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A B S T R A C T   

Inspired by the gradient structure of biological materials, various gradient nano-grained (GNG) materials, inside 
which grain size spans several orders of magnitude, have been manufactured in recent years. This kind of ma-
terial often exhibits extra hardening ability and ultimately achieves synergetic strength and ductility. The extra 
hardening of GNG materials is closely related to the strain gradient formed during deformation. However, the 
analytical relation between the structural gradient, strain gradient is still unexplored. Besides, the previous works 
focused on only one type of GNG material, and the understanding of the effect of different kinds of micro-
structures is limited. This paper explores the analytical relations between the strain gradient and the average 
grain size, as well as the grain size gradient in GNG materials. The overall mechanical responses of GNG 
interstitial-free (IF) steel and GNG Ni are well predicted. The results verify that the extra hardening of GNG 
materials is dependent on their unique microstructures. The strength and ductility of GNG materials can be 
improved by adjusting the composition and distribution of coarse grains and nano-grains.   

1. Introduction 

The strength-ductility trade-off dilemma has long been the bottle-
neck in developing metallic structured materials, especially ultra-high 
strength. Therefore, significant efforts have been made to find a way 
to enhance both strength and ductility of materials over several decades. 
Inspired by the gradient structures of biological materials, researchers 
have manufactured various GNG materials in recent years (Li et al., 
2020; Wu and Fan, 2020; Wu et al., 2020). The average grain size of 
these GNG materials changes from the sample surface into its interior by 
four orders of magnitude. This class of material exhibits superior me-
chanical properties, including strength-ductility synergy, extraordinary 
strain hardening, and fatigue resistance (Cheng et al., 2018; Fang et al., 
2011; Lin et al., 2018; Long et al., 2019; Lu, 2014; Shao et al., 2017; Wei 
et al., 2014; Wu et al., 2014). For example, GNG Cu prepared through 
surface mechanical grinding treatment (SMAT) exhibits a doubling yield 
strength to that of the coarse-grained (CG), meanwhile preserving a 
ductility of about 30% (Fang et al., 2011). Similar results can also be 
found in the GNG IF steel (Wu et al., 2014). 

For a deeper understanding of the deformation mechanisms in GNG 
materials, the relationships between their microstructure and mechan-
ical properties have been investigated by theoretical models and nu-
merical simulation (Li et al., 2017; Lu et al., 2019; Moering et al., 2016; 

Wang et al., 2017; Zeng et al., 2016; Zhao et al., 2019; Zhao et al., 2020). 
On the one hand, some researchers studied the GNG IF steel by estab-
lishing constitutive models based on the conventional strain gradient of 
plasticity (Huang et al., 2004). These constitutive models involve the 
effects of various factors such as grain size, geometrically necessary 
dislocations (GNDs), and back stress (Li et al., 2017; Zhao et al., 2019; 
Zhao et al., 2020). On the other hand, the dislocation mechanism-based 
size-dependent crystal plasticity models have been employed to predict 
the tensile mechanical behavior of GNG material (Li and Yang, 2017; Lu 
et al., 2019; Zeng et al., 2016). The high strain hardening capability of 
GNG materials was attributed to the generation of abundant GNDs built 
up to accommodate the deformation incompatibility. 

The studies mentioned above have discussed the deformation 
mechanism of GNG materials and predicted their yield strength, strain- 
hardening, and ductility. However, the analytical relations between 
structural gradient, strain gradient, and GND distribution for GNG ma-
terials are still unknown (Li et al., 2020). This issue may hinder the more 
profound understanding of the deformation mechanism in GNG mate-
rials. Besides, most previous studies focused on only one type of gradient 
structure. The understanding of the effect of different types of micro-
structures is limited. Recently, Lin et al. found the optimum grain size 
distribution of new GNG architectures by adopting electrodeposition to 
control the grain size and grain size gradient profile of nickel (Lin et al., 
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2018). This study suggests that adjusting the GNG material micro-
structure is an effective way to toughen and strengthen materials. 
However, the study of the above GNG architectures is minimal due to the 
lack of an analytical relation between the structural gradient and me-
chanical properties. Therefore, it is necessary to develop a new theo-
retical model that contains the structure information, such as grain size 
distribution and grain size gradient. It is essential for designing GNG 
materials and optimizing their mechanical properties. 

This paper is organized as follows. In Section 2, the postulates and 
basic formulas are described. The method for calculating the overall 
mechanical response of GNG materials is also introduced in this section. 
The corresponding predicted results and discussion of GNG IF-steel and 
Ni are given in Section 3. 

2. The model description and formulations 

Fig. 1(a) shows a schematic of the GNG plate sample. We assume that 
the grain size variation occurs only in the x-axis, that is D = D(x). The 
generalized average grain size is related to the volume of grain V, that is 
D =

̅̅̅̅
V3

√
, obtained from experiments (Fang et al., 2011; Lin et al., 2018; 

Wu et al., 2014). In previous studies, GNG architecture has been usually 
treated as a multilayer composite, each layer of which is an equivalent 
homogenous microstructure (Li and Soh, 2012; Li et al., 2017; Zhao 
et al., 2019; Zhao et al., 2020). In this case, the strain gradient is ob-
tained by the strain state of the adjacent homogenous layer. This paper 
still treats GNG architecture as a multilayer composite, but the grain size 
in each layer isn’t homogenous. The average grain size and grain size 
gradient of the mesoscale representative volume element (RVE) of each 
layer can be expressed as D(xn) and dD(xn)/dx, respectively. The relative 
multiscale framework schematic is shown in Fig. 1(b). Due to the 
gradient distribution of grain size, inherent heterogeneous deformation 
of RVE develops during deformation. Many GNDs are built up to 
accommodate the deformation incompatibility, leading to sustained 
strain hardening and enhanced ductility. We study the strain gradient in 
the RVE to reflect the effect induced by the structure gradient. In the 
following, we will first introduce the C-W strain gradient theory of 
plasticity (Chen and Wang, 2000) and the mechanical property of grain 
with different sizes. The relationship between the microstructure pa-
rameters (D(x) and dD(x)/dx) and the strain gradient will be discussed 
subsequently. 

2.1. A theory framework of strain gradient plasticity 

In the past few decades, many strain gradient theories have been put 
forward to explain the size effect of non-uniform deformation. The strain 
gradient of GNG samples under uniaxial tension is similar to the strain- 
gradient plasticity induced by applying a non-uniform deformation 
(such as bending, torsion). The micromechanisms of these two phe-
nomena are related to the GND caused by non-uniform deformation. In 
recent years, many works (Li et al., 2017; Zhao et al., 2020) have been 
reported on the mechanical behavior of GNG materials based on the 
conventional strain gradient theory of plasticity (Huang et al., 2004). 
However, C-W theory (Chen and Wang, 2000) with concise form can 
better study the analytical relationship between structural gradient and 
strain gradient and mechanical properties. 

The C-W theory involved strain gradient as an internal variable to 
describe the hardening behavior of materials under non-uniform 
deformation, which can be expressed as, 

σ̇e = A′

(εe)

(

1 +
l2η2

ε2
e

)α

ε̇e = B(εe, lη)ε̇e. (1) 

Here, α in Eq. is a parameter ranging from 0 to 1. In this paper, α =

0.5 is taken. B = B(εe, lη) is the hardening function, including the effect 
of strain gradient. The l is an intrinsic material length in strain gradient 

plasticity. σe =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3σ’

ijσ’
ij/2

√
denotes the usual Von Mises effective stress, 

εe =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2ε’

ijε’
ij/3

√
is the effective strain. σ’

ij and ε’
ij are deviatoric stress and 

strain, respectively. εkk, σkk are the mean strain and the hydrostatic 
stress. The η is the effective strain gradient, 

η =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2
3
χijχij + cη(1)

ijk η(1)
ijk

√

, (2)  

where c is a dimensionless material parameter, χij = eiklεj,lk is the cur-

vature tensor, and η(1)ijk η(1)ijk is the first quadratic invariant of the gradient 
εij,k (Fleck and Hutchinson, 1997, 2001). A’(εe) in Eq. is the tangent 
hardening modulus in the incremental version of conventional J2 

deformation theory. For power hardening materials, A’(εe) can be taken 
as. 

A′

(εe) = NΣ0εN− 1
e , (3)  

with a reference stress Σ0 = σeY/εeY . The σeY and εeY are the effective 
stress and the corresponding effective strain while material initial yields, 
respectively. N is a strain hardening exponent that is usually between 
0 and 0.5. 

2.2. The relationship between strain gradient and structure gradient 

The previous researches show that grain size affects the mechanical 
properties of grain, such as yield strength and hardening ability (Car-
valho Resende et al., 2013). The pioneering works of Hall and Petch 
enable the description of the yield stress of grain with different sizes 
(Hall, 1951; Petch, 1953), 

σeY = σ0 +
kY
̅̅̅̅
D

√ . (4) 

The σ0 is the lattice friction stress, kY is the Hall-Petch slope, and D 
denotes the average grain size. Furthermore, to evaluate strain hard-
ening exponent N for intermediate grain sizes, N is also assumed 
inversely proportional to the square root of the size of the local grain D 
(Zeng et al., 2016), 

N = N0 +
kN
̅̅̅̅
D

√ , (5)  

where N0 and kN are fitting constants, which can be computed by ex-

Fig. 1. (a) The schematic of the plate sample and the corresponding coordinate 
system. The sample is subjected to a tensile load parallel to the z-axis. (b) The 
plate sample is treated as a multilayer composite. The average grain size of each 
independent layer is D(x), and the grain size gradient is dD(x)/dx. Due to the 
inhomogeneous microstructure, the strain gradient develops in the represen-
tative volume element during deformation. (x, y) and (x̃, ỹ) are the coordinate 
of macroscale fields and mesoscale fields, respectively. 
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periments (more discussion about this function are shown in Supple-
mentary information). As shown in Fig. 1, the RVE with a gradient 
structure will produce a strain gradient while deformed due to the 
introduced size-dependent properties of grains. The value of the strain 
gradient rate in the RVE can be obtained by the following formula (the 
specific derivation can be seen in Appendix A), 

dε̇ij

dx
=

3
2

σ′

ij

σe

σ̇e

B
C(εe)

[

Ω(εe)
dD
dx

+ Π(εe)
dεe

dx

]

, (6)  

where 

Ω(εe) =
(1 − N)

σeY

dσeY

dD
+

[

ln
(

σeY

3μεe

)

−
1
N

]
dN
dD

, (7)  

Π(εe) =
1 + 2α − N

εe
− 2α εe

ε2
e + l2η2. (8) 

The dot denotes differentiation to time t and dx is space differential. 
The C(εe) = εe/εeY reflects the constraint of the surrounding elements on 
RVE while the increase of strain gradient. Eq. describes the individual 
contribution of different mechanisms on the strain gradient. The Ω(εe)

describes the effect of grain size gradient dD/dx on strain gradient. 
Specifically, the first term in Ω(εe) denotes the strain gradient caused by 
the difference in the yield strength of grains of different sizes, as shown 
in Fig. 2(a). The second term represents the strain gradient resulting 
from the difference in hardening ability, as shown in Fig. 2(b). The Π(εe)

describes the effect of the accumulation of strain gradient on the sub-
sequent increment of strain gradient. Eq. provides the relationship be-
tween the strain gradient increment and average grain size, grain size 
gradient, and effective stress increment. 

2.3. Calculation of overall mechanical response 

The present study mainly focuses on the GNG plate sample subjected 

to uniaxial uniform strain εa
z (Lin et al., 2018; Wu et al., 2014). The 

loading in the calculation is strain-controlled in z-direction. The GNG 
structure is treated as a multilayer composite, and the strain component 
in z-direction of each layer is the same but different in other component, 
especially in the x-direction. We choose the volume average of all in-
dependent layers to approximately describe the overall stress–strain 
response of the GNG sample, similar to the rule of mixture (ROM) 
method (Li and Soh, 2012), 

σG
z =

∑n*

n=1σz(n)hnwn

HW
, (9)  

where σG
z denotes the overall stress–strain response and corresponds to 

the measured stress. σz(n), hn, wn are the z-component stress, thickness, 
and width of layer n, respectively. H and W are the thickness and the 
width of the entire gradient sample, as shown in Fig. 1. The detail of the 
calculation of σG

z and σzn are shown in Appendix B. Finally, based on the 

calculated mechanical quantity, the Conside‘ re criterion is implemented 
to obtain the necking strain of samples, i.e., dσG

z /dεa
z ≤ σG

z . 

3. Results and discussion 

3.1. The mechanical response of gradient IF steels 

In the above introduced constitutive model, the mechanical prop-
erties of each independent layer are closely related to its internal 
average grain size and grain size gradient. To a certain degree, the 
overall mechanical responses of GNG materials depend on their average 
grain size distribution function D(x). Wu et al. fabricated a GNG IF-steel 
by SMAT and tested its tensile mechanical property (Wu et al., 2014). 
Quasi-static uniaxial tensile tests were carried out at a strain rate of 5×

10− 4 • s− 1. For this gradient IF steels, the average grain size increases 
from 96 nm to 35 μm along the depth direction x, and the average grain 
size distribution function D(x) can be approximately expressed as, 

Fig. 2. Schematic diagram of the influence of grain size gradient in gradient structure element. (a) The influence of yield strength of grains of different sizes. (b) The 
influence of the difference in hardening ability. 

log10D(x) =

⎧
⎨

⎩

− 1.03 + 2.9683 × 10− 5x2.4 x < 89
1.544 − 1.2576 × 10− 6(x − 120)4 89⩽x⩽120
log10120 x > 120

. (10)   
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Fig. 3 shows the fitting curve. It should be noted that the experi-
mentally investigated IF-steel sheet has a dimension of 1000 μm × 2500 
μm × 8000 μm (x× y× z). We selected half of the total sample to analyze 
to simplify the simulation, which means the variety range of × is 0 ~ 
500 μm. 

Besides the grain size distribution function, it is necessary to obtain 
other constitutive parameters, such as elastic modulus E, Poisson’s ratio 
ν, and the parameters σ0 and kY in the Hall-Petch formula. The shear 
modulus and Poisson’s ratio can be obtained from the literature (Li et al., 
2017; Wu et al., 2014). The parameters in Hall-Petch formula Eq. and 
strain hardening exponent formula Eq. can be obtained by the stress–-
strain curves of homogeneously-grained IF steel with the grain size of 96 
nm and 650 nm (Li et al., 2017; Wu et al., 2014). The predicted true 
stress-true strain curves and corresponding experimental data for two 
samples with the grain size of 96 nm and 650 nm are shown in Fig. 4(a). 
It can be found that the predicted curves are in good agreement with the 
experimental data. The parameter values used in the calculation are 
listed in Table 1. The predicted overall mechanical response of gradient 

IF steel is shown in Fig. 4(b), and the simulated results of other studies 
are also included for comparison. It turns out that the modeling pre-
diction is in good agreement with the experiment stress–strain curve. 
Specifically, the predicted true uniform strain is 24%, similar to 
experiment one of 22%. The predicted ultimate tensile strength (true 
stress) of the GNG IF-steel is 363 MPa, which is 10 MPa higher than the 
experimental one. Finally, the results in this paper are also well com-
parable to those simulated results given in other published work. The 
above discussions indicate that the model in the present work can well 
describe the overall mechanical response of GNG IF-steel under uniaxial 
tension. 

3.2. The optimal grain distribution profile of gradient grained nickel 

The suitability of the present model has been validated by predicting 
the mechanical response of the GNG IF-steel in Section 3.1. This model 
can predict the overall mechanical response of GNG materials through 
the grain size and size gradient distribution. In this part, we applied this 
model to investigate the deformation behaviors of GNG materials with 
different microstructures. Recently, Lin et al. (Lin et al., 2018) found the 
optimum grain size distribution of new GNG architectures by adopting 
electrodeposition to control the grain size and grain size gradient profile 
of nickel. The grain size distribution of the prepared samples can be 
approximately regarded as changing along a single direction. They 
employed a power law equation to characterize the degree of the 
gradient in GNG Ni with different grain size profiles, as shown in Fig. 5. 
The average grain size D is related to normalized position x, 

D = Dmax − (Dmax − Dmin)(1 − x)n
, (11)  

where n is the power index for the grain size distribution. The values of n 
of samples I to VI are 0.01, 0.016, 0.4, 0.75, 3, and 5, respectively. x =

x/L is the normalized position, and L is the length of samples in the 
x-direction. Dmax = 4μm and Dmin = 29nm are the maximum and mini-

Fig. 3. The experimentally measured data and the fitting average grain size 
distribution continuous function. 

Fig. 4. (a) The predicted stress–strain curves of homogenous IF steel. The experiment data for D = 650 nm and D = 35 μm samples are included for comparison. (b) 
The predicted true stress–strain curves of gradient IF steel. The experiment and other simulated results are included for comparison. The cross symbols represent the 
necking in theoretical prediction and experiment. 

Table 1 
Material parameters for gradient IF steel samples.  

Elastic modulus 
E (GPa) 

Possion’s 
ratio υ 

Lattic frictional 
stress σ0(MPa)

Hall-Petch slope 
kY

(
MPa/μm2)

197 0.28 0.862  160.55 
N0 kN material length 

l(μm)

0.3347 − 0.1167 5   
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mum grain sizes, respectively. Quasi-static uniaxial tensile tests were 
carried out at a strain rate of 3 × 10− 4s− 1 at room temperature. The 
schematic diagram of the prepared samples and the loading direction 
can also be expressed in Fig. 1(a). The experiments show that both the 
yield stress and necking strain of sample V (n = 3) is enhanced as 
compared with their homogeneous counterparts. 

Through the grain size distribution function provided in the experi-
ment, the overall mechanical response of GNG Ni can be predicted. 
Table 2 shows the related parameters given by homogenous samples and 
one type of gradient sample. The stress–strain curve of sample V is 
chosen as a calibration curve to get material length l. For comparison, 
the calculated results of both homogenous and gradient structure 

samples are shown in Fig. 6. It displays tension stress–strain curves of the 
GNG Ni samples with different power indexes n before necking. As ex-
pected, the degree of the gradient has a strong effect on both strength 
and ductility. The results in Fig. 6(a) show the same strength-ductility 
trade-off as traditional materials when strain gradient effects are 
ignored. Besides, the strength of all samples except samples I and II is 
greatly underestimated. As shown in Fig. 6(b), the predicted results are 
more consistent with the experiment by considering the strain gradient 
effect. Compared with the former, the predicted strength of samples I 
and II increased slightly, while the prediction of other samples changed 
significantly. 

Furthermore, we need to explain the deviation during elastic defor-
mation and the initial plastic deformation stage in Fig. 6(b). Firstly, the 
previous studies (Mei et al., 2010) show that grain size also affects the 
elastic modulus of crystal materials, but this effect is not included in the 
existing theoretical model. The effect of elastic modulus is also reflected 
in this experiment. The stress–strain curves of each sample have sepa-
rated before yield. Secondly, the average grain size function Eq. is a 
function based on the experiment data. It is not easy to completely ac-
curate describe the real relationship between grain size and position. It 
is also worth mentioning that the above deviation does not qualitatively 
affect the trend of ultimate tensile strength and necking strain with 
different power indexes n (Supplementary information). 

The variation curves of necking strain versus n and ultimate tensile 
strength versus necking strain are shown in Fig. 7(a) and (b), respec-
tively. It includes the experiment data of samples I to VI and the cor-
responding theoretical prediction results. The experiment indicates that 
the true strain at which necking occurs reaches a peak value at n = 3 
(sample V). Both necking strain and strength, in this case, are more 
prominent than that of the CG Ni sample. The model in this paper can 
well predict this phenomenon. It can be found that the predicted necking 
strain of sample VI is larger than the experimental data. The major 
reason is that the grain size changes dramatically in some regions, 
resulting in a large strain gradient between this region and the sur-
rounding material. The larger strain gradient strengthens the material, 
restrains the deformation, and prevents the strain gradient from 
increasing. The simplified assumption of multilayered composite un-
derestimates the interaction between layers (Li et al., 2017), resulting in 
the larger necking strain. However, considering the complicated 
gradient microstructure and other sample results, the predicted curves 
are reasonable to agree with the experiment data. 

Fig. 5. Average grain size as a function of the normalized distance in sample II, 
IV and V, respectively (Lin et al., 2018). 

Table 2 
Material parameters for gradient grained nickel.  

Elastic modulus 
E (GPa) 

Possion’s 
ratio υ 

Lattic frictional 
stress σ0(MPa)

Hall-Petch slope 
kY

(
MPa/μm2)

207 0.291 405.3  169.4 
N0 kN material length 

l(μm)

0.077 − 0.008 10   

Fig. 6. (a) and (b) represent the tension stress–strain curves with and without considering the strain gradient effect, respectively. The points with different shapes 
represent the experiment data of samples with different values of n. The lines of the same color corresponding to these points are theoretical calculation results. Both 
(a) and (b) only show the experimental and calculation results during uniform deformation. 
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3.3. Discussion 

The above results have shown that the strain gradient induced by 
heterogeneous structure plays a substantial effect on the mechanical 
property of GNG material. The strain gradient is directly related to the 
grain size and grain size distribution profile. The average grain size 
function Eq. is shown in Fig. 8(a). The diagram shows that the volume 
fraction of CG in the sample increases with the increase of n. The curves 
of samples II and V have similar profiles, including gentle and severe 
variation parts. However, it can be found from Fig. 8(b) that the 
strengthening effect of the gradient structure in sample II is much lower 
than that in sample V. 

On the one hand, the solid green line and red dash line in Fig. 8(b) 
describe the variation of strain hardening rate with and without 
considering the strain gradient effect, respectively. These two lines 
almost coincide. On the other hand, due to the effect of the gradient 
structure, the strain hardening rate of sample V is greatly improved, and 
a larger uniform strain is obtained. It can be found from Eq. that the 
strain gradient in GNG is not only related to the grain size gradient but 
also related to the accumulated strain gradient. For the results in Fig. 8 
(a), sample V contains more coarse-grained soft phases than sample II. 
The decrease of strength of sample V results in good deformation ability, 
which is more conducive to the development of strain gradient. For GNG 

Fig. 7. (a) Necking strain as a function of n. (b) Ultimate tensile strength versus necking strain for electrodeposited CG, NG, and various GNG Ni. Both theoretical 
prediction results and experimental data are included in the figure. The dash lines are only the connecting line of each sample point. 

Fig. 8. (a) Average grain size function of sample I to VI. (b) The predicted strain hardening rate for samples II and V. The results with and without strain gradient 
effect are included in (b) for comparison. 

Fig. 9. Necking strain as a function of n. The black dash line corresponds to the 
original data. The red and blue dash lines magnify the minimum and maximum 
grain size by 2 and times, respectively. The green and purple dash lines increase 
the minimum and maximum grain sizes by 0.1 μm and 0.3 μm. 
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materials, the nano-grains play an essential role in improving strength, 
while the coarse grain is the primary carrier of deformation. It is an 
effective way to strengthen and toughen materials to reasonably adjust 
the composition and distribution of nano-grains and coarse grains, such 
as lamellar structure (He et al., 2017; Huang et al., 2016; Wu and Zhu, 
2017), harmonic structure (Ma and Zhu, 2017; Vajpai et al., 2016). 

Fig. 9 shows the variation of necking strain with n when the grain 
size varies from nanometer scale to the micron/submicron scale. The 
black dash line corresponds to the original data. The Red and blue dash 
lines magnify the minimum and maximum grain size by two and three 
times, respectively. The green and purple dash lines increase the mini-
mum and maximum grain sizes by 0.1 μm and 0.3 μm. The results show 
that with the increase of grain size, the influence of structural gradient is 
weakening. When the grain size increases exponentially, the size gap 
between the maximum and minimum grains becomes larger. When the 
grain size increases at the same time, the difference between them re-
mains unchanged. 

The present model provides a reference for the microstructure design 
of GNG material and quickly predicts its mechanical properties. The 
average grain size is essential in the whole work and the key to designing 
material microstructure. The average grain size function needs to be 
continuously derivable and can accurately reflect the microstructure of 
the sample. If there is a sharp variation of grain size similar to an 
interface in materials, it may lead to the singularity of the grain size 
function, and this model may estimate the stress–strain curve inaccu-
rately. In addition, many works have reported that inverse Hall-Petch 
relation exists when the grain is reduced to a critical size (about tens 
of nanometers) (Chokshi et al., 1989; Schiøtz and Jacobsen, 2003). 
Therefore, this model is limited to study the case that the grain size is 
smaller than the critical size. 

4. Conclusions 

This paper treats the GNG materials as a multilayer composite with 
the intra-layer grain size gradient. A constitutive model is developed to 
predict the overall mechanical response of GNG materials based on grain 

size distribution profile. The main results are summarized as follows:  

(1) The analytical relation between the strain gradient, average grain 
size, and grain size gradient in GNG materials is explored. The 
difference in yield strength and hardening ability of grains with 
different sizes, as well as the accumulated strain gradient, will 
affect the increment of strain gradient. 

(2) The predicted true stress–strain curves of gradient IF steel sam-
ples agree with the experimental results and are comparable with 
the simulated results of other works. The strength-ductility per-
formance of GNG samples is remarkably enhanced as compared 
with their homogeneous counterparts.  

(3) According to the grain size distribution function of several GNG 
Ni, the corresponding true stress–strain curves, uniform strain, 
and ultimate tensile strength are obtained. The model success-
fully predicts the synchronous increase of strength and necking 
strain of sample V, consistent with the experiment.  

(4) The strength-ductility performance of GNG samples can be 
further improved by adjusting their microstructure. The model in 
the present paper provides references for the microstructure 
design. 
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Appendix A 

As shown in Fig. 1(b), the RVE with gradient structure is accompanied by non-uniform deformation even under a uniform external field. The micro 
strain in RVE can be expressed as ̃εij(x̃) (the grain size gradient distribution along the x-axis only) that can be divided into the deviatoric strain and 
mean strain, 

ε̃ij = ε̃′

ij + δij
ε̃kk

3
=

3
2

ε̃e

σ̃e
σ̃′

ij +
1

9K
δijσ̃kk (A.1) 

where K is the bulk modulus, δij is Kronecker’s delta. We assume that the internal stress of RVE is distributed uniformly, then σ̃e, σ̃kk, σ̃ij are un-
changed with the position in the element. However, the total strain in the element will change with x̃ because of the gradient structure. As shown in 
Fig. A1, we regard the RVE with gradient as a combination of two uniform parts, similar to the model of multilayer composite. The mechanical re-
sponses of these two parts are calculated independently by the isotropic theory. In this case, the strain gradient of the two parts in RVE can be 
expressed as, 

d ε̃ij

d x̃
=

3
2

σ̃′

ij

σ̃e

d ε̃e

d x̃
. (A.2) 

Fig. A1. Schematic diagram of model. (x, y) and (x̃, ỹ) are the coordinate of macro fields and micro fields, respectively.  
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The incremental form about time of Eq. is. 

d ˙̃εij

d x̃
=

3
2

⎛

⎜
⎝

˙̃σ′

ij

σ̃e
−

σ̃′

ij
˙̃σe

σ̃2
e

⎞

⎟
⎠

d ε̃e

d x̃
+

3
2

σ̃′

ij

σ̃e

d ˙̃εe

d x̃
, (A.3) 

where the dot denotes differentiation with respect to time t. For C-W strain gradient theory, the effective strain rate ˙̃εe can be obtained from 
hardening law Eq., 

˙̃εe =
1

A′

(
ε̃e

)

⎛

⎝1 +
l2η2

ε̃2
e

⎞

⎠

− α

˙̃σe =
1
B
˙̃σe. (A.4) 

Then, the expression of d ˙̃εe/dx̃ can be obtained, 

d ˙̃εe

d x̃
= −

˙̃σe

B2
dB
dx̃

=
˙̃σe

B

[

Ω
(

ε̃e

) dD
d x̃

+ Π
(

ε̃e

) d ε̃e

d x̃

]

, (A.5) 

where. 

Ω
(

ε̃e

)
=

(1 − N)

σeY

dσeY

dD
+

⎡

⎣ln

⎛

⎝ σeY

3με̃e

⎞

⎠ −
1
N

⎤

⎦ dN
dD

, (A.6)  

Π
(

ε̃e

)
=

1 + 2α − N
ε̃e

− 2α ε̃e

ε̃2
e + l2η2

. (A.7) 

D is the average grain size of RVE, and σeY and N are the corresponding yield strength and strain hardening exponent, respectively. η is the strain 
gradient in RVE. Finally, the stress state and strain state of microscale fields and mesoscale fields can be linked by the plastic work equivalence, 

ε̇ij =
1
V

∫

V

˙̃εijdV, σij =
1
V

∫

V
σ̃ijdV. (A.8) 

By combining Eq. (A.5), (A.8), and (A.3) and ignoring the high order small quantity, the following equation is given, 

dε̇ij

dx
=

3
2

⎛

⎝σ̇′

ij

σe
−

σ′

ijσ̇e

σ2
e

⎞

⎠ dεe

dx
+

3
2

σ′

ij

σe

σ̇e

B

[

Ω(εe)
dD
dx

+ Π(εe)
dεe

dx

]

. (A.9) 

The layers in this work are assumed to be independent, thus each independent layer considers the applied load in the z-direction only. The 
interaction of different layers may quantitatively change the strain gradient of each layer, but it doesn’t make the enhancement effect of the strain 
gradient disappear. Therefore, the assumption of an independent layer doesn’t qualitatively influence the results. In this case, the first part in Eq. 
equals zero. Furthermore, the macroscopic stress of RVE is given by plastic work equivalence. However, there is still non-uniform deformation in RVE. 
The non-uniform deformation is limited by the surrounding elements. This statement can be understood by studying two adjacent RVE. The grain size 
gradient leads to non-uniform deformation in RVE. The places with larger deformation of adjacent elements may squeeze each other, while the places 
with small deformation will pull each other, so as to resist the intensification of strain gradient. At the micro-level, GNDs accumulate with the 
deformation, and the large number of GNDs will hinder the formation of new GNDs. Therefore, the increase of strain gradient is gradually limited with 
the deformation. We introduce the C(εe) = εe/εeY to describe this effect. Then, the result can be rewritten as, 

dε̇ij

dx
=

3
2

σ′

ij

σe

σ̇e

B
C(εe)

[

Ω(εe)
dD
dx

+ Π(εe)
dεe

dx

]

. (A.10)  

Appendix B 

The σz(n) of each layer and σG
z can be obtained as follows. The most important is calculating the increment of each mechanical quantity through 

strain increment in the z-direction (strain-controlled) according to the current stress and strain state. The strain component of layer n can be expressed 
as, 

εij(n) = ε′

ij(n) + δij
εkk(n)

3
=

3
2

εe(n)

σe(n)
σ′

ij(n) +
1

9K
δijσkk(n). (B.1) 

The incremental form of the above formula is, 

ε̇ij(n) =
3
2

(σ′

ij(n)

σe(n)
ε̇e(n) +

εe(n)

σe(n)
σ̇′

ij(n) −
εe(n)σ

′

ij(n)

σ2
e(n)

σ̇e(n)

)

+
1

9K
δijσ̇kk(n). (B.2) 

The layers are assumed to be independent, thus each independent layer needs to consider the applied load in the z-direction only. Thus σe(n) = σz(n)

and the above equation in the z-direction can be rewritten as, 

ε̇ij(n) =
3
2

σ′

ij(n)

σe(n)
ε̇e(n) +

1
9K

δijσ̇kk(n) =

(
3
2

σ′

ij(n)

σe(n)

1
Bn

+
1

9K
δij

)

σ̇e(n). (B.3) 
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The effective stress can be obtained by Eq., 

σ̇e(n) = σ̇z(n) = ε̇z(n)/

(
1
Bn

+
1

9K
δij

)

. (B.4) 

This equation shows the increment relation between effective stress and strain in the z-direction of the layer n. Bn can reflect the effect of structure 
gradient of the different layers. The variation of effective strain and strain gradient in Bn can be given based on the effective stress increment by Eq., 
and. The stress and strain state of each layer can be obtained in this way. Then, updating the deformation state of the layer based on the calculated 
increment and carrying out the next iteration, the complete stress–strain curve can be shown. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijsolstr.2022.111686. 
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