|ωy|, +|ωz |) and
−|ωx|, +|ωy|, +|ωz |). Such a vortex is referred to as the Π+

ortex formed in the lower shear layer and shed in the lower
ide of the wake, therefore satisfying the relationship in Eq. (29)
n region y < 0 and Eq. (28). For such a Π-type vortex itself,
he head line, ‘—’, denotes the spanwise vortex alternately shed
rom the upper or lower shear layer. While two legs, ‘| |’, denote
hat streamwise and/or vertical vortex pairs with opposite signs
re also alternatively shed and stretched or elongated by the
pstream spanwise vortex. Therefore, a conclusion can be made
114
hat the hairpin vortex formed in the lower flat plate (y < 0) has
he same group of vorticity signs in the Π+ vortex. Consequently,
n terms of the vorticity sign, the hairpin vortex is very similar to
Π-type vortex but with a smaller scale, schematically illustrated
n the right part of the vorticity decomposition in Fig. 3.

In summary, the intrinsic relationship between the hairpin
ortex and vortices in EF and IF has two aspects: two vorticity
ign laws and specific sign combinations among the three vor-
icity components. This results in a qualitative similarity among
hese vortices. It may be conjectured that both the sign laws
nd sign similarity in these different vortical structures discussed
ere are also the universal physical mechanism, suggested in a
revious paper [41], for a number of wall-bounded shear flows in-
luding the boundary layers, channel and pipe flows, transitional
nd turbulent flows, and for different vortices, such as the ap-
earance of a vortex loop, formation of the Λ- or hairpin-vortex,
nd the hairpin-V-hairpin structure induced by an isolated cuboid
oughness coupled with a short duration jet [12], even a train of
- and ring-like vortices. Particularly in a recent work [42], it is

eported that such hairpin-like vortex also appears in a super-
onic, separated and longitudinal cylinder wake. This similarity
ould be attributed to the fact that both sign laws are unrelated to
he Reynolds number, the wavelength of the disturbances intro-
uced artificially (geometrical disturbance) or naturally (rough-
ess, 3-D instability and turbulence), and the solid structures in
F and IF. Such a conjecture may establish a new, universal the-
ry of vorticity-sign similarity in vortices determined by present
ortex dynamics, although much more evidence is needed in
xperiments and direct numerical simulations.
In addition, as shown in Fig. 12, a quadrant analysis for the

treamwise and vertical components of the vorticity is performed.
s stated above, the Π− vortex mainly appears in the first (Q1)
nd third (Q3) quadrants of the ωx − ωy plane, while the Π+

vortex exists in the second (Q2) and fourth (Q4) quadrants. Hence,
we can define the generalized Π-type vortex as a category of a
specific vortex in which three components of the dominant vor-
ticity satisfy both sign laws, regardless of EF or IF and even in the
boundary layer. Furthermore, according to the relative strength,
i.e. , the ratio of ωy to ωx, in vortical structures, different vortices
can be classified into three categories, typically in Q1, as shown in
Fig. 12. In the first category of the Π-type vortex, ΠI, the vertical
vorticity ωy is obviously greater than the streamwise vorticity ωx,
.g. , |ωy/ωx| > 2 ∼ 5. The typical case is the totally suppressed
ármán vortices in the wakes of a wavy square-section cylinder
nd a conic cylinder [37,40], as shown in Fig. 11. The second cat-
gory, ΠII, is denoted by the equivalent magnitudes between ωx
nd ωy. It includes many kinds of vortices, typical (pure) modes A
nd B in the bluff body’s wakes [36,38] in Figs. 9 and 10, the head
f the hairpin vortex, and the head of the Ω-like vortex shedding
n the wake of the geometrically disturbed cylinders [32,37]. For
he third category of the Π-type vortex, ΠIII, the magnitude of the
ertical vorticity is less than that of the streamwise vorticity, e.g. ,
ωy/ωx| < 0.1, typically in the horseshoe vortex, quasistreamwise
ortices, two legs of the hairpin vortex, and legs of the Ω-like
ortex in the disturbed cylinder’s wake.

.4. Disturbed velocity and pressure fields

Except for the vertical and spanwise components of the dis-
urbed velocity, v and w, which are assumed to be uniform along
he x direction in each region (I, II or III), the main focus is on
he backward induced flow u and pressure p distributed in the
earest wall.
In the present analysis model and in Regions I, II and III, the

isturbed streamwise velocity u is obtained as follows:

(x, y, z) = C x
(
eβy

− e−βy) cos(βz)
2
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in Region I, (30a)
(x, y, z) = C5x

(
eβy

− e−βy) cos(βz)
in Region II, (30b)

u(x, y, z) = Cx
(
eβy

− e−βy) cos(βz)
in Region III. (30c)

heir amplitudes are shown in Figs. 6(a), 7(a) and 8(a). Particu-
arly, the low-speed streaks always appear in the middle region,

∈ ( 14λ, 3
4λ), because u < 0, while the high-speed region

with u > 0 exists outside of the two legs or between the
legs of the adjacent hairpin vortices, z < 1

4λ or z > 3
4λ. In

ddition, the backward induced velocity u is always proportional
o x

(
eβy

− e−βy
)

≈ 2βxy when y → 0, regardless of Region
, II or III. It also shows that the larger the hairpin vortex with
he larger wavelength λ or lower wavenumber β is, the weaker
he backward induced flow u is, owing to the greater mean
distance from the vortex elements in the hairpin core to the
center of the hairpin loop, consistent with the previous descrip-
tion [30]. Meanwhile, such a streamwise velocity u induced by the
uasistreamwise vortices mainly determines not only the wall-
ormal vorticity ωy (= ∂u/∂z), as stated in Section 3.1, but also
nother wall-tangent vorticity δωz (= −∂u/∂y).
Meanwhile, the disturbed pressure p is presented as

(y, z) = −
C2

Re

(
eβy

− e−βy) cos (βz) −
C1

Re
e−βy cos (βz)

+ Cp1 in Region I, (31a)

(y, z) =
1
Re

[
−(C5 − C3)eβy

+ (C5 − C4)e−βy] cos (βz)

+ Cp2 in Region II, (31b)

(y, z) =
2C
Re

e−βy cos (βz) + Cp3 in Region III, (31c)

where Cp1, Cp2 and Cp3 are constants. Considering the analysis in
Section 3.9, such pressure could be regarded as the variation in
the pressure in each region (I, II or III). Therefore, there are two
relationships for the varied pressure on the wall (y = 0):

(i) In the middle region of the hairpin vortex (z ∼
1
2λ),

− Cp1 = C1/Re > 0 in Region I, p − Cp2 = (C4 − C3)/Re < 0
in Region II and p − Cp3 = −2C/Re < 0 in Region III, which
eans that the pressure would decrease downstream, and the

ocal reversed flow with a total velocity of U+u < 0 could occur;
(ii) In the outboard region of the hairpin vortex (z ∼ 0 or λ),

p−Cp1 < 0 in Region I, p−Cp2 > 0 in Region II and p−Cp3 > 0 in
Region III, which indicates that the pressure would increase along
the streamwise direction.

It should be noted that the pressure used in the present
dynamics, Eq. (1)(b), is only affected or determined by the vis-
cous forces, totally unrelated to the inertial forces. Such pressure
variation is actually the so-called frictional pressure loss. Conse-
quently, it can be concluded that the favorable pressure gradient
is in the outboard region, and the adverse pressure gradient is in
the middle region, if the pressure variation owing to the inertial
forces, i.e. , kinetic pressure, is taken into account.

3.5. The third sign law and sign of the Reynolds shear stress

Except for the above two sign laws for the vorticity, there is a
third sign law for the two disturbed velocity components, u and v,
induced by the introduced streamwise vortex. Based on Eqs. (7),
(30a) and ((3a)a), we have the following relationship:

uv = −xAv

(
dAv

+ βAw

)
cos2 (βz) ≤ 0. (32)
dy l

115
Or it can be rewritten by introducing the third sign variable ϖ3 =

· v [31] as

gn(ϖ3) = −1, (33)

xcept for some specific positions where ϖ3 = 0 (z =
1
4λ

and 3
4λ). It is also unrelated to Regions I, II and III, the Reynolds

number and wavelength.
Such a relationship is predicted in the turbulent boundary

layer of the flat plate [34] and has already been reported in
previous work [31]. In the turbulent boundary layer, the intro-
duced streamwise vortex (with one leg) or vortex pair (with two
legs) results from turbulence in the local region or is viewed
as small-scale eddies. The disturbed velocity u is then induced
by such a streamwise vortex and is different from the mean
shear flow (U, 0, 0). Thus, u can be viewed as the turbulence-
induced velocity. The Reynolds stress is defined as −ρuv. In the
present circumstance, we first have −ρuv = −ρϖ3 ≥ 0 in
Region I or the laminar sublayer where the viscous forces are
dominant. When the quasistreamwise vortices or counterrotating
vortex pairs, as well as the horseshoe or hairpin vortex, evolve or
advect in Regions II and III, the Reynolds stress is still positive
based on the third sign law. Finally, the whole viscous sublayer
is full of vortices with positive shearing stresses. Therefore, the
above process develops the hypothesis that the positive Reynolds
shear stress is inherently accompanied by a quasistreamwise
vortex or vortex pairs generated and evolved in the turbulent
boundary layer, as proposed in the previous work [34]. It should
be mentioned that the existence of the head or formation of
the complete hairpin vortex is not a necessary condition in this
process.

Moreover, as shown in Figs. 6(a), 7(a) and 8(a), the amplitude
relationship among the three components of disturbed velocity is
obtained as follows,

Au > Aw ≥ Av. (34)

This is true in most cases (x > h in Region I, x >
C3+C4
2βC5

in Region
II, x > 0 in Region III), as verified in previous work [34] mainly
in Region I, through the comparing ratios Aw/Au and Av/Aw in
ifferent regions and y → 0.

.6. New interpretation of the lifting-up hairpin vortex

In this subsection, a new lifting mechanism is proposed on
he basis of present theoretical models for the hairpin vortex.
irst, different mechanisms for the lifting-up hairpin vortex are
eviewed briefly. Then, the ratio of ωy to ωx predicted by the
resent theoretical model is illustrated. Subsequently, the effect
f ejections on the lifting mechanism is discussed from differ-
nt aspects in detail. Finally, the new mechanism based on the
ortex-induced vortex theory is used to explain the lifting-up
henomenon.

.6.1. Brief review
There are at least two mechanisms used to explain the lifting

f the hairpin vortex reported in previous works. First, in the
heodorsen’s conceptual model of the hairpin vortex, as shown
n Fig. 2(a), Theodorsen visualized a vortex filament oriented
panwise to the mean flow and perturbed by a small upward
otion [10]. The part of the filament lying further away from the
all (variously called the head) would experience a higher mean

low velocity and be convected downstream faster than its lower-
ying parts. Consequently, the legs connecting the spanwise part
f the vortex to the head would be stretched and intensified,
ausing the vortex to lift away from the wall at a higher mean
elocity, resulting in greater stretching compared to that the

ower-lying parts.
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Then, through observations of H2 bubbles in the (x−y) planes,
the bursting model was proposed by Kline et al. [4]. The long
streamwise streaks of bubbles were shown to be regions of low
streamwise momentum. The low-speed regions were associated
with quasistreamwise vortices lifting the viscously retarded fluid
upwards from the region close to the wall. The bubble streaks
wavered vertically with increasing amplitude and then lifted
away from the wall in a vigorous, chaotic motion.

The common and key phenomenon appearing in these two
mechanisms is negative streamwise fluctuations (i.e. , −|u|) being
lifted away from the wall by positive wall-normal fluctuations
(i.e. , +|v|), referred to as ejections [43]. Such ejections corre-
spond to the lifting process of low-speed fluid that originates near
the wall by the present upwelling flow between the two legs of
the Λ-like or hairpin-like vortex [35].

3.6.2. Ratio of ωy/ωx in the present hairpin vortex model
The characteristics of the slope of the hairpin vortex are an-

alyzed qualitatively. Similar to the discussion for both sign laws
mentioned above, from the viewpoint of the spatial evolution of
vortex lines, the skewed angle of the vortex lines in the (x, y)
plane is mainly determined by the ratio ωy/ωx.

From Eqs. (14a), (18a) and (22a), this ratio is obtained in
different regions as follows:
ωy

ωx
=

C2

C1
βx

(
e2βy − 1

)
, in Region I (35a)

ωy

ωx
=

C5βx
(
e2βy − 1

)
C3e2βy + C4

, in Region II (35b)

ωy

ωx
= βx, in Region III. (35c)

n particular, the ratio ωy/ωx in Region III is unrelated to the
all-normal distance y.
As shown in Fig. 13, the variation in this ratio along with

treamwise positions at different wavelengths is illustrated in
hree typical regions. As the wavelength decreases, the ratio
ncreases, which indicates that the small-scale hairpin vortex
lants upward quickly. The figure shows that the increasing rate
f this ratio along the x-axis at the same wavelength λ reaches
maximum in Region III but a minimum in Region II at the low
ertical position.
Furthermore, when y → 0, the above feature is verified by a

qualitative relationship:

C5
(
e2βy − 1

)
C3e2βy + C4

<
C2

C1

(
e2βy − 1

)
< 1. (36)

his relationship indicates that under the following conditions in
ifferent regions, the same wavenumber β , the same streamwise
osition x, the same strength of streamwise vorticity whenever
n or near the walls, and the same wall-normal height y (< h),
 q

116
hen the increasing rate of the vertical vorticity or the inclined
ngle of the vortex lines along the x-direction is the greatest in

Region III but the smallest in Region II.

3.6.3. Effect of ejections
Then, the central question of the key effect of the ejections

or upward flow with +|v| on the lifting-up mechanism or the
increasing vertical vorticity naturally arises. The following four
aspects should be carefully discussed. The first aspect is the
vertical velocity distributed in each region (I, II and III). In the
present physical model, the vertical velocity is assumed to be
uniformly distributed along the x direction, regardless of whether
it is located in Region I, II or III. This indicates that the lifting effect
of +|v| is also effective in each region, regardless of whether
it is in the start or the end of each region. In other words, the
quasistreamwise vortex should be lifted uniformly with the same
uniform distribution of the vertical vorticity (i.e. , ωy = 0 without
any inclination of vortex line), rather than the gradual increasing
vertical vorticity predicted by the present model.

The second aspect is thus about the magnitude of the vertical
velocity in each region (I, II and III). In the present analytical
model, the intensity of the streamwise vorticity in each qua-
sistreamwise vortex core is further assumed to be equal in each
region without any viscous diffusion, which implies that the
quasistreamwise vortex would induce the same magnitude of
vertical velocity according to the Biot–Savart law. Then, the lifting
mechanism, owing to a positive vertical velocity with the same
magnitude, would lead to the exact same inclination of the vortex
line in each region. However, the theoretical relationship, Eq. (36),
suggests that the inclination angle is smaller in Region II but
larger in Region III.

Then, the third aspect is the effect of the viscous forces, mainly
dissipation and diffusion, on the already formed quasistreamwise
vortex in each region. It is already known that viscous diffusion
would reduce the vorticity in the present quasistreamwise vortex
core transported downstream. As a result, the induced vertical
velocity would also be weakened downstream. The lifting-up
mechanism due to ejections with these weakened vertical veloci-
ties would cause the inclined angle of the quasistreamwise vortex
to gradually decrease downstream. Therefore, the vortex lines in
the two legs are possibly tilted downward. However, two legs
are actually inclined increasingly or always upward, as shown in
Fig. 2.

The fourth aspect, which is the distribution of the vertical
velocity in the (y, z) plane, is discussed. As shown in Fig. 4(b) and
Eq. (3a)(a), v is positive near the head at z ∼

1
2λ and negative

t z ∼ 0 and λ, but it is almost zero at z ∼
1
4λ and 3

4λ where
two legs are located. This indicates that the effect of +|v| is
ainly on the lifting of the head, rather than the two legs or
uasistreamwise vortices. In other words, if +|v| at z ∼

1λ has
2
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lifting (ejection) effect on the two legs, then it is reasonably
oncluded that −|v| at z ∼ 0 and λ has a pressing-down (sweep)
ffect on the same legs. Consequently, both effects cancel each
ther out, and the two legs are always horizontal without any
nclination.

In summary, it can be concluded that the lifting-up mechanism
s not totally attributed to the ejections with a positive vertical
elocity between the two legs. There must be a new mechanism
nder the sufficient consideration of these four aspects, unrelated
o the magnitude of the positive vertical velocity varying along
he x and z directions.

.6.4. New mechanism: vortex-induced vortex
Finally, as indicated in the first sign law, the lifting mecha-

ism is attributed to the vortex-induced vortex. In each region,
henever the quasistreamwise vortex is completely attached to
he wall in Region I, or when it leaves the wall in Region II until
n Region III, ±|ωy| are naturally induced by ±|ωx|, respectively,
mainly in the two legs or quasistreamwise vortices. This reveals
the physical phenomenon that once the quasistreamwise vortex
is close to and attached to the horizontal wall, the induced wall-
normal vorticity causes the quasistreamwise vortex to have a
natural tendency to leave far away from the wall, e.g. , if the
viscous forces are strong enough with a high level of wall-normal
vorticity, the quasistreamwise vortex enters into the outer region
of the boundary layer. Such a lifting-up mechanism is theoreti-
cally unrelated to the magnitude of the quasistreamwise vortex
and its variation and the induced positive vertical velocity in the
ejections. Therefore, ejections could be regarded as the associated
result of the already formed quasistreamwise vortex, as well
as the positive vertical velocity. This lifting-up process typically
undergoes a linear effect because of the linear viscous forces in
the present dynamics Eq. (1), rather than a nonlinear effect owing
to nonlinear inertial forces.

In addition, the relationship, Eq. (36), also presents an inter-
esting property that possibly appears under certain parameters.
The condition that |ωx| is up to the maximum Aωx1 at the wall
in Region I is associated with the initial generation of two legs.
Once the induced ωy increases to a certain value, which leads
to two legs lifting up slightly, |ωx| then reduces down to Aωx2
at the wall, as shown in Fig. 5(b), and the two legs evolve into
Region II. Because the smallest ratio ωy/ωx is in Region II in
Eq. (36), the induced ωy increases very slowly. This results in
the two legs stretching downstream over a longer distance (i.e.
, λx2 > λx1) until |ωx| is zero at the wall in Region III. Thus,
the two legs in Region II still appear to be horizontal, which is
well consistent with the physical picture in Fig. 2(b). In Region
III, these two slender legs are quickly slanted upward due to the
greatest ratio ωy/ωx in Eq. (36). If this process occurs only in the
viscous sublayer, the weak inertial forces have little contribution
on the two slender legs through stretching. Therefore, this prop-
erty is completely attributed to the viscous forces. Moreover, it is
also expected that the slanted angle of the head in Region IV is
determined by a kind of balance between the inertial forces and
the viscous forces. Because the inertial forces intensify ωx through
streamwise stretching in the outer region with a higher mean
velocity U(y), while the viscous forces increase ωy through the
present mechanism of the vortex-induced vortex or the so-called
vortex induction mechanism.

For the quasistreamwise vortices at high Reynolds numbers,
the disappearance of the head-like structure could be attributed
to following physical reasons. As shown in Fig. 13 only for Regions
I and II, the induced vertical vorticity increases as the wall-normal
distance increases in the viscous sublayer. However, at a high
Reynolds number, the viscous sublayer is very thin and almost
close to the wall, i.e. , y → 0; therefore, the viscous forces are
117
weak, and the vortex induction mechanism is greatly weakened,
as the first reason. The stretching from the strong inertial forces,
as the second reason, in the logarithmic layer leads to the increase
in the streamwise vorticity. These coupling reasons cause the
vertical vorticity to almost disappear at y → 0, i.e. , ωy → 0.
However, as stated above in the first sign law, because the span-
wise vorticity ωz(≈ Ωz), which increases as the Reynolds number
increases, near this quasistreamwise vortex is much larger than
the amplitudes of ωx and ωy ∼ 0, it is impossible to show the
isosurface or contour of ω in the head (assumed to exist) in both
the experiments and simulations.

3.7. Physical meaning of the present hairpin vortex model

As reported in previous work [33], and considering the above
analysis for both the vorticity sign laws and the associated lifting-
up mechanism, the physical meaning in the present hairpin vor-
tex model can be obtained as follows:

(i) The first sign law indicates that the inclined direction of the
two legs or quasistreamwise vortices, mainly associated with the
streamwise and vertical components of vorticity, is specific in the
longitudinal plane, i.e. , the x–y plane.

(ii) The second sign law shows the specific rotational direction
of the 3-D vortex in the hairpin paradigm, whenever it is in the
upper or lower flat plate.

(iii) For the three components of vorticity, ωx and ωy are
ntrinsically dependent on each other. Only ωz and Ωz are mainly
etermined by the 2-D mean shear flow originally in the bound-
ry layer, but δωz is a spanwise disturbing vorticity which causes
z or Ωz to periodically increase and decrease across the span.
Furthermore, a physical feature provided by the theoretical

model in Region I is discussed as follows. The streamwise vorticity
in the two legs is assumed to be uniformly distributed along
the streamwise direction in the three regions (I, II and III). Once
the vertical vorticity increases to a certain intensity, the qua-
sistreamwise vortex is gradually lifted away from the wall, e.g. ,
in Regions II and III. From Figs. 7(b) and 8(b), the vertical vorticity
increases with increasing wall-normal distance y, as well as the
treamwise vorticity. However, in Region I, as shown in Fig. 6(b),
he streamwise vorticity with a maximum at the wall decreases
ith y because the quasistreamwise vortex is attached to the
all, i.e. , yωxmax = 0, while the vertical vorticity still increases
way from the wall. This means that the induced vertical vorticity
ould reach its maximum at a certain height away from the
all, i.e. , yωymax > 0, and would then dissipate due to the
iscous forces. This is a new feature that mainly exists in Region
, which has two different heights for the maxima of the attached
uasistreamwise vorticity and induced wall-normal vorticity, i.e.
yωxmax ̸= yωymax, although |ωy| is still far less than |ωx|.
Based on the above feature in Region I, another physical mean-

ing in this hairpin model is identified. The induced wall-normal
vorticity is zero at the start x = 0 and increases downstream,
as shown in Fig. 13(a); the induced spanwise vorticity δωz also
ncreases downstream as shown in Fig. 6(b). In addition, the
iscous diffusion through the normal gradient of the vorticity and
issipation all lead to the vorticity in the vortex decreasing, e.g.
the streamwise vorticity in the present quasistreamwise vor-
ex. However, the introduced uniform quasistreamwise vorticity
ownstream is invariant in the present physical model. Conse-
uently, the induced wall-normal vorticity obviously does not
riginate physically from either viscous effect. Thus, the vortex
nduction mechanism revealed by the present model is regarded
s the third effect of the viscous forces on the spacial redistribu-
ion of the vorticity, referred to as viscous induction. Meanwhile,
s reported in previous work [33] and from the viewpoint of the
orticity generation, such viscous induction is the indirect effect
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f viscous forces, except viscous shearing near the wall as a direct
ffect.
Interestingly, this induction mechanism is hidden in the so-

utions satisfying the vortex dynamics governed by the Laplace’s
quation of disturbed vorticity, Eq. (2), coupled with the neces-
ary and essential boundary condition of the solid wall. Physical
easons can be analyzed from the following several aspects in the
resent upper surface of the flat plate. The first is one limiting
ase with extremely high viscosity, so that there is Re → 0, i.e.
, the Stokes flow only governed by the Stokes equation, Eqs. (1)
and (2). The main shear flow is always two-dimensional. Once
the quasi-streamwise vorticity is introduced and the wall-normal
vorticity is induced accordingly, these vorticities would be quickly
died away due to high viscous diffusion and dissipation. As for the
second aspect, another limiting case is the flow with extremely
small viscosity, i.e. , Re → ∞, approximately governed by the
Euler’s equation. Even if the wall-normal vorticity is induced,
its magnitude is so small that the quasi-streamwise vortex still
extends downstream without obvious inclination, as discussed
before. Besides, the disturbance of inertial forces is the third
aspect. The spatial distribution of vorticity is commonly and
almost determined by coupling effects of inertial and viscous
forces, such as convection, stretching and diffusion. The viscous
induction only occurs in the local flow region where the viscous
forces are dominant. Resultantly, it is hard to identify solutions of
such induction from total velocity and vorticity fields obtained in
experiments and numerical simulations. Howbeit, only vorticity
sign laws indicate such local solutions of viscous induction. In
other words, the vorticity sign laws, particularly the first sign law,
and inclination of 3-D vortex in the longitudinal plane, actually
originated from the local Stokes solutions, are illustrated as a kind
of fluid dynamical behaviors dominated by the Navier–Stokes
solutions, and are thus reasonably misunderstood as coupling
effects of inertial and viscous forces.

Finally, the effect of the inertial forces, i.e. , convection along
the (local) streamwise direction, is taken into account. The inertial
forces can determine the spatial direction of the vorticity evolu-
tion, while the vorticity with a specific sign and sign relationship
are presently determined by the viscous forces. Thus, for the
above feature, i.e. , yωxmax ̸= yωymax, coupling effects of the con-
vection and viscous induction result in an induced wall-normal
vorticity with specific signs appearing in a certain downstream
and wall-normal position. This indicates that coupling effects
can be used to explain a kind of physical phenomenon, that is,
the physical origin of the streamwise vorticity appearing in the
shear layers and shedding vortices in a bluff body’s wake. Two
typical examples are the (pure) mode A in the 3-D laminar wake
transition of a square-section cylinder at Re = 180 [44] and a
circular-section cylinder at Re = 200 [36]. Among them, the
ertical vorticity along the local flow region is attached on the
ylinder’s rear surface. Then, through the presence of viscous
nduction and coupling convection downstream, the streamwise
orticity with a specific sign is induced in the shear layers and
hen shed with the shedding spanwise vortex, as reported in
hese works [36,44].

.8. Self-similarity of the disturbed vorticity only under the viscous
ffect

Only under the effect of viscous forces on the hairpin vortex,
he self-similarity is theoretically revealed. From Eqs. (14a), (18a)
nd (22a), it seems that the disturbed vorticity (ωx, ωy, δωz) is

correlated to the spanwise wavelength λ or wavenumber β . In
fact, if we introduce the following spatial transformation as
′ ′ ′
x = βx, y = βy, z = βz, (37)
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then we can obtain the following simplified vorticity fields in
Region I,

ωx = −C1e−y′ sin z ′, (38a)

ωy = −C2x′

(
ey

′

− e−y′
)
sin z ′, (38b)

δωz = −C2x′

(
ey

′

+ e−y′
)
cos z ′, (38c)

in Region II,

ωx = −

(
C3ey

′

+ C4e−y′
)
sin z ′, (39a)

ωy = −C5x′

(
ey

′

− e−y′
)
sin z ′, (39b)

δωz = −C5x′

(
ey

′

+ e−y′
)
cos z ′, (39c)

and in Region III,

ωx = −C
(
ey

′

− e−y′
)
sin z ′, (40a)

ωy = −Cx′

(
ey

′

− e−y′
)
sin z ′, (40b)

δωz = −Cx′

(
ey

′

+ e−y′
)
cos z ′. (40c)

The spacial distributions of such disturbed vorticity fields in the
three regions are all unrelated to the wavelength λ or wavenum-
ber β . Consequently, the disturbed vorticity in the whole hairpin
vortex at any scale (only spanwise variation) is self-similar in
the relative coordinate system (x′, y′, z ′) scaled by the wavelength
only under the effect of viscous forces. This is referred to as the
self-similarity of the disturbed vorticity in a single hairpin vortex.

3.9. Effect of boundary conditions in the basic assumption (A6)

Here, the effect of the basic assumption (A6) on the above
qualitative analysis is discussed, where ωy and δωz disappear at
the start x = 0. Such an assumption is only physically reasonable
in Region I, because the disturbed streamwise vorticity is initially
generated due to turbulence. Once the hairpin vortex leg evolves
in Region II, ωy at x = 0 is affirmatively nonzero and equal to that
at x = λx1 in Region I, as shown in Eq. (14a). A similar situation
in Region III is also effective, correlated with Region II.

Therefore, at the end of Region I (x = λx1), we have:

ωy|λx1 = −C2βλx1
(
eβy

− e−βy) sin (βz) , (41a)

δωz |λx1 = −C2βλx1
(
eβy

+ e−βy) cos (βz) . (41b)

As an example, Eq. (8a) presents the following relationship at
x = 0 in Region II,
∂Cu

∂z
= ωy|λx1 ,

∂Cu

∂y
= −δωz |λx1 . (42)

Considering the non-slip boundary condition on the wall, the
coefficient Cu is written as

Cu(y, z) = C2λx1
(
eβy

− e−βy) cos (βz) , (43)

and the disturbed streamwise velocity u is obtained as follows:

u(x, y, z) = x
(
dAv

dy
+ βAw

)
cos (βz)

+ C2λx1
(
eβy

− e−βy) cos (βz) . (44)

It is found out that the appearance of nonzero Cu has no effect
on the solution of the vorticity equation, Eq. (9a), due to ( d2

dy2
−

β2)( ∂Cu
∂y ) = ( d2

dy2
−β2)( ∂Cu

∂z ) ≡ 0. Subsequently, it can be concluded
that the two vorticity sign laws obtained above still prevail in
Region II, as well as the third sign law because of the identical
qualitative distribution of u and other features. Such a conclusion
is also qualitatively valid in Region III.
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. Conclusions

In the present paper, the vorticity sign laws in a hairpin
ortex are investigated in the viscous sublayer of a laminar
oundary layer, i.e. , the immediate neighborhood of a solid
all. The hairpin vortex adopts the classical Theodorsen’s hairpin
aradigm [10] while taking numerical results into consideration.
y means of the vortex-induced vortex theory first proposed
y Lin et al. [31], originally used for external flow past a bluff
ody, the vortical structure in the present hairpin vortex is
nalyzed in the immediate neighborhood of a wall where the
iscous forces are dominant and the inertial forces are ignored.
hrough the vorticity decomposition in the hairpin vortex, the
ocus is mainly on the disturbed vorticity field in the two legs or
uasistreamwise vortices. Furthermore, the preliminary analysis
f the streamwise vorticity at and near the wall provides different
oundary conditions corresponding to different regions in the
airpin vortex, especially in Regions I, II and III. Finally, the
isturbed vorticity fields, as well as the disturbed velocity and
ressure, in three regions are obtained.
Based on the distribution of these disturbed vorticities, two

orticity sign laws are derived accordingly. Whether in Regions I,
I or III, the first sign law reveals that the wall-normal vorticity
ith a specific sign is only induced by the wall-tangent vorticity

n the quasistreamwise vortex, which is the central idea of the
ortex-induced vortex theory. The second sign law indicates the
pecific sign combination of the three vorticity components in
he whole vortical structure. Moreover, by comparing the vortices
nd their sign laws typically in an external flow past a bluff body
nd an internal flow through a pipe at low and laminar Reynolds
umbers, the intrinsic relationship between these 3-D vortices
nd the hairpin vortex provides the same two sign laws and
ign combinations for these vortical structures. These sign rela-
ionships may be regarded as the universal physical mechanism
n the present external and internal flows because these laws
re unrelated to the Reynolds number and disturbances (such as
avelength). The generalized Π-type vortex, as a category of a
ortex in which the three components of the vorticity are con-
istent with both sign laws, is constructed based on the quadrant
nalysis in the ωx − ωy plane.
In the disturbed velocity and pressure fields, the backward

flow between two legs and the forward flow between two ad-
jacent hairpin vortices are associated with ejections and sweeps.
The disturbed pressure, or the actual frictional pressure loss,
near the head gradually decreases downstream, but that near the
outboard region increases downstream.

According to the special distribution of disturbed backward
flow, the third sign law for the streamwise and vertical compo-
nents of the disturbed velocity is obtained in Regions I, II and
III. This further indicates that the specific sign of the Reynolds
shear stress, −ρuv, is always positive in Regions I, II and III, as
he induced result of the streamwise vortex or vortex pair in the
oundary layer.
However, a new mechanism used to explain the lifting of

he hairpin vortex is proposed. Through careful analysis and
iscussion on the effects of ejections with positive wall-normal
elocities proposed previously, it is concluded that the lifting-
p mechanism cannot be completely attributed to ejections be-
ause ejections are closely dependent on the distribution of the
all-normal velocity. Then, according to the first sign law, it is
etermined that the mechanism of the vortex-induced vortex is
lso suitable for the lifting-up mechanism in the hairpin vortex.
his lifting process is predominantly a linear effect of the viscous
orces. Interestingly, this is the first time that it is theoretically
iscovered that the increasing rate of the ratio ωy/ωx, as well as
hat of the inclination angle, is the smallest in Region II but the

argest in Region III under only the effect of viscous forces.

119
In the present theoretical model, the physical meaning of
he vorticity sign laws mainly indicates that the direction of a
orticity vector in the present hairpin vortex is specific, as well
s the inclined direction of the two legs. Based on the variations
n the wall-normal and streamwise components of the vorticity
n Region I, the vortex induction mechanism is identified as the
hird effect of the viscous forces, that is, the viscous induction.
iscous induction belongs to a kind of interaction between the
ortex and wall, satisfying Laplace’s equation for the disturbed
orticity. In summary, as for viscous forces, the viscous induction
s not only the third effect on the vorticity redistribution, different
rom viscous diffusion and dissipation, but also the indirect effect
n the vorticity generation, different from the viscous shearing
ear the wall.
Finally, through a transformation into the relative coordinate

ystem scaled by the wavelength, the self-similarity of the dis-
urbed vorticity in the hairpin vortex, that is, the transformed
orticity unrelated to the disturbance wavelength, is reported as
new feature under only the effect of viscous forces.
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