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ABSTRACT

The complex flow modeling based on machine learning is becoming a promising way to describe multiphase fluid systems. This work
demonstrates how a physics-informed neural network promotes the combination of traditional governing equations and advanced interface
evolution equations without intricate algorithms. We develop physics-informed neural networks for the phase-field method (PF-PINNs) in
two-dimensional immiscible incompressible two-phase flow. The Cahn–Hillard equation and Navier–Stokes equations are encoded directly
into the residuals of a fully connected neural network. Compared with the traditional interface-capturing method, the phase-field model has
a firm physical basis because it is based on the Ginzburg–Landau theory and conserves mass and energy. It also performs well in two-phase
flow at the large density ratio. However, the high-order differential nonlinear term of the Cahn–Hilliard equation poses a great challenge for
obtaining numerical solutions. Thus, in this work, we adopt neural networks to tackle the challenge by solving high-order derivate terms and
capture the interface adaptively. To enhance the accuracy and efficiency of PF-PINNs, we use the time-marching strategy and the forced con-
straint of the density and viscosity. The PF-PINNs are tested by two cases for presenting the interface-capturing ability of PINNs and evaluat-
ing the accuracy of PF-PINNs at the large density ratio (up to 1000). The shape of the interface in both cases coincides well with the
reference results, and the dynamic behavior of the second case is precisely captured. We also quantify the variations in the center of mass
and increasing velocity over time for validation purposes. The results show that PF-PINNs exploit the automatic differentiation without
sacrificing the high accuracy of the phase-field method.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0091063

I. INTRODUCTION

In recent years, complex flow modeling with machine learning
has achieved remarkable progress to efficiently reconstruct the high-
fidelity dynamic model, including dimensionality reduction of fluid
dynamic models,1–6 clustering and classification problems in fluid
mechanics,7–10 closure models based on machine learning,11–16 and
neural network modeling of ordinary and partial differential equa-
tions.17–22 A crucial consensus has been reached in fluids research:
combining data-driven methods with known physical information can
improve the interpretability, generalizability, and explainability of
the training results.23 Physics-informed neural networks (PINNs)

proposed by Raissi et al.18 are a typical framework to hybridize data
with laws obtained from supervisors.24 This framework is achieved by
combining the residual form of the governing equations with a data-
driven part, such as initial conditions and boundary conditions. Thus,
the proposed neural network can satisfy the physics-constrained part
and the data-driven part simultaneously. The framework connects net-
work structures with determinant physical laws, so that fewer data are
needed in the training process, which greatly enhances the modeling
ability of neural networks.

The variation of physics-informed neural networks has been
applied in various fields. Jin et al.25 put forward NSFnets based on
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three-dimensional Navier–Stokes equations by considering the veloci-
ty–pressure formulation and the vorticity–velocity formulation. They
comprehensively tested the NSFnets via several cases, and they consid-
ered the situation that is hard for traditional computational fluid
dynamics (CFD) solvers, including inferring the unknown Reynolds
numbers and predicting flow fields without the complete boundary
conditions. Geneva and Zabaras26 designed a physics-constrained
deep auto-regressive network (AR-DenseED) to construct the tempo-
ral differential operator in a dynamic system, and several non-linear
transient partial differential equations were discussed. Their results
show that AR-DenseED can extrapolate outside the training range,
and the framework can build surrogate models faster than the Fenics
numerical solvers. Laubscher27 proposed an improved multi-level
PINNs for heat conduction in a two-dimensional rectangular domain
filled with dry air. A single PINNs and a numerical result obtained
from OpenFOAM were used for comparison. The author proved that
an improved multi-level network works better than a single network.
Xu et al.28 constructed a deep neural network for identifying unknown
artificial viscosity terms according to the dataset. This method can
explore the missing flow dynamics with suitable information, even if
the flow field reaches turbulence. Cai et al.29 trained a fully connected
neural network to infer the velocity and pressure distribution around
an espresso cup, which indicated that PINNs have great potential for
data assimilation. Mao et al.30 used PINNs to solve the Euler equation
in hypersonic flow. The oblique shock wave problem and Sod or Lax
problem were presented to explore the characteristic of PINNs. Their
result indicates that the position of collocation points is essential in
discontinuous problems. Appropriate collocation points could essen-
tially increase the convergence rate of PINNs. They also pointed out
that special formulation may achieve better performance compared
with the original formulation. Wang and Perdikaris31 used PINNs
with multiple inputs and outputs to solve an important type of free
boundary problem called the Stephan problem. They explained how
their work restores the solution near the dynamic interface and sys-
tematically moves the boundary. They also pointed out that PINNs
have advantages for calculating the case with discontinuous parame-
ters, due to the arbitrariness of choosing the sampling points. The
accuracy of discontinuous parameters can be improved by adding
sampling points near the discontinuous region, where there is too
hard to generate high-quality meshes.

The aforementioned studies indicate that PINNs are applicable
to two-phase flow with a distinct interface. Recently, Buhendwa et al.32

used PINNs to investigate their application in detailed, incompressible
two-phase flow. Forward and inverse problems were proposed to test
the stability of PINNs. The framework of PINNs has sufficient accu-
racy if the dataset is sufficiently large, even if some noise exists in the
dataset. They also adopted a refinement method near the interface of
the bubble, which facilitates the capture of the interface. The existing
results perform well with a density ratio of up to 10; however, the pro-
posed hybrid algorithm may suffer from stability problem when the
density ratio is large. To date, few reports are available on using
PINNs to simulate two-phase flow at large density ratios.

An accurate interface-capturing method plays an important role
in tracking the interface of two-phase flow. The interface-capturing
method used by Buhendwa et al.32 is the volume-of-fluid (VoF)
method.33 Other traditional interface-capturing methods include the
level-set34,35 and front-tracking methods.36 Each method has its pros

and cons. VoF conserves mass but the interface dissipates significantly,
whereas level-set captures the interface accurately but does not con-
serve mass. The front-tracking method needs to track the position of
the interface at all time, which takes significant time to update the
information of the interface. In addition, the boundary conditions at
the interfaces are generally imposed by applying a continuous surface
force37 to the conventional method. The divergence of the velocity
field remains zero when both fluids are incompressible. However, this
condition is not satisfied near the interface if the density ratio of two
fluids is much greater than unity. Therefore, a special strategy should
be followed to correctly reconstruct the interface in the aforemen-
tioned methods, and this can be very complicated, especially given a
sufficiently large density ratio between two fluids.

The Cahn–Hillard model of the phase-field (CH-PF) is a promis-
ing approach to overcome the difficulties in two-phase flow at the large
density ratio. In the CH-PF model, the thickness of the interface is
assumed to be a small but finite value. The influence of interface thick-
ness in the governing equations is mainly reflected in the diffusion
term of the phase-field variable equation. A free-energy-density-based
diffusion term is introduced to accurately describe the diffusion term.

The CH-PF model has significant advantages. It globally con-
serves mass, and it requires no complicated interface reconstructions.
In the past two decades, the CH-PF model in two-phase flow has been
systematically investigated. Ding et al.38 used a modified CH-PF model
to discuss its capacity to deal with large density ratios. Their results
show that the CH-PF model accurately captures the evolution of the
interface. Aland and Voigt39 analyzed three various diffuse-interface
approximations based on the CH-PF model by using the bubble-rising
case with different density ratios. The parameters including interface
thickness, mobility, and discretized time were discussed. The circular-
ity, center of mass, and rising velocity of the bubble for each case were
compared. Huang et al.40 proposed three consistency conditions for
the CH-PF model and implemented a balanced-force algorithm for
the surface force. The proposed scheme guaranteed second-order
accuracy in time and space. Zhang et al.41 added an interface compres-
sion term to the Cahn–Hillard equations, to suppress diffusion at the
interface. Xiao et al.42 proposed a spectral element-based phase-field
method for the Navier–Stokes/Cahn–Hillard equations for incompress-
ible two-phase flows. Their method conserves mass and performs well
at large density ratios and high Reynolds number. Despite many suc-
cessful applications, improvements are still possible for dealing with
two-phase flow using the CH-PF model. The governing equations of the
CH-PF model generally contain high-order derivates, which cannot be
discretized by a commonmethod but require a complicated process.

Based on this literature, the traditional interface-capturing
method cannot accurately deal with two-phase flow at the large den-
sity ratio. The CH-PF model is a potential method, but a complicated
process restricts its industrial application. PINNs is a promising
approach to build a flow modeling with high-order derivates efficiently
and flexibly. With the help of automatic differentiation, high-order
derivates are calculated accurately. The sampling position in PINNs is
flexible, so we can adjust the position of sampling points arbitrary. A
special sampling method can be used to increase the efficiency of
PINNs. In addition, the application of the forward problem is benefi-
cial to the implementation of the inverse problem for two-phase flow
at the large density ratio, which provides a reliable method for data
assimilation.
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The motivation of this paper is to construct a robust and exact
method for two-phase flow at the large density ratio. Toward this end,
we incorporate the phase-field method with PINNs and make a pre-
liminary investigation of the application of the proposed method. The
performance of the method is validated by applying it to two cases
called “reversed single vortex” and “bubble rising at large density
ratio.” The first case is treated to demonstrate the effectiveness of the
CH-PF model as an interface-capturing method. To prevent the diver-
gence of PF-PINNs, an adaptive time marching strategy is adopted,
and the result is compared with those of the original PINNs to prove
the accessibility of this strategy in the second case. We also quantita-
tively evaluate the difference between PF-PINNs and the reference
results. The relative errors in horizontal velocity u exceed those of the
vertical velocity v. In addition, these errors are sufficiently small, which
shows the quantitative accuracy of PF-PINNs. PF-PINNs fit well with
the quantitative parameters of the reference results, including the cen-
ter of mass and the increasing velocity. PF-PINNs can, thus, exactly
describe the characteristic of rising bubbles at the large density ratio.

The rest of this paper is organized as follows: we introduce the
framework of physics-informed neural networks for the phase-field
method (PF-PINNs) in two-phase flow at the large density ratio and
the adaptive time-marching strategy in Sec. II. The training results for
two cases are presented in Sec. III, where we confirm the capturing
ability of PF-PINNs from the first case, and we quantify the dynamics
of the rising bubble in the second case. The comparison between refer-
ence results and PF-PINNs in both cases is also conducted for valida-
tion purpose. In Sec. IV, the conclusions to this paper are
summarized, and future works are proposed.

II. METHODOLOGY
A. Phase-field model for interface capturing

In the phase-field model, the Cahn–Hillard equation is usually
used to capture the interface between two incompressible and immis-
cible fluids.43–47 The subscripts “L” and “G” indicate the liquid phase
and gas phase, respectively. The order parameter in incompressible
two-phase flow is defined as the phase-field variable C. When C
reaches unity, the physical properties of the mixture take the subscript
L. On the contrary, the subscript changes to G if C¼ – 1. The mixture
is divided into two parts by the interface where C¼ 0. Based on the
definition of the order parameter, C is restricted between �1 and 1,
corresponding to two mixtures of fluids. The phase-field variable equa-
tion of C is48

@C
@t

þ ðu � rÞC ¼ r � ðM0r/Þ; (1)

where M0 is the mobility and / is the chemical potential, which is
derived from the free energy of mixture. According to Van der
Waals,49 the free-energy density of an immiscible isothermal two-
phase fluid is

fmix ¼ 1
2
er0ajrCj2 þ r0a

e
wðCÞ; (2)

wðCÞ ¼ 1
4
C2ð1� CÞ2; (3)

where fmix is the free energy per unit volume, r0 is the coefficient of
surface tension, e is the interface thickness, wðCÞ is the bulk energy

density, and a is a constant. The term 1
2 er0ajrCj2 accounts for the

excess free energy in the interfacial region.
In the phase-field method, the interface between two fluids can

be interpreted as a transition region that has a thickness e, so the sur-
face tension is continuously distributed throughout the thickness of
the interface. The surface tension is defined as the excess free energy
per unit surface area.50 For a one-dimensional stable interface at equi-
librium, the following relation can be derived:51

ea
ð1
�1

@C
@z

� �2

dz ¼ 1: (4)

The one-dimensional distribution of C near an interface at equi-
librium is

CðzÞ ¼ tanh
zffiffiffi
2

p
e

� �
; (5)

where z is the signed normal distance to the interface. Applying Eq. (5)
to Eq. (4), we can derive that a is 3

ffiffi
2

p
4 . The introduction of the one-

dimensional interface is only for convenience of derivation. Universal
physical parameters do not vary with the dimensionality of the case, so
a remains 3

ffiffi
2

p
4 in the following cases. The free energy Fmix in the spacial

domain S is defined as the integral of the free energy density, leading
to Fmix ¼

Ð
S fmixdS. Thus, the chemical potential in Eq. (1) can be

defined as the derivative of free energy with respect to parameter C,

/ ¼ dFmix

dC
¼ CðC2 � 1Þ � e2r2C: (6)

B. Governing equations

The governing equations for incompressible, isothermal, and
immiscible two-phase flow in two dimension include a continuity
equation, momentum equations, and interface evolution equations,

r � u ¼ 0; (7)

qM
@u
@t

þ ðu � rÞu
� �

¼ �rpþr � lMðruþ ðruÞT
h i

þ fr þ qMg;

(8)

@C
@t

þ ðu � rÞC ¼ r � ðM0r/Þ;
/ ¼ CðC2 � 1Þ � e2r2C;

8><
>: (9)

fr ¼ 3
ffiffiffi
2

p

4
r0/
e

rC; (10)

where u ¼ ðu; vÞ is the velocity vector for two-dimensional flow, p is
the pressure, g ¼ ðgx; gyÞ is the gravitation acceleration in the horizon-
tal and vertical directions, respectively, qM and lM are the mixture den-
sity and mixture dynamic viscosity, respectively, and fr ¼ ðfrx; fryÞ is
the surface tension along the interface, which can be projected onto the
horizontal and vertical directions. The physical properties of the mixture
are related to C,

qM ¼ 1þ C
2

qL þ
1� C
2

qG; (11)

lM ¼ 1þ C
2

lL þ
1� C
2

lG: (12)
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C. Physics-informed neural networks

After the governing equations are obtained, the physics-informed
neural networks can be constructed by adding governing equations,
initial conditions, and boundary conditions to the loss terms, so that
optimization can be applied to solve the equations. The illustration of
a physics-informed neural network for the phase-field method is
shown in Fig. 1. A fully connected neural network is constructed to
express the relationship between coordinates and physical quantities,
which can be expressed as follows:

ðu; v; p;CÞ ¼ FNNðx; y; t;HÞ; (13)

where X ¼ ðx; y; tÞ, including time and two-dimensional space, is
considered as the input value of the neural network. Velocities, pres-
sure, and phase-field variable [i.e. ðu; v; p;CÞ] are predicted by the
neural network FNN. H represents the trainable parameters, such as
weight W and bias B. The relationship between the n-th hidden layer
and the (n� 1)-th hidden layer is written as

Xn ¼ rðWn�1Xn�1 þ Bn�1Þ: (14)

Here, the nonlinear activation function r in Eq. (14) and Fig. 1 is
the swish function rðYÞ ¼ Y � sigmoidðYÞ. The physics-informed
part of neural networks is derived from the residuals of the
Cahn–Hillard equations and the two-dimensional Navier–Stokes
equations corresponding to Eqs. (7)–(12),

LM ¼ @xuþ @yv; (15)

LC ¼ @tC þ u@xC þ v@yC �M0ð@xx/þ @yy/Þ; (16)

LU ¼ ðqMð@tuþ u@xuþ v@yuÞ þ @xp

� 0:5ðlL � lGÞ@yCð@yuþ @xvÞ
� ðlL � lGÞ@xC@xu� lMð@xxuþ @yyuÞ
� frx � qMgxÞ=qL; (17)

LV ¼ ðqMð@tv þ u@xv þ v@yvÞ þ @yp

� 0:5ðlL � lGÞ@xCð@xv þ @yuÞ
� ðlL � lGÞ@yC@yv � lMð@xxv þ @yyvÞ
� fry � qMgyÞ=qL; (18)

where @a represents @
@a ; @ab denotes @2

@a@b ; ðLM ; LC; LU ; LVÞ corre-
spond to the residual terms of the continuity equation, phase-field var-
iable equation, and momentum equations in the x and y directions,
respectively. In physics-informed part of neural networks, the derivate
of physical quantities (i.e., @xu; @yv, and so on) in each term
ðLM; LC; LU ; LCÞ is derived from automatic differentiation,52 and the
residuals of the governing equations are imposed. The total loss is
composed of all residual terms of the governing equations and the
ground truth of the initial and boundary conditions. The neural net-
work can be trained by minimizing the mean squared total loss Ltotal
in discretized sampling points,

Ltotal ¼ LEqn þ LICs þ LBCs; (19)

LEqn ¼ 1
NEqn

XNEqn

j¼1

ðjLCðxjEqn; yjEqn; tjEqnÞj2 þ jLUðxjEqn; yjEqn; tjEqnÞj2

þ jLVðxjEqn; yjEqn; tjEqnÞj2 þ jLMðxjEqn; yjEqn; tjEqnÞj2Þ; (20)

LICs ¼ 1
NICs

XNICs

j¼1

ðjCj
ICs � CðxjICs; yjICs; tjICsÞj2

þ jujICs � uðxjICs; yjICs; tjICsÞj2 þ jvjICs � vðxjICs; yjICs; tjICsÞj2Þ;
(21)

LBCs ¼ 1
NBCs

XNBCs

j¼1

ðjCj
BCs � CðxjBCs; yjBCs; tjBCsÞj2

þ jujBCs � uðxjBCs; yjBCs; tjBCsÞj2 þ jvjBCs � vðxjBCs; yjBCs; tjBCsÞj2Þ;
(22)

where ðLEqn; LICs; LBCsÞ are the discretized forms of physics-informed
part of neural networks, and ðxjEqn; yjEqn; tjEqnÞ; ðxjICs; yjICs; tjICsÞ, and

FIG. 1. Illustration of physics-informed
neural networks for the phase-field method
(PF-PINNs). A fully connected neural net-
work is constructed. The inputs of the net-
work are variable (x, y, t), and ðu; v; p;CÞ
are regarded as the output variables of the
neural network. After the derivate of each
term is obtained by automatic differentiation
(AD), the physics-informed part of neural
network is used to express the incompress-
ible Navier–Stokes equations and the
Cahn–Hillard equation.
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ðxjBCs; yjBCs; tjBCsÞ denote the sampling point j generated from the inter-
nal field, initial field, and boundary field, respectively. The number of
sampling points for various types of residual are NEqn, NICs, and NBCs,
respectively. The subscript “Eqn” indicates that these sampling points
are chosen at random from the computational domain X 2 ðx; y; tÞ.
The subscripts “ICs” and “BCs” indicate the given data at the corre-
sponding point ðxjICs; yjICs; tjICsÞ or ðxjBCs; yjBCs; tjBCsÞ. In PF-PINNs, the
initial and boundary conditions are considered as supervised learning,
while the residual terms of equations are considered as unsupervised
learning. The proposed network is dimensional, which means that the
inputs and outputs of the network have dimensions. It is appropriate
for the proposed loss function to obtain reasonable results. In this
work, all of the physical parameters are of the same order of magni-
tude, so the mixture total loss still converges. If this algorithm needs to
be expanded, proper nondimensionalization is needed according to
the characteristic of the physical background.

The optimizer updates the weights and biases in PF-PINNs by
adjusting them to make sure the total loss of network Ltotal is decreas-
ing. A method named Adam53 for stochastic optimization is applied to
optimize the aforementioned total loss Ltotal. To ensure the robustness
of the training result, the Xavier initialization method54 is used to ran-
domly set the weight and bias. Once the total loss decreases to a mini-
mum or the maximum epoch is achieved, the training progress of the
neural network ends, and output values in the given domain are calcu-
lated. The PF-PINNs model is implemented in PyTorch,55 and the
training is conducted on two Tesla V100 Graphics Processing Unit
(GPU) cards.

D. Adaptive time marching strategy

When the optimizer trains the neural network, it forces the total
loss to decrease by tuning up the weights and biases. Thus, the size of
the temporal domain for each network affects the convergence of the
training process significantly. In general, training a network in the
whole temporal domain is hard to converge. Dividing the sampling
domain into several parts can improve the accuracy of the proposed
network and accelerate the training process. Although there exist mul-
tiple networks, the size of each network is sufficiently small to ensure
the efficiency of the entire network without losing accuracy. To obtain

accurate training results, an adaptive time marching strategy56 is intro-
duced. The computational domain X 2 ðx; y; tÞ is split up into N
smaller sub domains ðX1;X2;…;XNÞ over time, and then we use N
sub networks to solve the problem separately. The schematic of origi-
nal single network and improved multiple networks is illustrated in
Figs. 2(a) and 2(b), respectively.

In this strategy, the initial condition for each subdomain over
time is obtained from the converged value of the former network. The
initial condition for the first subdomain can be given directly, and
then the first network is well trained. The converged value of the first
network is then used as the initial condition for the second subdomain.
The procedure continues until we obtain the converged value of the
final network. The strategy trains the networks one by one. This strat-
egy cannot save training time directly but promotes the convergence
of each network. A detailed description of PF-PINNs with this strategy
is shown in Algorithm 1.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, PF-PINNs introduced in Sec. II are applied to
solve two cases: a reversed single vortex and a bubble-rising problem.
The first case is used to validate the ability of the phase-field method
to capture the interface, and the second case is a classical case to test
the numerical method with a large density ratio.

A. Reversed single vortex

Here, a reversed single vortex is used as a test case to demonstrate
the performance of PF-PINNs in capturing the interface. In this case,
the momentum equations and continuity equation are not considered,
so only the interface evolution equation Eq. (9) is solved. The pressure
field, density, and viscosity are no longer needed, whereas the velocity
fields are close to Eq. (9). The analytical solutions of the velocity field
in the x and y directions are

u ¼ �U0 sin
2 px

L0

� �
sin

py
L0

� �
cos

py
L0

� �
cos

pt
T0

� �
; (23)

v ¼ U0 sin
px
L0

� �
cos

px
L0

� �
sin2

py
L0

� �
cos

pt
T0

� �
; (24)

FIG. 2. Different time marching strategies
of physics-informed neural networks for
the phase-field method (PF-PINNs). (a)
Single network training in the whole time
domain. The output of the single network
is the variables ðu; v; p;CÞ in X 2 ðx;
y; t0 � tNÞ; (b) multiple-networks training
in various time sequences. The first net-
work is trained to obtain the variables
ðu; v; p;CÞ in X1 2 ðx; y; t0 � t1Þ. The
output variables ðu; v; p;CÞ at t ¼ t1 and
X2 2 ðx; y; t1 � t2Þ are considered as
the input for the next network. The proce-
dure continues until the final network sam-
pled in XN 2 ðx; y; tN�1 � tNÞ is trained.
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where the characteristic length L0 is 1m, the characteristic velocity
U0 is 2m/s, and the characteristic time T0 is 2 s. The initial configu-
ration and boundary conditions are depicted in Fig. 3. The size of
spacial computational domain S 2 ðx; yÞ is ½0; 1�m� ½0; 1�m, and
the time interval is t ! ½0; 2� s. The domain is filled with fluid L,
where C¼ 1, except for a bubble located at ðxc; ycÞ ¼ ð0:5; 0:75mÞ;
the bubble radius is r ¼ 0:15 m. The bubble is occupied by fluid G,
where C ¼�1. The phase-field variable in the whole spatial domain
S at t ¼ 0 s is

Cðx; y; 0Þ ¼ �tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xcÞ2 þ ðy � ycÞ2

q
ffiffiffi
2

p
e

0
@

1
A
; (25)

where e ¼ 0:01 m constitutes the interface thickness. Initially, the bub-
ble shape is circular. The bubble is stretched by the given flow field,
and the approximate trajectory of the bubble is shown in Fig. 3. The
bubble moves toward the yellow dashed line clockwise from 0 to 1 s,
and the maximum deformation is achieved when t ¼ 1 s. Afterward,
the bubble returns to its initial shape counterclockwise along the origi-
nal trajectory from 1 to 2 s. In this case, the network regards the

sampling space X 2 ðx; y; tÞ as input, and the only output is the
phase-field variable C. We consider a neural network consisting of 10
hidden layers with 100 neuron per layer, and the Adam optimizer is
used to train and 7� 104 epochs with a learning rate ranging from
10�3 to 10�6 are used to train the network. The learning rate decreases
as the epoch increases, as shown in Table I. All sampling points are
generated in advance on a uniformly spaced structured grid. The cell
size in the x, y, and t directions is Dx ¼ 0:005;Dy ¼ 0:005m, and
Dt ¼ 0:01 s, respectively. We randomly select 1000 points at t¼ 0 s
and 200 points from every fixed boundary condition (i.e., NICs ¼ 1000
and NBCs ¼ 200� 4). Fifty thousand points are also randomly
extracted inside the computational domain X 2 ðx; y; tÞ ! ½0; 1�m
�½0; 1�m� ½0; 2� s.

The predicted results for the phase-field variable at t¼ 0, t¼ 0.5,
t¼ 1.0, t¼ 1.5, and t¼ 2 s are shown in Fig. 4, and the loss history is
shown in Fig. 5. The contour indicates that the phase-field variable
may be slightly out of range within ½�1; 1�. Nevertheless, the evolution
of the interface over time is still well captured by the neural network.
The total bubble volume remains unchanged at various times. Figure 6
compares the results of PF-PINNs with those by Huang et al.40 when
t¼ 1 and t¼ 2 s. Our result proves that a physics-informed neural net-
work suffices for tracking the shape of the interface regardless of the
momentum equations.

B. Bubble rising

The classical numerical benchmark proposed by Hysing et al.57 is
introduced to evaluate the performance of PINNs in complex flow.
The benchmark considers an isothermal, incompressible flow of

FIG. 3. Initial configuration and boundary conditions of reversed single vortex. Blue
shadow region: fluid L. Green cross line region: fluid G. Red dashed line: interface
at t ¼ 0 s. The size of the spatial computational domain is S 2 ðx; yÞ ! ½0; 1�m
�½0; 1�m. The bubble center is at ðxc; ycÞ ¼ ð0:5; 0:75mÞ, and the bubble radius
is r ¼ 0:15 m. All boundaries require phase-field variable C¼ 1. The bubble
moves toward the yellow dashed line clockwise from 0 to 1 s and then returns to
the initial shape counterclockwise along the original trajectory from 1 to 2 s.

TABLE I. Learning rate settings in reversed single vortex.

Epoch 25 000 25 000 10 000 10 000
Learning rate 10�3 10�4 10�5 10�6

ALGORITHM 1: Physics-informed neural networks for the phase-field method (PF-
PINNs).

Input: Computational domain X 2 ðx; y; tÞ, number of time inter-
val N, time sequence ðt0; t1; t2;…; tNÞ, initial variables
ðuðt ¼ t0Þ; vðt ¼ t0Þ; pðt ¼ t0Þ;Cðt ¼ t0ÞÞ, boundary varia-
bles ðuBCs; vBCs; pBCs;CBCsÞ, numbers of different sampling
points NEqn;NICs;NBCs, learning rate lr, training epoch K.

Output: Variables ðu; v; p;CÞ in t 2 ½t0; tN �, network parameter hi.
for i¼ 1 to N do

Extract the sub domain Xi 2 ðx; y; ti�1 � tiÞ from computational
domain X;
Set uðt ¼ ti�1Þ; vðt ¼ ti�1Þ; pðt ¼ ti�1Þ;Cðt ¼ ti�1Þ obtained
from previous iteration or from input as initial condition;
Initialize hi, lr;
for epoch¼ 1 to K do
Generate sampling points ðxjEqn; yjEqn; tjEqnÞ; ðxjICs; yjICs; tjICsÞ, and
ðxjBCs; yjBCs; tjBCsÞ in sub domain Xi according to the number of
different sampling points NEqn;NICs;NBCs;
Calculate variables ðu; v; p;CÞ in Xi 2 ðx; y; ti�1 � tiÞ by neu-
ral network using the relationship ðu; v; p;CÞ ¼ f ðx; y; tÞ;
Use automatic differentiation to infer the derivate of variables
ðu; v; p;CÞ;
Construct the residuals of governing equations LEqn, initial
conditions LICs, and boundary conditions LBCs in terms of Eqs.
(13)–(20);
Train the network through improved stochastic gradient
descent algorithm Adam;
Update network parameter hi.

end
Output network parameter hi and variables uðt ¼ tiÞ; vðt ¼ tiÞ;
pðt ¼ tiÞ;Cðt ¼ tiÞ as the initial condition of the next network.

end
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immiscible fluids, and all of the equations and parameters are involved
during the training. The initial configuration and boundary conditions
are depicted in Fig. 7. To demonstrate the reliability of the proposed
method in interface capturing, the validation of mass conservation
is applied in Appendix A. The spatial computational domain is

S 2 ðx; yÞ ! ½�0:5; 0:5�m� ½�1; 1�m, and the time interval is
t ! ½0; 3� s. The center position of the bubble in initial time is at
ðxc; ycÞ ¼ ð0m;�0:5mÞ, and the bubble radius is r ¼ 0:25m. Similar
to Sec. IIIA, C¼ 1 represents the fluid L and C ¼ �1 represents the
fluid G. Curve C¼ 0 defines the position of the interface between the
two fluids. The upper and lower boundaries are considered as wall
boundaries, and the left and right boundaries are considered as slip
boundaries. The initial value of the phase-field variable at t ¼ 0 s is
imposed by Eq. (25), and the initial velocity field is zero. In the tradi-
tional phase-field method, the interface thickness and mobility are
two representative parameters. To evaluate the proper value of these

FIG. 4. Predicted results of phase-field
variable C at (a) t¼ 0, (b) t¼ 0.5, (c)
t¼ 1.0, (d) t¼ 1.5, and (e) t¼ 2.0 s. The
circle bubble is stretched into a crescent
shape from 0 to 1 s, and then the crescent
bubble returns along the original path and
recovers the initial shape from 1 to 2 s. A
slightly out-of-bound phase-field variable
is observed in each time, but the bubble
volume in the whole process remains
unchanged.

FIG. 5. Total training loss of the reversed single vortex case. Ltotal is given by Eq.
(19). The total loss suddenly becomes smooth due to a decrease in the learning
rate from 10�3 to 10�4 when the epoch reaches 25 000.

FIG. 6. Interfaces C¼ 0 between fluid L and fluid G at (a) t ¼ 1 s and (b) t ¼ 2 s.
Red dashed lines correspond to the present results, and black solid lines corre-
spond to the result reported by Huang et al.40

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 052109 (2022); doi: 10.1063/5.0091063 34, 052109-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0091063/16624358/052109_1_online.pdf

https://scitation.org/journal/phf


parameters, we systematically study the influence of thickness and
mobility in Appendix B. The interface thickness and mobility are
e ¼ 0:01m and M0 ¼ 10�4 m=ðN � sÞ, respectively. In this case, the
momentum equations are no longer omitted, and the transport proper-
ties of fluids L and G should be considered. To illustrate the performance
of PF-PINNs in two-phase flow, a large density ratio is applied. We
assume qL ¼ 1000; qG ¼ 1 kg=m3; lL ¼ 10, and lG ¼ 0:1N s=m2.
The gravitational acceleration g ¼ ðgx; gyÞ is ð0; 0:98Þm=s2 in the x
and y directions. The coefficient r0 of surface tension is 1:96N=m. The
Reynolds number, which is the ratio of viscous effects to inertia, and the
Eotvos number, which is the ratio of gravitation to surface-tension
effects, are defined as

Re ¼ qLUgL

lL
; (26)

Eo ¼ qLU
2
g L

r0
; (27)

where L ¼ 2r0 is the characteristic length, Ug ¼ ffiffiffiffiffiffiffiffi
2gr0

p
is the charac-

teristic velocity, and r0 is the initial bubble radius, according to Hysing
et al.57 The physical parameters and dimensionless numbers defined
in this case are given in Table II. The circular bubble inside an initially
motionless rectangular domain is filled with fluid G, and the remain-
ing region contains fluid L. In this case, fluid L is denser than fluid G.
The bubble first stretches horizontally, then deforms at the bottom of
the bubble, and finally preserves the stable shape and rising velocity.

We consider a neural network consisting of 10 layers and 100 neurons
per layer, and an identical optimizer is applied to train the networks.
This network constructs a sampling space (x, y, and t) as input, and
the velocity field, pressure, and phase-field variable ðu; v; p; andCÞ are
considered as output. The initial learning rate for Adam decays from
10�3 to 10�6, and the total number of epochs reaches 8� 104.
Different epochs are used to make sure the network is converged. The
hyperparameters are depicted in Table III. All sampling points are
generated in advance on a structured uniform spacing grid. The cell
size in the x, y, and t directions is Dx ¼ 0:005;Dy ¼ 0:005m, and
Dt ¼ 0:005 s, respectively. For the training data, we place 2000 points
in initial conditions and 300 points in each boundary condition (i.e.,
Ni ¼ 2000 and Nb ¼ 300� 4). Twenty thousand points are extracted
from the sampling spaceX 2 ðx; y; tÞ ! ½0; 1�m� ½0; 2�m� ½0; 3� s.

FIG. 7. Initial conditions and boundary conditions for rising-bubble case. The spa-
tial computational domain is S 2 ðx; yÞ ! ½�0:5; 0:5�m� ½�1; 1�m, and the
time interval is t ! ½0; 3� s. The center position of the bubble at the initial time is
ðxc; ycÞ ¼ ð0 m;�0:5 mÞ, and the bubble radius is r ¼ 0:25m. The initial value of
the phase-field variable at t ¼ 0 s is obtained by Eq. (25), and the initial velocity in
both directions is zero. The upper and lower boundaries are considered as wall
boundaries, and the left and right boundaries are considered as slip boundaries.

TABLE II. Physical parameters and dimensionless numbers.

qL ðkg=m3Þ qG ðkg=m3Þ lL ðN s=m2Þ lG ðN s=m2 Þ g ðm=s2 Þ r0 ðN=mÞ Re Eo qL
qG

lL
lG

1000 1 10 0.1 0.98 1.96 35 125 1000 100

TABLE III. Learning rate settings in bubble rising for a sub network.

Epoch 15 000 35 000 15 000 10 000 5000
Learning rate 10�3 10�4 10�5 10�6 10�7

FIG. 8. Training results for t ¼ 3 s using various strategies: (a) single network with-
out improvement and (b) multiple networks with time marching strategy. The result
generated from the normal training strategy does not converge, whereas the result
generated by the multiple networks with the time-marching strategy provides ade-
quate accuracy.
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If the density ratio is much greater than unity, the result of the
phase-field variable may exceed the range ½�1; 1�, leading to an
unphysical solution. In this case, the density ratio reaches 1000, so
some constraints should be applied to ensure convergence. In Sec.
IIIA, the phase-field variable may escape the range from �1 to 1.
When the density ratio is not so large, a slightly out-of-bounds phase-
field variable is acceptable. However, when the density ratio is suffi-
ciently large, the density and viscosity calculated by Eqs. (11) and (12)
become negative at specific points, causing difficulties in convergence.
To overcome these difficulties, an auxiliary variable �C is defined to
constrain the density and viscosity,58

�C ¼ C if jCj6 1;

signðCÞ if jCj > 1:

(
(28)

The density and viscosity can be derived by Eq. (28), so that the
negative value is prevented. An improved description of density and
viscosity is

qM ¼ 1þ �C
2

qL þ
1� �C
2

qG; (29)

lM ¼ 1þ �C
2

lL þ
1� �C
2

lG: (30)

Thereby, the corrected density and viscosity are calculated.
Although the original phase-field variable is still out of bounds, the
training result is satisfactory.

In Sec. IID, an adaptive time-marching strategy proposed by
Wight and Zhao56 is introduced to improve the convergence of the
neural network. The process of a bubble rising in water is influenced
by buoyancy and surface tension. Thus, the mean rising velocity of the
bubble changes significantly with time, especially when the bubble
begins to move upward. The optimizer trains the network at different
times simultaneously, but the total loss at various times may not be of
the same order of magnitude. The optimizer prefers to delay the loss,
so the time with greater loss is optimized in priority. According to Eqs.
(15)–(18), the velocity field determines the magnitude of the total loss,

FIG. 9. Contours of horizontal velocity
field u from 0.5 to 3 s from the present
result: (a) t¼ 0.5, (b) t¼ 1.0, (c) t¼ 1.5,
(d) t¼ 2.0, (e) t¼ 2.5, and (f) t¼ 3.0 s.
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so the latter time is always optimized first. However, if the loss of the
latter time cannot reach the same order of magnitude as the loss of the
former time, the result will not converge because the network hardly
trains the former time.

To explain the difficulties, we compare multiple networks with
a single network. In multiple networks, we divide the time interval
t ! ½0; 3� s into seven time periods ðt0; t1; t2; t3; t4; t5; t6Þ ¼ ð0; 0:5;
1; 1:5; 2; 2:5; 3 sÞ, including intervals ½0; 0:5�; ½0:5; 1�; ½1; 1:5�;
½1:5; 2�; ½2; 2:5�, and ½2:5 s; 3 s�, whereas the entire time interval
½0 s; 3 s� is used in the single network. Each network in the time-
marching strategy is identical to the network mentioned before, except
that the sampling time is split to the corresponding interval. The train-
ing results in t ¼ 3 s using various strategies are compared in Fig. 8.
The result generated by the single network without improvement does
not converge, whereas the result generated by the multiple networks
with the time-marching strategy is adequate accurate. It is, thus, neces-
sary to use the time-marching strategy.

In Figs. 9–11, PF-PINNs are used to describe the velocity distri-
bution and interface evolution. The neural network successfully cap-
tures the velocity distribution near the interface, even though the
density ratio is sufficiently large. To better illustrate the efficiency of
the proposed method, a relative L2 error e in time t between the refer-
ence parameter Û ref and the predicted parameter Û NN is written as

eðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
S2ðx;yÞ

jÛ ref ðx; y; tÞ � Û NNðx; y; tÞj2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
S2ðx;yÞ

jÛ ref ðx; y; tÞj2
s ; (31)

where the subscript “ref ” indicates the parameters obtained from Xiao
et al.42 and Û has the velocity components (u, v). The relative L2 errors
at different time are given in Table IV. We find that the relative L2
errors in u and v fluctuate from 0.0555 to 0.1512 and from 0.0356 to

FIG. 10. Contours from the present result
of vertical velocity field v from 0.5 to 3 s:
(a) t¼ 0.5, (b) t¼ 1.0, (c) t¼ 1.5, (d)
t¼ 2.0, (e) t¼ 2.5, and (f) t¼ 3.0 s.
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0.0792, respectively. The maximum error reaches nearly 15%, con-
firming the effectiveness of the present method. The error in horizon-
tal velocity u is greater than that in the vertical velocity v. In the
bubble-rising case, the buoyancy is the main driving force in the
bubble-rising procedure, so the loss term in the direction of gravity is
crucial when the bubble is rising. Optimizing v can decrease total loss
significantly, so the optimizer prefers to suppress the residual terms of
the momentum term in the y direction rather than other terms.

In Fig. 11, we also examine the shape of bubble generated by the
proposed neural network and reference result.39 The velocity field near

the bubble interface is hard to solve, due to the vast difference of physi-
cal parameters between the interface. However, the network still works
well in the whole domain. We see that PF-PINNs can correctly express
the interface evolution process in two-phase flow at large density ratios.

To quantitatively assess the result, we apply benchmark quanti-
ties related to the bubble as per Huang et al.40 The center of mass yc
and the rising velocity vc are defined as

ycðtÞ ¼

ð
S2ðx;yÞ

y
1� Cðx; y; tÞ

2
dSð

S2ðx;yÞ

1� Cðx; y; tÞ
2

dS
; (32)

vcðtÞ ¼

ð
S2ðx;yÞ

vðx; y; tÞ 1� Cðx; y; tÞ
2

dSð
S2ðx;yÞ

1� Cðx; y; tÞ
2

dS
: (33)

FIG. 11. Interfaces C¼ 0 of the rising
bubble from 0.5 to 3 s: (a) t¼ 0.5, (b)
t¼ 1.0, (c) t¼ 1.5, (d) t¼ 2.0, (e) t¼ 2.5,
and (f) t¼ 3.0 s. Red-dashed lines repre-
sent the present result, whereas black
solid lines represent the reference result
reported by Aland and Voigt.39

TABLE IV. Bubble rising at the large density ratio: relative L2 errors of velocity fields
for PF-PINNs at different times.

�ðtÞ t ¼ 0:5 s t ¼ 1 s t ¼ 1:5 s t ¼ 2 s t ¼ 2:5 s t ¼ 3 s

�u 0.0555 0.0702 0.1347 0.1289 0.1512 0.1348
�v 0.0356 0.0438 0.0781 0.0650 0.0792 0.0705

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 052109 (2022); doi: 10.1063/5.0091063 34, 052109-11

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0091063/16624358/052109_1_online.pdf

https://scitation.org/journal/phf


The center of mass yc and the rising velocity vc describe the
dynamic behavior of the bubble. These quantities over the entire time
sequence are plotted in Fig. 12. We sample from the neural network
with Dt ¼ 0:1 s, and the curve is compared with the reference result.
Figure 12(a) shows that the bubble reaches the position of 1.0944m
when t ¼ 3 s using PF-PINNs, which agrees well with the baseline simu-
lation reported by Aland and Voigt,39 with a magnitude of 1.1025m.
The maximum relative error of parameter yc between PF-PINNs and the
reference in Fig. 12 appears at t ¼ 3 s, which reaches 0.7%. The center
of mass is precisely enough, whereas the rising velocity transitions
slightly after a period of time. Figure 12(b) summarizes the fluctuation of
the rising velocity. The rising velocity of PF-PINNs increases signifi-
cantly and approaches the maximum value of 0.2481m/s, which is close
to the baseline maximum of 0.2488m/s in the same interface thickness.
Then, the rising velocity decreases due to the deformation of the bubble.
The estimated rising velocity of PF-PINNs in t ¼ 3 s is 0.1771m/s, and
the baseline result is 0.1866m/s. The maximum relative error of param-
eter vc is located at t ¼ 3 s, as expected, and the error approaches 5.3%.
The averaged loss of center of mass and rising velocity over the entire
time sequence are 0.48% and 3.7%, respectively. The PF-PINNs predict
slower rising velocity and lower center of mass than the baseline result
from t ¼ 0 to 3 s due to the errors fluctuating in the training process. In
the machine learning strategy, the solution to the proposed cases is
obtained by training the neural network with a well-designed stochastic
optimizer. The stochastic optimizer will train the network to fit the exact
solution in the whole computational domain, including the time and
space, so the errors will fluctuate in each time step when the time ranges
from 1.5 to 3 s and from 0.1 to 1 s. However, an exception occurs when
the time ranges from 0.8 to 1.6 s. The bubble deforms quickly at this
stage, leading to an increase in relative errors. In conclusion, the relative
error is accumulated in long time computation, but the error fluctuates
in local time intervals. The accumulated error can be reduced by using a
stricter initial constraint (i.e., adding higher weight for the initial condi-
tion in the first network). In general, the neural network can provide sta-
ble and high-precision simulation results.

IV. CONCLUSIONS AND FUTUREWORKS

This paper investigates the physics-informed neural networks by
using the phase-field method (PF-PINNs) to directly simulate two-

dimensional incompressible immiscible two-phase flow. In particular,
the Cahn–Hillard equation is used as a high-precision interface-
capturing method for two-phase flow at large density ratios. Physics-
informed neural networks are introduced to tackle the disadvantages
of the phase-field method, including the calculation of high-order deri-
vates and randomly sampling methods near the interface without los-
ing the ability to capture the interface.

We first validate this issue in the reversed single vortex. This
case proves the interface tracking ability of PF-PINNs in two-phase
flow, and the volume of the bubble in the whole process remains
unchanged. Then, simply applying PF-PINNs to all time sequences
may cause divergence of training, so we propose the time-marching
strategy to help the network converge. A comparison test between a
single network in the whole time domain and multiple networks
with the time-marching strategy is proposed, and the results reveal
that the time-marching strategy is required. Moreover, we need to
confirm the performance of the proposed method in complex flow,
so the bubble-rising case at the large density ratio is investigated to
compare the accuracy with the reference result. Inspired by the exist-
ing numerical method, an auxiliary variable is defined to truncate
the density and viscosity for improving convergence. PF-PINNs can
precisely predict the interface evolution and recover the velocity
fields around the bubble. Finally, several quantitative parameters are
defined to assess the proposed method, including the relative L2
error of velocities, the center of mass, and the rising velocity. The
presented results are consistent with baseline simulation and with
published results, indicating that PF-PINNs are adequate to describe
bubble dynamics and to deal with two-phase flow at the large density
ratio.

The presented methodology offers a way to simulate two-phase
flow at the large density ratio, and it may be applied to solve other sys-
tems. However, it is still necessary to accelerate the training process of
PF-PINNs and expand the ability of the proposed network. First, the
structure of PF-PINNs is highly parallelized, so the distributed parallel
in multiple GPUs shows a great potential to promote the practical
application of PF-PINNs. In addition, decreasing the order of govern-
ing equations is helpful to save the cost of training a neural network.
Finally, this paper does not include the application of the inverse prob-
lem for two-phase flow, which is essential for data assimilation. The

FIG. 12. Temporal evolution of (a) center
of mass and (b) rising velocity defined by
Eqs. (32) and (33). The red solid lines cor-
respond to the present result, while the
blue dashed lines correspond to the refer-
ence result obtained from Aland and
Voigt.39
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estimation of physical parameters based on experimental data will be
an important issue.
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APPENDIX A: THE VALIDATION OF MASS
CONSERVATION

The volume of the bubble reflects the mass conservation quan-
titively. The volume of the bubble in this manuscript is defined as
follows:

VðtÞ ¼
ð
S2ðx;yÞ

1� Cðx; y; tÞ
2

dS: (A1)

The definition of Eq. (A1) is the same as the submitted manu-
script. The time vs the volume of bubble is presented in Table V. The
volume of bubble varies from 0.1965 to 0.194 2 m2. The result indicates
that the volume of bubble hardly changes in each time, confirming the
reliability of the proposed method in mass conservation.

APPENDIX B: PARAMETER STUDY ABOUT INTERFACE
THICKNESS AND INTERFACE DIFFUSION

In the conventional phase-field method, interface thickness
and interface diffusion are two representative parameters to assess
the convergence behavior of a specific scheme in two-phase flow.
The mobility M0 is considered as a parameter that affects the diffu-
sion of the interface, while the interface thickness is defined as e
directly. Before we choose the interface thickness with 0.01m and
the mobility with 10�4 m=ðNsÞ, two comparative studies are
employed to determine which parameter is acceptable. We will
introduce these studies.

A. Influence of the interface thickness

Three cases with various interface thicknesses, including
0.005, 0.01, and 0.02m, are tested to investigate the influence of
interface thickness. We train the neural network from t ¼ 0 to
t ¼ 1 s and give the contour of phase-field variable. The maxi-
mum and minimum values of phase-field variable are presented
in Table VI. The comparison of the interface profile in different
interface thicknesses is also shown in Fig. 13. The results show
that smaller interface thickness will suppress the out of range of
phase-field variable C, but the interface profile deviates signifi-
cantly at the same time. Decreasing the size of the spatial interval
ðDx;DyÞ is helpful to ensure the convergence of PF-PINNs when
e ¼ 0:005m. If we increase the interface thickness to e ¼ 0:02 m,
the dispersion of the interface will become more serious, which
affects the accuracy of interface capturing, as shown in Fig. 14.
Consequently, the interface thickness of 0.01m is chosen as the
parameter in PF-PINNs.

TABLE V. The volume of bubble in various times.

tðsÞ 0.0 0.2 0.4 0.6 0.8 1.0

Vðm2Þ 0.1965 0.1962 0.1961 0.1962 0.1961 0.1963
tðsÞ 1.2 1.4 1.6 1.8 2.0 2.2
Vðm2Þ 0.1959 0.1959 0.1961 0.1955 0.1956 0.1954
tðsÞ 2.4 2.6 2.8 3.0 � � � � � �
Vðm2Þ 0.1949 0.1947 0.1947 0.1943 � � � � � �

TABLE VI. The maximum and minimum phase-field variables in different thick-
nesses at t¼1 s.

e 0.005 m 0.01 m 0.02 m

Cmin �1.0364 �1.0514 �1.0554
Cmax 1.0288 1.0414 1.0380

FIG. 13. Comparison of bubble shape between different �. Blue: � ¼ 0:02; red:
e ¼ 0:01; black: e ¼ 0:005 m.
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B. Influence of the mobility

Similar to the former cases, we adjust the mobility, while the other
parameters remain constant. The values of mobility are set to 10�3;
10�4, and 10�5 in three different test cases, respectively. The shapes of
the bubble in various mobility when t¼ 1 s are plotted in Fig. 15. We

observe that the choice of mobility does not affect the capturing accu-
racy significantly. The position of the interface coincides well in all cases.
To ensure the stability of the proposed network, we choose 10�4 as the
value of mobility.
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