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The classical dimensional analysis method has limitations in determining the uniqueness 
and relative importance of the dimensionless quantities. A machine-learning based 
dimensional analysis method is proposed to address the limitations. The proposed method 
identifies unique and relevant dimensionless quantities by combining an artificial neural 
network with the data-driven dimensional analysis. We employ a fully connected neural 
network to construct the ridge function for the response surface in a physical system. 
The gradient of the response surface for active subspace analysis is computed based 
on a finite difference approximation. An effective approach is proposed to determine 
the independent variables of experimental measurements or numerical simulations for 
computing the gradient of the response surface. The proposed method is validated by 
analyzing benchmark pipe flows and a fluid-structure interaction system. The dominant 
dimensionless quantities obtained by the proposed method are consistent with those 
reported in the literature. The proposed method has the advantage of identifying the 
relatively important dimensionless quantities without referring to the complex theoretical 
equations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Dimensional analysis investigates the relationships between quantities based on their dimensions, which is an effective 
way to study complex physical systems. The premise of dimensional analysis is that these relationships do not change 
when the units of measurement are altered [1,2]. The dimensional analysis has been utilized to identify the dimensionless 
quantities and reduce complex physical systems to simpler forms [3,4]. The specific dimensionless quantities can describe 
the scale-free properties of different physical systems. The physical phenomena described by equal dimensionless quantities 
are similar, which suggests that the results of model experiment or simulation can be utilized to reproduce interested 
phenomena [5].

The well-known Buckingham’s Pi theorem summarizes the central theory of the classical dimensional analysis method 
[3,6]. According to this theorem, the number of dimensionless quantities needed to define a system equals the total number 
of dimensional quantities in the system, m, minus the number of fundamental quantities with independent dimensions for 
the system, k, i.e., the system can be described with (m − k) dimensionless quantities. This is a type of dimension reduction 
approach by which the number of variables to describe the system decreases. The classical dimensional analysis method 
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experiences two major limitations: (1) the dimensionless quantities are not unique, and (2) the relative importance of the 
different dimensionless quantities is not measured [1,4].

To address the two major limitations of the classical dimensional analysis method, Constantine et al. [1] proposed a 
data-driven dimensional analysis methodology to identify unique and relevant dimensionless quantities.

The basic idea of their methodology relies on the connection between the dimension and vector space. Specifically, their 
data-driven dimensional analysis methodology combines the classical dimensional analysis method with the concepts of the 
ridge function and the active subspace [7]. Constantine et al. [1] found that the expression for the dimensionless quantities 
in a physical system can be modeled with a ridge function. Given any ridge function, we can find certain specific directions 
along which the dependent variables change dramatically. The low-dimensional subspace of these specific directions is the 
active subspace [8].

The active subspace in dimensional analysis represents the relatively important dimensionless quantities in the physical 
system. Furthermore, the active subspace is unique, because the basis of active space is unique and the directions of basis 
are corresponding to the exponent of dimensionless quantities. The unique active subspace indicates the uniqueness of the 
dimensionless quantities.

In data-driven dimensional analysis [1], a dimension matrix is first obtained according to the classical dimensional 
analysis, and a response surface is then constructed to determine the active subspace, which helps to identify the new 
dimensionless unique and relevant quantities. One of the crucial steps of the data-driven dimensional analysis method is the 
construction of the response surface and the computation of its gradient. There are extensive studies on response surface 
methodologies [9,10].

Two algorithms have been proposed in the work of Constantine et al. [1] to construct and compute the gradient of 
response surface. One algorithm is based on the finite difference-based method, where the independent quantities are 
obtained from experiments or numerical simulations at specific intervals to ensure numerical calculation of the response 
surface gradient in the active subspace. The other algorithm is a data-driven algorithm which applies Gaussian process 
regression to fit the response surface and compute its gradient. Both of these two algorithms have been successfully used 
in analyzing the unique dimensionless quantities in laminar and turbulent pipe flows. Jofre et al. [4] further improved 
the data-driven algorithm and applied it to an irradiated particle-laden turbulence case. Their results show that the data-
driven algorithm can accurately identify the dimensionless quantities that determine heat transfer in irradiated particle-
laden turbulent flow. Yang et al. [11] built a global polynomial chaos response model and computed gradients with this 
model, by which they efficiently solved some high-dimensional problems. Fukumizu et al. [12] established a kernel-based 
approximation to compute the gradient. This method theoretically guarantees dimension reduction in regression with a low 
computational time cost. Constantine et al. [13] further applied sliced average variance estimation (SAVE) to calculate the 
direction of the response surface to reduce the physical dimensions.

With the development of computer technology and algorithms, neural networks have been successfully employed by 
researchers in data assimilation [14], turbulence modeling [15–17], subgrid model for large eddy simulation [18,19], drag 
reduction [20], velocity predicting [21] and unstructured mesh modeling [22]. In recent years, construction of the response 
surface via neural networks has been demonstrated an effective and feasible approach [23]. Neural network has shown its 
advantages in the construction of the response surface because [24] (1) it can process highly nonlinear complex systems 
with the ability to fit and predict data, (2) new data can be added while the neural network remains unchanged. Considering 
that the neural networks provide an alternative approach to effectively predict the response surface, it is attractive to 
combine the neural networks with data-driven dimensional analysis.

The aim of this work is to introduce a machine-learning based data-driven dimensional analysis method to identify the 
unique and relevant dimensionless quantities. We use a feedforward neural network to construct the response surface and 
compute its gradient, and then identify the dominant dimensionless quantities by estimating the active subspace. The gradi-
ent of the response surface for active subspace analysis is computed based on a finite difference approximation. An effective 
approach is proposed to determine the independent variables of experimental measurements or numerical simulations for 
computing the finite difference. The proposed method is validated by analyzing the pressure drop in benchmark pipe flows 
and the drag experienced by a flexible body in flows.

The remainder part of this paper is organized as follows. The theory and algorithm of the dimensional analysis method 
and the neural network based response surface are described in Section 2. The proposed method is validated by analyzing 
benchmark pipe flows in Section 3. Then, the proposed method is employed to analyze the drag acting on a flexible body 
in Section 4. Finally, conclusions are drawn in Section 5.

2. Machine-learning based data-driven dimensional analysis

2.1. Data-driven dimensional analysis

According to the classical dimensional analysis, the dimensions of m quantities q = [q1, · · · , qm]T in a system can be 
expressed as products of k fundamental dimensions. The dimension vector of the i-th quantity qi , denoted as vd(qi), is a 
function that returns the exponents of the dimensions of this quantity. For instance, if qi is the velocity u in a physical sys-
tem with three fundamental dimensions (k = 3), [L], [T ] and [M], the dimension of qi is [L]1[T ]−1[M]0, and the dimension 
vector is vd(qi) = [1,−1,0]T . In the case of m independent quantities in a physical system with k fundamental dimensions, 
2
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a matrix D = [vd(q1), · · · , vd(qm)] of k ×m elements contains the dimension vectors of m independent quantities. We denote 
a matrix W = [w1, · · · , wn] ∈Rm×n as the null space of the matrix D

DW = [0]k×n, (1)

where n = m − k. In general, we can compute the matrix W via linear algebra methods or via classical dimensional analysis 
with Schmidt orthogonalization. After we determine the matrix W, the dimensionless quantities � = [π1, · · · , πn]T con-
taining the n dimensionless independent quantities can be obtained. For the i-th dimensionless independent quantity πi in 
� = [π1, · · · , πn]T , we have the expression as follows,

πi = q1
w1i · · ·qm

wmi

= exp
(
log

(
q1

w1i · · ·qm
wmi

))

= exp

⎛
⎝ m∑

j=1

w ji log
(
q j

)
⎞
⎠

= exp
(

wi
T log(q)

)
,

(2)

where q = [q1, · · · ,qm]T denotes the independent quantities in the physical system, w ji is an element of the matrix W
and wi is the i-th column of the matrix W. It is noted that there are some controversies over the dimensional quantities 
involving transcendental functions [25,26]. In accordance with the work of Constantine et al. [1], we use the expression as 
Eq. (2) to formally represent the products of powers of physical quantities.

The dimensionless dependent quantity πt of the system can be expressed as a function of the dimensionless independent 
quantities � = [π1, · · · , πn]T ,

πt = f (π1, · · · ,πn). (3)

Based on Eq. (2) and Eq. (3), we obtain

πt = f (π1, · · · ,πn)

= f (exp(w1
T log(q)), · · · ,exp(wn

T log(q))).
(4)

We define x = log(q) and rewrite Eq. (4) as follows,

πt = f (exp(w1
T x), · · · ,exp(wn

T x))

= g(w1
T x, · · · ,wn

T x)

= g
(

WT x
)

,

(5)

where g is a ridge function [27,28].
Given a ridge function fr :Rm →R with independent variables x, we define

fr(x) = g
(

WTx
)

. (6)

For any vector J orthogonal to the columns of W, WT J = 0, we have

fr(x) = g
(

WT(x)
)

= g
(

WT(x + J)
)

= fr (x + J) . (7)

In other words, the ridge function fr(x) remains constant when the variables change along the direction orthogonal to the 
columns of W. The variables that change along particular directions do not affect the function value, and we can reduce 
the dimensions of the variables along these directions. For example, the function y = e2x1+3x2 is a typical ridge function. 
The dependent variable y varies rapidly when the independent variable x changes along the direction (2, 3), and y remains 
constant when the independent variable changes along the orthogonal direction (−3, 2). This feature generalizes the idea of 
identifying a subset of dominant variables, since the ridge function exhibits dominant directions. We aim to focus on those 
directions that are dominant and ignore the directions where the ridge function remains constant. This is the motivation 
behind the active subspace [7].

We can define a n × n symmetric and positive semidefinite matrix C based on the continuous differential function 
g :Rn →R as

C =
∫

∇g(xr)∇g(xr)
T σ(xr)dxr, (8)
3
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where xr ∈ Rn is a vector distributed according to the joint density σ , σ : Rn → R+ is a weight function and ∇g ∈ Rn is 
the gradient of ridge function g . Matrix C is the uncentered covariance of the gradient vector [8], which enables eigenvalue 
decomposition

C = S�ST, (9)

where S = [s1, · · · , sn] is the orthogonal matrix of the eigenvectors, sn is the n-th column eigenvector, and � is the diagonal 
matrix of n nonnegative eigenvalues. For the i-th eigenvalue λi in �, the Rayleigh quotient form of the eigenvalue reveals 
the expression as follows,

λi = si
TCsi = si

T
(∫

∇g(xr)∇g(xr)
T σ(xr)dxr

)
si

=
∫ (

∇g(xr)
T si

)2
σ(xr)dxr,

(10)

where si denotes the corresponding eigenvector. Eq. (10) indicates that λi must be greater than or equal to 0, and this 
parameter measures the average rate of change along the eigenvector direction. If λi > λ j , the change in ridge function g
along the direction of si occurs faster than that along the direction of s j . Therefore, we sort the eigenvalues in descending 
order, λ1 > · · · > λp > λp+1 · · · > λn . If the first p eigenvalues are much greater than the (p + 1)-st eigenvalue (λp � λp+1), 
the active subspace is then the eigenvector space [s1, · · · , sp].

We introduce a new set of variables for the dimensionless relationship Eq. (3)

πt = f (π1, · · · ,πn)

= f (exp(log(π1)), · · · ,exp(log(πn)))

= g(log(π1), · · · , log(πn))

= g(γ1, · · · , γn),

(11)

where γi = log(πi). We thus obtain a vector � = [γ1, · · · , γn]T , according to Eq. (5) and x = log(q)

� = WTx = WT log(q). (12)

Take g(�) into Eq. (8), we have,∫
∇g(�)∇g(�)T σ(�)d� = S�ST = C. (13)

The vector � can be adjusted toward the direction of the eigenvectors as follows,

ST� = STWTx =ZTx, (14)

where Z = WS ∈ Rm×n . Recall that n is the number of dimensionless quantities and m is the number of independent vari-
ables. The columns of Z define new dimensionless quantities that form the unique and associated dimensionless quantities 
�̂ = [π̂1, · · · , π̂n]T . In other words, each component in �̂ = [π̂1, · · · , π̂n]T can be expressed as

π̂i = exp
(

zT
i log(q)

)
, (15)

where zT
i is the i-th row of matrix ZT . Then, the active subspace of the dimensionless quantities can be constructed based 

on the eigenvalue diagonal matrix �. Through the active subspace theory, we can determine the relative importance of the 
dimensionless quantities in �̂.

2.2. Machine-learning based data-driven dimensional analysis method

We propose a machine-learning based data-driven dimensional analysis in this subsection to demonstrate the feasibility 
of neural networks in constructing and computing the response surface. We use a fully connected feedforward neural 
network (hereafter referred to as the neural network in this work), to construct a response surface and compute its gradient 
in order to conduct machine-learning based data-driven dimensional analysis. The schematics of the neural network are 
shown in Fig. 1, which consists of an input layer, an output layer and multiple hidden layers. Neurons are distributed in 
each layer. With adequate hidden layers, they can approximate continuous complex functions [29].

The collection of neurons in a specific layer in the neural network can be considered a vector. The input vector is denoted 
as x, and the output vector is denoted as y. We denote the output of the i-th layer as Hi . The neural network in the form 
of b hidden layers can be expressed as follows,
4
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Fig. 1. Schematics of computing the gradient of response surface g by using fully connected neural network. The computation of the gradient includes three 
stages: preprocessing, constructing the response surface, and computing the gradient. In the preprocessing stage, we start from the physical quantities q to 
compute W∗ by classical dimensional analysis. The matrix W can be obtained via Schmidt orthogonalization of W∗ . The input quantities q′ are computed 
by Eq. (29). In the stage of construing the response surface, the response surface is constructed using neural network. For example, the neural network 
shown in this figure is the network utilized in analyzing the drag of a flexible body in Section 4. The input layer for this case consists of three circles on the 
left-hand-side of the network. The circle on the right-hand-side represents the output layer, which outputs the dependent variable πt . The hidden layers 
are located between the input layer and output layer. In the third stage, the gradient of response surface is computed by Eq. (20), where π ′

t are predictions 
of the neural network. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

⎧⎨
⎩

H0 = x,

Hi+1 = φ (Ci + RiHi) ,0 ≤ i ≤ b − 1
y = fθ (x; θ) = RbHb+Cb, θ := {Ri,Ci}b

i=0 ,

(16)

where Hi is the output of i-th layer, Ci is the output offset vector, Ri is the i-th column of the weight matrix R, and φ is 
the nonlinear neural network activation function. In this work, rectified linear unit (ReLU) and hyperbolic tangent tanh(x)
are chosen as activation functions φ(x). Vector θ collects all the undetermined neural network parameters Ci and Ri . The 
training process of the neural network utilizes the loss function and optimizer to adjust θ .

The loss function describes the scalar loss associated with each labeled training data points (xtrain, ytrain). We use the 
regression function as follows,

N∑
i=1

∣∣∣∣∣∣yi
train − fθ (xi

train; θ)

∣∣∣∣∣∣2
, (17)

where N is the number of training sets. The optimizer employed in this work is the Adam method [30], which considers first 
and second moment estimations of the gradient. In this work, the inputs are dimensionless quantities �, and the output 
is the dimensionless quantity πt . We normalize the input parameters to ensure that any parameters with relatively large 
values do not disproportionately affect the results [7]. The parameters are normalized as follows. For a set of parameters 
(α1, · · · , αi, · · · , αn) with the lower bounds αl and the upper bounds αu . The normalized parameters (α̂1, · · · , α̂i, · · · , α̂n)

are computed by α̂i = 2(αi − αl)/(αu − αl) − 1, i = 1 · · ·n.
The data are randomly divided into training and validation sets. The loss of the validation set (val_loss) is the overfitting 

criterion.
The implementation of the machine-learning based data-driven dimensional analysis method proposed in this work is 

given as follows:

1. Compute the matrix W from a set of data 
((

π
(1)
t ,q(1)

)
, · · · ,

(
π

(N)
t ,q(N)

))
obtained from N experimental measure-

ments or numerical simulations, where q denote the dimensional quantities (independent variables). Here, πt is the 
dimensionless quantity of interest (dependent variable).
The dimensionless independent quantities can be derived from the dimensional quantities q by using the classical 
dimensional analysis and are employed to compute an auxiliary matrix W∗ , whose columns consist of the exponents of 
5
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the dimensional quantities for the dimensionless quantities. Then, the matrix W in Eq. (1) can be obtained via Schmidt 
orthogonalization of matrix W∗ .

2. Compute the dimensionless quantities �( j) = [
γ1

( j), · · · , γn
( j)

]
( j = 1, 2, . . . , N) as follows,

γi
( j) = wi

T log
(

q( j)
)

, i = 1 . . .n. (18)

3. Construct the response surface g (�) from �( j) by using the neural network,

π
( j)
t ≈ g

(
�( j)

)
≈ fθ

(
exp

(
W∗T log

(
q( j)

)))
. (19)

4. Compute the gradient of the response surface g (�) based on the trained neural network as follows (see more details 
in Section 2.3),

∂ g(�( j))

∂γi
= π

′( j)
ti − π

( j)
t


h
(20)

π
′( j)
ti ≈ g

([
γ1

( j), · · · , γi
( j) + 
h, · · · , γn

( j)
])

. (21)

5. Evaluate the active subspace of g(�) by computing the uncentered covariance of the gradient vector of g(�),

C =
∫

∇g(�)∇g(�)T σ(�)d� = S�ST . (22)

6. Compute the new dimensionless quantities �̂ = [π̂1, · · · , π̂n]T as follows,

Z = WS (23)

π̂i = exp
(

zT
i log(q)

)
. (24)

Based on the above steps, we can obtain the unique and relevant dimensionless quantities �̂ = [π̂1, · · · , π̂1]T of the physical 
system.

As pointed out by Constantine et al. [1], different numerical quadrature methods can be used in numerically computing 
Eq. (22). We use Monte Carlo method to compute the numerical quadrature in Eq. (22) in accordance with the work of 
Constantine et al. [1]. For the set of data 

(
π

( j)
t ,q( j)

)
, ( j = 1, · · · , N) given in Step 1, Eq. (22) can be approximated by

C ≈ 1

N

N∑
j=1

∇g(�( j))∇g(�( j))
T

(25)

where ∇g(�( j)) =
[

∂ g(�( j))
∂γ1

,
∂ g(�( j))

∂γ2
, . . . ,

∂ g(�( j))
∂γn

]T
is the gradient of the response surface g . More details on the numerical 

quadrature method can be found in the work of Constantine and Gleich [31].

2.3. Computation of the gradient of the response surface g(�)

The computation of the gradient of the response surface g (�) in Step 4 of Section 2.2 by changing the input parameters 
of the experimental measurement or numerical simulation is not straightforward, because the computation of the gradient 
of the response surface includes the determination of π ′

ti at 
[
γ1

( j), · · · , γi
( j) + 
h, · · · , γn

( j)
]
. We must convert the inde-

pendent quantities γi + 
h for π ′
ti into the input quantities q′ for the experiment measurement or numerical simulation. 

We propose the method as follows to calculate the input quantities q′ .
The input quantities q′ should meet the condition that only a small 
h increases of γi , while γ j (i 
= j) remains un-

changed. Since x = log(q), we obtain

x′ = log(q′). (26)

From Eq. (12), we have the relations between the increment of � and the input quantities x′ as follows,

γi + 
h = wT
i x′

γ j = wT
j x′,

(27)

where the solution of x′ is not unique and wi , w j are the columns of W respectively. Because W is an orthonormal matrix, 
it is a natural consideration that x changes along the direction of the base to satisfy Eq. (27). The increment of input 
parameters of experimental measurements or numerical simulations can be expressed as
6
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Table 1
Dimension vectors of the physical quantities in the pipe flow.

Quantity Symbol Unit Dimension vector

velocity V m s−1 [0,1,−1]
density ρ kg m−3 [1,−3,0]
viscosity μ kg m−1s−1 [1,−1,−1]
diameter D m [0,1,0]
roughness ε m [0,1,0]

x′ = x + kwi . (28)

Combining Eq. (27) and Eq. (28), we obtain k = 
h. The input quantities q′ can be computed as

log(q′) = log(q) + 
hwi . (29)

Based on Eq. (29), we can change the input parameters of the experimental measurements or numerical simulations and 
compute the gradient of the response surface.

3. Machine-learning based data-driven dimensional analysis in the viscous flows in a circular pipe

3.1. Pressure drop in pipe flow

In accordance with the work of Constantine et al. [1], we consider benchmark viscous flows in a circular pipe to vali-
date the machine-learning based data-driven dimensional analysis method. Viscous flow in the pipe is a classical problem 
involved in dimensional analysis [6]. The physical quantities involved in the system include the average velocity V , density 
of the fluid ρ , viscosity of the fluid μ, pipe diameter D and pipe wall roughness ε. The system has three fundamental 
dimensions: length [L], mass [M], and time [T ]. The dependent variable is the pressure loss dp/dx. The Fanning friction 
factor λ is defined by

λ = dp/dxD
1
2ρV 2

. (30)

According to the conclusion of classical dimensional analysis and empirical model, the Fanning friction factor λ depends 
on the Reynolds number ρV D/μ and relative roughness ε/D . When the Reynolds number of the pipe is lower than or 
equal to 3000, it can be considered that the friction factor satisfies the Poiseuille relationship [1]

λ = 64

Re
. (31)

For the Reynolds number higher than 3000, the Colebrook equation implicitly defines the relationship between the friction 
factor and the other quantities as follows [1],

1√
λ

= −2.0 log10(
1

3.7

ε

D
+ 2.51

Re
√

λ
). (32)

3.2. Machine-learning based data-driven dimensional analysis of flows in a circular pipe

We apply the method proposed in Section 2.2 to determine the dominant dimensionless quantities of viscous flows in a 
circular pipe. In accordance with the work of Constantine et al. [1], we use a computer model (virtual experiment) of viscous 
pipe flow to ideally control the system’s independent variables and evaluate the corresponding dependent variable. We 
randomly generate 1000 quantities of virtual experimental data 

((
λ(1),q(1)

)
, ...,

(
λ(1000),q(1000)

))
. Here, q = (ρ, μ, D, ε, V )T

is the independent quantities with units. The dimension vectors of the independent quantities q are listed in Table 1.
From the classical dimensional analysis, the equation of the system can be written as

λ = f
(

Re,
ε

D

)
. (33)

The matrix D consists of the dimension vectors list in Table 1. The auxiliary matrix W∗ is computed as the null space of D, 
and the matrix W is computed via Schmidt orthogonalization of the auxiliary matrix W∗ ,

D = M
L
T

ρ μ D ε V⎡
⎣ 1 1 0 0 0

−3 −1 1 1 1
0 −1 0 0 −1

⎤
⎦ (34)
7
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Fig. 2. The relative error (error) at different step size 
h.

Table 2
Neural network A.

Hidden layer Neurons Activation functions Optimizer Batch

5 10 ReLU/Tanh Adam 20

W∗ =

⎡
⎢⎢⎢⎣

1 0
−1 0
1 1
0 −1
1 0

⎤
⎥⎥⎥⎦ (35)

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5
√

7
14

−0.5 −
√

7
14

0.5 −3
√

7
14

0 4
√

7
14

0.5
√

7
14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)

We adopt five hidden layers in the neural network in this case. The number of neurons in each hidden layer is ten. The 
parameters of the neural network are provided in Table 2. The function fθ in Eq. (19) can be written as

λ = fθ
(
exp(W∗) log(q)

)
. (37)

We select 1% samples as the validation set to prevent overfitting. Fig. 3 shows the typical training loss and validation 
loss (val_loss) of the medium Reynolds case (as discussed in details in the following paragraphs), which are calculated by 
using Eq. (17). The loss of the training set decreases with increasing epoch, indicating that the machine learning results 
have converged. A decrease in val_loss indicates that machine learning has increased the prediction ability. With increasing 
epoch, the training loss dose not dips significantly below the val_loss, which suggests that the neural network does not 
overfit the sets of data.

We have examined the impact of 
h in Eq. (20) on the results. For the medium Reynolds number case, we alter the 
step size 
h, and compare the predicted values to the eigenvector calculated with the finite difference-based algorithm. The 
relative error between the results is defined as

error = ||T − T′||2
||T′||2 , (38)

where ||.||2 is 2-norm, T′ is the theoretical solution and T is the results with numerical error. Fig. 2 shows the relative error 
with decreasing 
h. The relative error is closed to 1.0 × 10−2 when 
h < 10−2. The small error suggests that the results 
obtained with the proposed method are valid.
8
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Fig. 3. Changes in loss and val_loss with epoch. The values of both red and green points decrease, loss and val_loss decrease with epoch, which indicates 
that the result converges and the prediction accuracy increases. The oscillation observed in the figure is related to the small batch size. Increasing the 
batch size suppresses the resultant oscillation, but local optimal solutions are easily obtained, and loss decreases more slowly. Therefore, a small batch size 
remains the ideal choice for this problem.

Table 3
Bounds of the independent variables in the laminar flow case.

Quantity Symbol Lower bound Upper bound

velocity V 0.025 0.03
density ρ 0.1 0.14
viscosity μ 1 × 10−6 1 × 10−5

diameter D 0.5 0.8
roughness ε 3 × 10−6 8 × 10−5

We first investigate the laminar flows in the pipe. The bounds of the independent variables in the laminar flow case are 
listed in Table 3. The matrices �, S and Z of Eq. (13) and Eq. (14) in the laminar flow case are expressed as

� =
[

6.95 × 10−1

7.25 × 10−6

]
(39)

S =
[

1.00 0.00
0.00 1.00

]
(40)

Z =
[

0.50 −0.50 0.50 0.00 0.50
0.19 −0.19 −0.57 0.76 0.19

]
. (41)

The Fanning friction factor λ can be re-expressed as follows,

λ =g∗(π̂1, π̂2)

=g∗(ρ0.50μ−0.50 D0.50ε0.00 V 0.50,

ρ0.19μ−0.19 D−0.57ε0.76 V 0.19).

(42)

Based on Eq. (39), we can find that the first eigenvalue is much larger than the second eigenvalue, which indicates that the 
laminar flow solution is dominated by π̂1 = ρ0.50μ−0.50 D0.50ε0.00 V 0.50. The result is consistent with that of Constantine 
et al. [1] and the Re number, as shown in Fig. 4. The proposed machine-learning based data-driven dimensional analysis 
method determines the correct result whereby the Fanning friction factor λ is dominated by the Reynolds number under 
laminar flow conditions.

We also analyzed the flows in the medium Reynolds number region, as previously analyzed in the work of Constantine 
et al. [1]. The bounds of the independent variables in the medium Reynolds number case are listed in Table 4. The Reynolds 
number varies between 1.0 × 104 and 5.6 × 105. In the medium Reynolds number case, the matrices �, S and Z in Eq. (13)
and Eq. (14) are

� =
[

4.78 × 10−4

2.86 × 10−5

]
(43)
9
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Fig. 4. Comparison of the exponents of dimensionless quantities in the laminar flow case. The green bars indicate the regular Re number. The orange bars 
indicate the dimensionless quantity of Constantine et al. [1]. And the blue bars indicate the dimensionless quantity of proposed method.

Table 4
Bounds of the independent variables in the medium Reynolds number case.

Quantity Symbol Lower bound Upper bound

velocity V 2.0 4.0
density ρ 0.1 0.14
viscosity μ 1 × 10−6 1 × 10−5

diameter D 0.5 1.0
roughness ε 5 × 10−4 2 × 10−3

S =
[

0.84 0.55
−0.55 0.84

]
(44)

Z =
[

0.31 −0.31 0.73 −0.41 0.31
0.43 −0.43 −0.20 0.63 0.43

]
. (45)

The Fanning friction factor λ can be re-expressed as follows,

λ =g∗(π̂1, π̂2)

=g∗(ρ0.31μ−0.31 D0.73ε−0.41 V 0.31,

ρ0.43μ−0.43 D−0.20ε0.63 V 0.43).

(46)

Equation (43) indicates that the two eigenvalues are of the same order. The Fanning friction factor λ depends on both π̂1
and π̂2. The results indicate that the Fanning friction factor λ depends on two dimensionless quantities in the Reynolds 
number region 

(
1.0 × 104 < Re < 5.6 × 105

)
.

The dimensionless quantities obtained by the method proposed by this work and these reported in the work of Constan-
tine et al. [1] are shown in Fig. 5. These two dimensionless quantities are close with those obtained by Constantine et al. [1]
with difference between 0.01 to 0.02. The cause of the difference might be that the number of points Constantine et al. [1]
considered in their data-driven dimensional analysis algorithm was 161051, and we can obtain the similar result by using 
the neural network with 1000 random points.

In the high Reynolds number case, Re varies between 2.5 × 106 and 9.8 × 107. The bounds of the independent variables 
are listed in Table 5. In the high Reynolds number case, the matrices �, S and Z are expressed as

� =
[

2.68 × 10−6

7.69 × 10−3

]
(47)

S =
[ −0.93 0.36

−0.36 −0.93

]
(48)
10
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Fig. 5. Comparison of the exponents of dimensionless quantities in the medium Reynolds number case. The green bars indicate the dimensionless quantities 
of Constantine et al. [1]. And the blue bars indicate the dimensionless quantities of proposed method. The two dimensionless quantities are equally 
important, they are both presented in the figure.

Table 5
Bounds on the independent variables for the high Reynolds number case.

Quantity Symbol Lower bound Upper bound

velocity V 500 700
density ρ 0.1 0.14
viscosity μ 1 × 10−6 1 × 10−5

diameter D 0.5 1.0
roughness ε 1 × 10−2 4 × 10−2

Z =
[ −0.53 0.53 −0.26 −0.27 −0.53

0.00 0.00 0.71 −0.71 0.00

]
. (49)

The Fanning friction factor λ can be rewritten as follows,

λ =g∗(π̂1, π̂2)

=g∗(ρ−0.53μ0.53 D−0.26ε−0.27 V −0.53,

ρ0.00μ0.00 D0.71ε−0.71 V 0.00).

(50)

Equation (47) reveals that the second eigenvalue is much larger than the first eigenvalue, which suggests that the solution 
under high Reynolds number flow conditions is dominated by π̂2, the pipe wall roughness, as shown in Fig. 6.

We also present an example with real experimental data (Nikuradse’s data) available from the work of Yang et al. [32] for 
the high Reynolds number case. Yang et al. [32] describes the collection for Nikuradse’s data with six different roughnesses.
We choose the cases in which the Reynolds number Re varies between 1.0 × 105 and 2.0 × 106. The max relative error of 
data is 4.03% and the average relative error is 1.01%. By using these data with errors, the proposed method based on the 
neural network gives the matrices �, S and Z as follows,

� =
[

9.30 × 10−5

4.68 × 10−4

]
(51)

S =
[ −0.90 0.44

−0.44 −0.90

]
(52)

Z =
[ −0.53 0.53 −0.20 −0.44 −0.53

0.05 −0.05 0.73 −0.68 0.05

]
. (53)
11
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Fig. 6. Comparison of the exponents of dimensionless quantities in the high Reynolds number case. The green bars indicate the D/ε. The orange bars 
indicate the dimensionless quantity of virtual simulation applying proposed method. And the blue bars indicate the dimensionless quantity of experimental 
data [32] applying proposed method.

Compared with Eq. (49), which is the results of virtual experiment, the exponents of V , ρ and μ in Eq. (53) are 0.05 rather 
than the theoretical results which are 0.00. And the exponents of D in Eq. (53) is 0.73 and the exponents of ε is −0.68. 
The ratio of eigenvalues shown in Eq. (51) is 5.03. This result can still show the non-dimensional quantity corresponds to 
the second eigenvector D/ε is the relevant quantity at high Re, when the number is round to the nearest tenth. However, 
we would like to notice that the error in the experimental data has great effects on the ratio between the two eigenvalues. 
Much attention should be paid when the proposed method is used to handle the data with errors, since the ratio between 
the eigenvalues of shown in Eq. (51) is not as large as that shown in Eq. (47) for the virtual experiments.

3.3. Discussion

The numerical errors in the proposed method based on the neural network mainly origin from the three steps as follows: 
training the neural network for response surface (Step 3 in Section 2.2), approximating the gradients of the response surface 
(Step 4 in Section 2.2), evaluating the integral by using numerical quadrature (Step 5 in Section 2.2). We investigate the 
propagation of the error from Step 3 to Step 5 based on the case of pipe flow in medium Reynolds number.

We first calculated the propagation of numerical errors for the case at medium Reynolds numbers as reported in Sec-
tion 3.2, where 1000 sets of data are used. The errors in Steps 3 − 5 are computed based on Eq. (38) according to the rules 
as follows: (1) the error in Step 3 is defined based on the difference between the predicted of the artificial neural network 
and the theoretical results, (2) the error in Step 4 is defined based on the difference between the gradient of the finite 
difference method and the gradient of Colebrook function or Poiseuille function at the same point, (3) the error in Step 5 is 
defined based on the difference between the numerical quadrature and the integration of continuous function.

For the case with 1000 sets of data shown in Fig. 7, the error of training the neural network for response surface (Step 
3 in Section 2.2) is 0.73%, while the error after approximating the gradients of the response surface (Step 4 in Section 2.2) 
is 4.47%. It is reasonable that the error is amplified during the computation of gradient, since error from the approximation 
of the response surface is divided by a small increment 
h. The error after evaluating the integral by using numerical 
quadrature (Step 5 in Section 2.2) is 4.87%, which is closed to error of Step 4.

We have also changed the number of data sets while keep all of the other parameters fixed. The number of data sets 
investigated in this subsection varies from 200 to 1500. The propagation of the errors has the similar trends as these 
reported for the case with 1000 sets of data. However, the errors after evaluating the integral by using numerical quadrature 
(Step 5 in Section 2.2) are more than 10% for the cases with 200 and 500 sets of data. For example, the error after evaluating 
the integral by using numerical quadrature (Step 5 in Section 2.2) is 10.94% for the case with 500 sets of data. When the 
number of data set is larger than 1000, the error after evaluating the integral by using numerical quadrature (Step 5 in 
Section 2.2) is less than 5%.

The main differences between the proposed neural network based method and the previous work of Constantine et al. [1]
are the approaches to compute the gradient of the ridge function. Constantine et al. [1] present two different approaches 
12
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Fig. 7. The propagation of the numerical error from Steps 3–5 reported in Section 2.2.

Table 6
The relative errors of different sets of data.

Method Sets of data Relative error

proposed method 1000 4.87%
proposed method 10000 3.09%
Gaussian process regression 1000 54.70%
Gaussian process regression 2000 21.28%
Gaussian process regression 4000 13.69%
Gaussian process regression 10000 11.58%
Gaussian process regression 16000 5.03%

for numerically computing the gradients of the ridge function. The first approach is based on the response surface where 
the gradient of response surface is used to approximate the gradient of the ridge function. The second approach is based 
on the finite difference approximations of the ridge function. The finite-difference based approach does not surfer from the 
error from response surface approximation. However, it requires more experiments than the response-surface based method 
[1]. Constantine et al. [1] use Gaussian process regression to construction the response surface in analyzing the viscous pipe 
flow. Here, we compared the proposed neural network based method with the Gaussian process regression based method. 
We investigate the errors in analyzing the viscous pipe flow at medium Reynolds numbers as reported in Section 3.2. We 
use the same ways to compute the gradient of the response surface and the numerical quadrature in Eq. (38). The only 
differences are the way to construct the response surface and the number of data sets.

We use the open source machine learning library, Scikit-learn, to implement the Gaussian process regression by calling 
the function sklearn.gaussian_process.GaussianProcessRegressor. For the analysis based on the 1000 sets of data reported in 
Section 3.2 at medium Re number, the error of matrix C computed by using the proposed neural network based method 
is 4.87%, while that computed by using the Gaussian process regression based method is more than 20%. The error can 
be reduced if we increase the number of data sets for constructing the response surface, as shown in Table 6. The results 
show that the proposed neural network based method requires less sets of data than the Gaussian process regression based 
method. We would like to notice that it is hard to clearly clarify the advantage of the proposed neural network based 
method, because we just use one of the Gaussian process regression method from the library Scikit − learn. However, the 
result at least shows that the proposed neural network based method provides an alternative way to construct the response 
surface for data-driven dimensional analysis.

It is noticed that the proposed method is a data-driven method without referencing to the physical models in analyzing 
the data. Compared with the physical inferred model, the data-driven method has the drawback of requiring massive sets 
of data, which might be quite expensive in terms of scientific computing. Constantine et al. [1] uses 161051 sets of data 
in their analyzing of the pipe flows. Through the present work based on the neural network tries to reduce the required 
sets of data, it still requires 1000 sets of data to obtain the acceptable results. A combination of the physical inferred model 
with the data-driven model might be a feasible way to reduce the required data sets. As will be discussed in Section 4, the 
physical inferred assumption that the drag coefficient is independent of dimensionless soap film thickness will significantly 
reduce the required sets of data. For the analysis of drag coefficients of a flexible body, the proposed method requires just 
about 100 sets of data with the above physical inferred assumption, while that without the physical inferred assumption 
requires about 1000 sets of data. The other disadvantage of the neural network based method is that experience is needed 
13
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in setting and training neural networks to avoid underfitting and overfitting. Attentions should be paid in determining the 
number of hidden layers and neurons.

We also would like to mention that the current data-driven dimensional analysis is constructed based on the assumption 
as follows: the data available are sufficient to discover all of the related physical quantities and there are no hidden or 
unavailable inputs. In general, we assume that all of the related physical quantities have been considered. In practical 
applications, we need to consider as many independent variables as possible, even those seemingly unrelated variables. If 
important variables are lurking, they can be detected via the method proposed by Rosario et al. [33].

4. Machine-learning based data-driven dimensional analysis of drag coefficients of a flexible body

4.1. Interactions between a flexible body and flows

Reconfiguration of a flexible body in flows is a common phenomenon in nature. Biological structures are found to fold, 
bend, wave, and twist in flows [34]. Reconfiguration of a given flexible body yields different scaling of drag coefficient. Vogel 
et al. [35] studied the relationship between drag and shape reconfiguration of tree leaves at different wind speeds. With 
increasing wind speed, the leaves roll themselves into self-similar cones and tend to become streamlined. The self-similar 
feature of a flexible body results in a slower drag growth than that of a rigid body.

Scaling of the drag coefficient of a flexible body in flows was systematically investigated by experimental measure-
ments [36,37] and numerical simulations [38–40]. Alben et al. [36,37] found that the drag coefficient scales as U 4/3 for 
flexible body instead of as U 2 for rigid body.

The new scaling law of the drag acting a flexible body is obtained by proposing a crucial dimensionless length η to 
analyze the drag coefficient [36]. The dimensionless length η was obtained by analyzing the coupled equations of the free-
streamline model and the Euler-Bernoulli beam equation as

−(T s)s + (Eksn)s = hpn, (54)

where p is the pressure jump across the fiber, T is the axial tension, k is the fiber curvature, n is the unit normal vector, 
subscript s is the arc length and s is the unit tangent vector along the fiber. The dimensionless form of Eq. (54) is

kss + k3/2 = η2 p, (55)

where the dimensionless length η is expressed as

η =
(

ρhl2 V 2/2

E/l

) 1
2

. (56)

4.2. Dominant dimensionless quantities of the fluid-structure interaction system

In this section, we show that the crucial dimensionless length η can be obtained by using the machine-learning based 
data-driven dimensional analysis proposed in this work without referring to the complex coupled equations of the free-
streamline model and the Euler-Bernoulli beam equation. The Drag acting on the fiber depends on the length of the flexible 
fiber l, elastic modulus of the flexible fiber E , fluid density ρ , thickness of the soap film h, flow velocity V , and viscosity 
coefficient of the fluid μ. Then, we obtain the expression as follows,

Drag = f (l, E,ρ,h, V ,μ). (57)

We can obtain three dimensionless quantities according to the classical dimensional analysis method, namely, ρlV /μ, 
ρl4 V 2/E , and h/l. Equation (57) can be rewritten with dimensionless quantities as follows,

Cd = f

(
ρlV

μ
,
ρl4 V 2

E
,

h

l

)
, (58)

where Cd = Drag/ 
(
ρU 2lh/2

)
is the drag coefficient.

We apply the machine-learning based data-driven dimensional analysis method given in Section 2.2 to investigate 
the above fluid-structure interaction system. We generate 1000 quantities of virtual experimental data 

( (
Cd(1),q(1)

)
, ...,(

Cd(1000),q(1000)
) )

according to the relationship with a random noise in a similar approach reported in reference [37]. Here, 
q = (ρ, μ, l, h, V , E)T are the dimensional quantities (independent variables) in the system. The bounds of the quantities q
are listed in Table 7.
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Fig. 8. Changes in loss and val_loss with epoch. The values of both red and green points before epoch reach 15000 decrease. After epoch reaches 15000, 
the values of the green points increase, val_loss increases, the neural network experiences a risk of overfitting, and loss does not considerably decrease. We 
chose 15000 epoch in the simulations.

Table 7
Bounds of the independent variables in the flexible body case.

Physical quantity Symbol Lower bound Up bound

fluid density ρ 0.8 1.2
fluid velocity V 0.0 5.0
fiber length l 4.0 8.0
film thickness h 0.1 0.4
fiber rigidity E 1.0 4.0

We can obtain matrices D, W∗ and W of this problem as follows

D = M
L
T

ρ μ l h V E⎡
⎣ 1 1 0 0 0 1

−3 −1 1 1 1 3
0 −1 0 0 −1 −2

⎤
⎦ (59)

W∗ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 1
0 −1 0
1 1 4

−1 0 0
0 1 2
0 0 −1

⎤
⎥⎥⎥⎥⎥⎦

(60)

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
√

14/7 −√
21/28

0 −√
14/7 5

√
21/42√

2/2
√

14/14 3
√

21/28
−√

2/2
√

14/14 3
√

21/28
0

√
14/7

√
21/21

0 0 −√
21/12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (61)

The hidden layers of the neural network are the same as the first case in Table 2.

Cd = fθ
(
exp(W∗) log(q)

)
(62)

Fig. 8 shows the training loss and the validation loss (val_loss) of the flexible body case. In this case, val_loss exhibits a 
downward trend before epoch reaches 15000, and val_loss reveals an upward trend after epoch reaches 15000, while loss
remains almost unchanged, as shown in Fig. 8. The accuracy of the neural network does not further increase after epoch
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Table 8
Comparison of the exponents of quantities πη and π̂1.

Dimensionless quantity ρ μ l h V E

π̂1 −0.25 0.00 −0.75 −0.25 −0.50 0.25
πη −0.25 0.00 −0.75 −0.25 −0.50 0.25

reaches 15000. Therefore, we choose 15000 epoch. Following the steps of the proposed method reported in Section 2.2, the 
matrices �, S and Z are expressed as

� =
⎡
⎣ 3.38 × 100

4.10 × 10−3

8.54 × 10−4

⎤
⎦ (63)

S =
⎡
⎣ −0.36 −0.88 −0.31

−0.67 0.47 −0.58
−0.65 −0.01 0.76

⎤
⎦ (64)

Z =
⎡
⎣ −0.25 0.00 −0.75 −0.25 −0.50 0.25

0.25 −0.25 −0.50 0.75 0.25 0.00
−0.43 0.72 −0.00 0.44 −0.14 −0.29

⎤
⎦ . (65)

We obtain the new dimensionless quantities as follows,

Cd =g∗(π̂1, π̂2, π̂3)

=g∗(ρ−0.25μ0.00l−0.75h−0.25 V −0.50 E0.25,

ρ−0.25μ−0.25l−0.50h0.75 V 0.25 E0.00,

ρ−0.43μ0.72l−0.00h0.44 V −0.14 E−0.29).

(66)

According to the definition of the active subspace, the dimensionless quantities are evaluated according to the eigenvalues. 
Based on the results, it is observed that the first eigenvalue in Eq. (63) is much larger than the other two eigenvalues. 
Hence, the first eigenvector is the dominant direction,

π̂1 = ρ−0.25μ0.00l−0.75h−0.25 V −0.50 E0.25, (67)

which is the dominant dimensionless quantity of the fluid-structure interaction system, whereas the other two dimension-
less quantities impose little effect on the drag coefficient. Eq. (56) reveals that η can be expressed as

η = (ρ−0.25μ0.00l−0.75h−0.25 V −0.50 E0.25)−2/
√

2. (68)

A comparison of the dimensionless quantity π̂1 of the active subspace and the regularized exponents term of η, which 
is in parentheses in Eq. (68), πη is presented in Table 8. This dimensionless quantity π̂1 is equivalent to η mentioned in 
Section 4.1.

The drag coefficient of a flexible body is closely related to η and is slightly related to the other dimensionless quantities. 
This result is consistent with the conclusion in the work of Alben [36].

It is shown that the machine-learning based data-driven dimensional analysis can reveal the dominant dimensionless 
quantities by only considering relevant data without need to refer to the free-streamline model and Euler-Bernoulli beam 
equations in Eq. (54). The dominant dimensionless quantity η derived via machine learning is consistent with the results ob-
tained via the theoretical analysis. These results demonstrate that machine-learning based data-driven dimensional analysis 
method can help us identify and extract the dominant dimensionless quantities of physical systems.

Furthermore, we know that the drag coefficient is related to η, and in experiments [36], the results were independent 
of dimensionless quantity (dimensionless soap film thickness) h/l. Hence, due to the reduction in variables, the problem of 
flexible body drag reduction is only related to two dimensionless quantities, and the other dimensionless quantity is Re. 
Therefore, we can change Eq. (62) as

Cd = fθ
(
exp(W′) log(q)

)
,W′ =

⎡
⎢⎢⎢⎢⎢⎣

1 1
−1 0
1 3
0 1
1 2
0 −1

⎤
⎥⎥⎥⎥⎥⎦

T

. (69)

Under these settings, with only a small amount of experimental data, we can obtain valid conclusions.
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Fig. 9. Comparison of the exponents of dimensionless quantities in flexible body case. The green bars indicate the dimensionless quantity obtained with 
theory. The orange bars indicate the dimensionless quantity of virtual simulation. And the blue bars indicate the dimensionless quantity of experimental 
results.

Table 9
Neural network B.

Hidden layer Neurons Activation functions Optimizer Batch

2 4 ReLU/Tanh Adam 2

We report the application of the proposed method to the experimental data reported in [36] when η is larger than 1. 
Due to the small amount of data, the structure of the neural network is summarized in Table 9.

Following the same steps reported in Section 2.2, we obtain

� =
⎡
⎣ 8.67 × 101

3.72 × 10−1

1.33 × 10−1

⎤
⎦ (70)

S =
⎡
⎣ −0.37 −0.88 0.29

−0.66 0.02 −0.75
−0.66 0.47 0.59

⎤
⎦ (71)

Z =
⎡
⎣ −0.24 −0.01 −0.76 −0.24 −0.50 0.25

−0.06 0.24 −0.38 0.86 0.12 −0.18
−0.50 0.72 0.29 −0.12 −0.28 −0.22

⎤
⎦ . (72)

According to the proposed dimensional analysis, we write the results of the dimensionless quantities as follows,

Cd =g∗(ρ−0.24μ−0.01l−0.76h−0.24 V −0.50 E0.25,

ρ−0.06μ0.24l−0.38h0.86 V 0.12 E−0.18,

ρ−0.50μ0.72l0.32h−0.12 V −0.28 E−0.22).

(73)

The first eigenvalue in Eq. (70) is much larger than the other eigenvalues, so the drag coefficient is highly correlated with 
π̂1. The results obtained via analysis of the real experimental data are consistent with those obtained via Eq. (67). Under the 
premise of determining the dimensionless quantities, this demonstrates that by analyzing a small amount of experimental 
data, the method can also be applied to determine the unique and relevant dimensionless quantities. In conclusion, the 
exponents of dimensionless quantities obtained with proposed method and theory are shown in Fig. 9.
17



Z. Xu, X. Zhang, S. Wang et al. Journal of Computational Physics 459 (2022) 111145
5. Conclusion

The two major limitations of the classical dimensional analysis method are that (1) the dimensionless quantities are 
not unique, and (2) the relative importance of the different dimensionless quantities is not measured. We proposed a 
machine-learning based data-driven dimensional analysis method to address the two major limitations. The proposed 
method identifies unique and relevant dimensionless quantities based on the data-driven dimensional analysis proposed 
by Constantine et al. [1], which combines the classical dimensional analysis with the active subspace. The active subspace 
is estimated from the ridge function corresponding to the response surface. We use a fully connected neural network to 
construct the response surface and provide an effective approach to determine the increment of input quantities in order to 
compute the gradient of the response surface. The proposed method is validated by using the simulations and experiments 
for benchmark viscous pipe flows and a flexible body interacting with a uniform upstream flows. In the benchmark cases 
of flows in pipes, the dominant dimensionless quantities at different regions of Reynolds number have been successfully 
identified. The proposed method has obtained accurate results from a relatively small amount of data. In the fluid-structure 
interaction problem involving drag reduction through the self-similar bending of a flexible body, the proposed method has 
obtained the unique and dominant dimensionless quantity without referring to the complex equations involving the fluid 
dynamics and structure dynamics.
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