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In this paper, we perform an asymptotic study of the effect of local surface tempera-
ture (heating or cooling) strips on oncoming inviscid Mack instability in supersonic or
hypersonic boundary layers, which is presented for a canonic problem to shed light on the
physical mechanisms by which surface imperfections impact on boundary-layer transition
to turbulence. Assuming the Reynolds number to be sufficiently large, the change of the
Mack amplitude due to interaction with the temperature strip is quantified by an explicit
model developed by the multiscale analysis. It is revealed that the temperature strip plays
an equivalent role as a roughness element by producing mean-flow distortions described
by the triple-deck structure. However, the former renders a more complicated interaction
with the Mack modes since the lower deck is compressible to leading-order accuracy.
Based on this model, a systematic study for different control parameters is conducted. A
heating strip enhances (or suppresses) the Mack modes with frequencies below (or above)
a critical value, whereas a cooling strip plays the opposite role. The critical frequency is
found to be the most unstable frequency of the second mode, instead of the synchronization
frequency as was found in some previous works for both roughness and temperature-strip
configurations. A few phenomena in contrast to the roughness configuration are observed
and readily explained by the asymptotic model. The asymptotic predictions agree favorably
with the Harmonic linearized Navier-Stokes calculations and the direct numerical simula-
tions, especially when the wall temperature is low.

DOI: 10.1103/PhysRevFluids.7.053901

I. INTRODUCTION

Since the laminar skin friction and heat transfer are remarkably smaller than those of the turbulent
flow, the laminar state would obviously be more desirable than turbulence. Under high-altitude
flying conditions for which the environmental perturbations are rather weak, transition usually
follows a natural route, in which four stages, namely, receptivity (excitation of normal instability
modes by external perturbations), linear instability (exponential amplification of normal modes),
nonlinear breakdown (nonlinear interactions of perturbations, rapid distortion of the mean flow, and
breakdown of the laminar flow), and turbulence, appear in sequence [1]. The normal instability
modes could be the Tollmien-Schlichting (T-S) wave in subsonic boundary layers, or the Mack
first and second modes in supersonic and hypersonic boundary layers [2]. To delay transition to
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turbulence, one needs to minimize the level of the initial amplitudes of the normal modes in the
receptivity stage or reduce the normal-mode growth rates in the linear instability stage. Therefore,
laminar-flow control (LFC) based on the above concepts has been an attractive topic in the field of
aeronautics and aerospace for decades [3].

Usually, LFC is implemented by introducing localized surface imperfections on the flying
vehicles, which may promote or delay transition due to two physical mechanisms [4,5]. The first one
is the local receptivity, which is referred to as the excitation of the boundary-layer instability modes
due to interaction with the freestream perturbations. For incompressible and subsonic flows, the
local receptivity of the T-S modes can be formulated by the triple-deck formalism; see for instance
the roughness-sound interaction [6,7] and the roughness-vorticity interaction [8–10]. Such a frame-
work was extended to the transonic configuration [11], and even to the supersonic configuration for
the excitation of the first Mack modes with large oblique angles � ≡ tan−1(β/αr ) [12], where β

and αr denote the spanwise and streamwise wave numbers, respectively. Interestingly, it was found
from the latter work that if the incident angle of the freestream sound wave is around a particular
value, the receptivity efficiency could be much stronger. However, the receptivity mechanism of the
first Mack modes with small oblique angles and the second Mack modes is quite different due to
their inviscid nature, and Ref. [13] was the first to develop an asymptotic theory to reveal the local
receptivity mechanism of the supersonic inviscid modes due to roughness-sound interaction.

The second mechanism is the local scattering of the instability modes, in which the local surface
imperfection interacts with the oncoming instability, leading to an abrupt change of its amplitude in
a localized region. In subsonic boundary layers, the scattering of the T-S modes by two-dimensional
(2D) localized roughness was formulated based on the triple-deck formalism by Wu and Dong [14].
It was found that the T-S modes are always enhanced by both humps and indentations, leading
to premature transition eventually, which agrees with the numerical observations [15]. However,
for hypersonic boundary layers, an experimental study [16] reported that the transition could be
either promoted or delayed by 2D roughness depending on its location. Subsequent direct numerical
simulations (DNSs) [17,18] showed that roughness could enhance the oncoming second mode when
its frequency is lower than the synchronization frequency (at which the phase speeds of the fast
and slow modes, originated from the fast and slow acoustic wave, respectively, intersect), while the
stabilizing effect appears for a supercritical frequency. Using the harmonic linearized Navier-Stokes
(HLNS) approach, Zhao, Dong, and Yang [19] presented a systematic study of the scattering of
Mack modes by localized humps and indentations, confirming the aforementioned DNS results.
Moreover, some interesting phenomena were reported, e.g., an indentation plays the same stabilizing
or destabilizing role as a hump, but its scattering effect is quantitatively weaker; increase of the
roughness width does not lead to an appreciable change of the scattering effect. These phenomena
were explained by an asymptotic theory presented by Dong and Zhao [20], and the theoretical
predictions were confirmed to be in good agreement with the HLNS calculations.

Among the many control strategies, surface suction may be the most extensively studied one in
literature [21]. Reynolds and Saric [22] conducted an early experiment on the development of T-S
waves in a low-speed boundary layer with porous suction panels, which confirmed the stabilizing
effect of suction. The experimental data agrees favorably with the theoretical predictions [23]. It
was found that the steady suction induces a certain mean-flow distortion near the suction panels,
which can be predicted by the triple-deck theory; linear stability analysis of the distorted mean flow
shows smaller growth rates of the unstable T-S waves, leading to delay of transition to turbulence.
However, as the mass flux increases, the accuracy of the theoretical predictions become poorer,
and a more proper approach which takes into account the “local scattering effect” of the abrupt
suction panel was developed by Ref. [24]. Applications of suction on different circumstances,
including three-dimensional (3D) and compressible configurations and the combined effects with
other surface imperfections, are investigated subsequently [25–31]. Recently, Schrauf and von Geyr
[3] reported a Mach-0.78 flight test with a simplified hybrid LFC system on an A320 aircraft
performed in April–May 2018. Transition was found to be delayed when moderate suction was
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FIG. 1. Physical model to be studied and the characteristic length scales, where the red region at the wall
denotes the heating/cooling strip. Panel (b) shows the multiscale structure of the rectangular zone of panel (a).

introduced, and the evolution of the T-S waves was compared favorably to predictions by the linear
stability theory (LST).

As another representative surface imperfection, heating or cooling strips frequently appear at
the wall of compressible boundary layers. Early asymptotic solutions of the linear instability [32]
identified that surface cooling could suppress the growth of the boundary-layer perturbations, which
was confirmed in subsonic boundary layers [33]. For supersonic or hypersonic boundary layers,
Mack [34], through careful numerical calculations, reported that only the first mode is suppressed
by wall cooling, but the second mode and higher-order modes are enhanced. However, for a
localized temperature strip, the situation could be more complicated. Through experimental and
numerical investigations of a Mach 6 boundary layer on a cone, for which the second mode plays
the dominant role in the transition process, a few subsequent works [35–37] found that a localized
heating (cooling) panel accelerates (delays) transition, in contrast to the observations for uniform
heating (cooling) cases [34]. They also remarked that the location of the strip may also be a crucial
factor. Through DNSs, Zhao et al. [38] studied the impact of narrow heating or cooling strips on
oncoming Mack modes in a Mach 6 boundary layer. Interestingly, when a heating (cooling) strip is
located upstream of the synchronization point of the dominant perturbation, the transition would be
promoted (delayed), while the opposite is true when it is located downstream of the synchronization
point. Such effects are somewhat similar to the roughness configuration mentioned earlier. However,
there is also a notable discrepancy, namely, a hump and an indentation play the same stabilizing or
destabilizing role on the oncoming Mack modes with the same frequency band, although the effect
for a hump is stronger, however, a heating strip plays an opposite role to a cooling strip. It seems
to be puzzling unless an in-depth theoretical analysis is performed, which is the main task of the
present work.

The asymptotic analysis to be presented in this paper is an extension of the asymptotic theory
developed in Ref. [20], in which the scattering effect was quantified by an explicit model based on
the multiscale analysis. However, being different from the roughness configuration [20], the lower
deck distorted by the temperature strip is compressible to leading-order accuracy, rendering a more
complicated interaction with the oncoming Mack modes.

II. MATHEMATICAL DESCRIPTION

A. Physical problem

We consider a supersonic or hypersonic boundary layer over a semi-infinite flat plate with zero
angle of attack, as sketched in Fig. 1(a). The oncoming stream is assumed to be a perfect gas,
whose velocity and kinematic viscosity are U∞ and ν∞, respectively. In what follows, the subscript
∞ denotes the oncoming quantities. The plate is assumed to be isothermal, except at the surface
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heating or cooling strip (HCS). The distance from the plate leading edge to the HCS center is L, and
the width of the HCS is d∗. In this paper, the asterisk is referred to as the dimensional quantities.
The HCS intensity is quantified by �∗

m. We assume the incident Mack mode to be inviscid, with a
frequency ω∗ and a wavelength λ∗, and the perturbation, after interacting with the HCS, is referred
to as the transmitted Mack mode.

The displacement thickness of the boundary layer at the HCS center, δ∗ = 	
√

ν∞L/U∞, is
taken to be the characteristic length for normalization, where 	 is a constant obtained from the
compressible Blasius similarity solution. 	 increases with the oncoming Mach number and the
wall temperature, as will be shown in Table I. Practically, 	 is much greater than 1 in hypersonic
configurations. For instance, 	 ≈ 16.9 (10.4) for a Mach 5.92 (4.5) boundary layer with an adiabatic
wall. The problem is described in the Cartesian coordinate system (x∗, y∗, z∗), with its origin located
at the HCS center; the coordinates are normalized as (x, y, z) = (x∗, y∗, z∗)/δ∗. The velocity field
u∗ = (u∗, v∗,w∗), density ρ∗ and temperature T ∗ are normalized by U∞, ρ∞ and T∞, respectively,
and the pressure p∗ and time t∗ are normalized by ρ∞U 2

∞ and δ∗/U∞, respectively. The Reynolds
and Mach numbers are defined as R = U∞δ∗/ν∞ = 	

√
U∞L/ν∞ and M = U∞/a∞, respectively,

where a∞ denotes the sound speed of the oncoming stream. In this paper, we take R � 1 and M > 1.
For convenience, we introduce a small parameter

ε = R−1/4 � 1. (1)

For simplicity, we assume the HCS to be 2D, but the oncoming Mack modes could be either 2D or
three-dimensional (3D).

B. Governing equations

For a perfect gas with a constant ratio of specific heat γ , the dimensionless Navier-Stokes (N-S)
equations are [31]

∂ρ

∂t
+ ∇ · (ρu) = 0,

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p + 1

R
∇ · (2μe) + 1

R
∇

[(
μ0 − 2

3
μ

)
∇ · u

]
,

ρ
∂T

∂t
+ ρ(u · ∇)T = (γ − 1)M2

[
∂ p

∂t
+ (u · ∇)p

]
+ ∇ · (μ∇T )

PrR
+ (γ − 1)M2�

R
,

γ M2 p = ρT, (2)

where the strain rate tensor e and the dissipation function � are expressed as ei j = 1
2 ( ∂ui

∂x j
+ ∂u j

∂xi
),

� = 2μe : e + (μ0 − 2
3μ)(∇ · u)2, Pr is the Prandtl number, μ = μ(T ) the dimensionless dynamic

viscous coefficient, and μ0 = μ∗
0/μ∞ the dimensionless second viscosity. The Sutherland’s viscos-

ity law is selected,

μ(T ) = (1 + C̄)T 3/2

T + C̄
, (3)

with C̄ = 110.4K/T∞. We take γ = 1.4, Pr = 0.72, and μ0 = 0.
The instantaneous flow field is expressed as a superposition of the mean flow ϕ̄ and an unsteady

perturbation ϕ̃,

ϕ(x, y, z, t ) = ϕ̄(x, y) + ϕ̃(x, y, z, t ), (4)

where ϕ = (u, v,w, ρ, T, p). For an isothermal surface without any HCS, the steady mean flow can
be described by the compressible Blasius similarity solution, (ŪB,	2ε4V̄B)(x̄, y), as shown in the
Appendix of Ref. [39].
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III. ASYMPTOTIC DESCRIPTION FOR THE MACK-HCS INTERACTION

As shown in Fig. 1(a), there are two asymptotic regions in the streamwise direction, an inner
region where x = O(ε−1), and an outer region where x∗ = O(L) [or x = O(ε−4	−2)]. The two
regions match asymptotically as shown in Appendix A of Ref. [20]. In this paper, we will only
demonstrate the interaction in the inner region, whose asymptotic structure is depicted in Fig. 1(b).
For convenience, we introduce a local coordinate,

X = εx = O(1). (5)

A. HCS-induced mean-flow distortion: Triple-deck structure

In the asymptotic analysis, we assume the intensity of the HCS �∗
m = O(T ∗

w ), and therefore,
introduce an O(1) parameter to characterize the dimensionless HCS amplitude,

�m = �∗
m/T ∗

w . (6)

�m is positive for a heating strip or negative for a cooling strip. For demonstration, we assume a
uniform distribution of HCS, and so the temperature at the wall is expressed as

T̄ (X, 0) =
{

Tw(1 + �m) for |X | � d/2,

Tw otherwise, (7)

where Tw ≡ T ∗
w/T∞ is the dimensionless wall temperature away from the HCS, and d = εd∗/δ∗

characterizes the width of the HCS. To keep the temperature to be positive throughout the flow
field, we take �m > −1. Of course our theory is also applicable for other types of temperature
distribution.

The mean flow distorted by an HCS exhibits a triple-deck structure, the lower deck where
y = O(ε), a main deck where y = O(1) and an upper deck where y = O(ε−1), which is the same as
that by roughness as in Ref. [20]. However, the properties of the lower-deck governing equations are
different. For the latter configuration, the surface roughness induces a velocity distortion [of O(ε)]
in the lower deck, producing directly an O(ε) slip velocity to the main-deck solution through
the displacement effect, and the variations of the density and temperature are passive and small,
rendering an incompressible nature of the lower deck; see Refs. [20,40]. However, for the former
configuration, the HCS induces a temperature distortion in the lower deck, which is of the same
order as the temperature at the wall, �m = O(1). Therefore, the energy equation in the lower deck
comes to the leading order, implying that the lower deck becomes fully compressible. Fortunately,
the O(1) temperature distortion is restricted within the lower deck, which damps in the outer
limit and do not produce a temperature distortion to the main deck directly, as will be shown in
Sec. III A 2. Simultaneously, the O(1) temperature distortion drives an O(ε) velocity distortion in
the lower deck, which, being the same as that for the roughness configuration, induces an O(ε)
distortion in the main deck through the displacement effect. From this point of view, we conclude
that the HCS behaves like an equivalent roughness by producing an O(ε) mean-flow distortion to
the main-deck mean flow, but to calculate the displacement function is more complicated due to the
coupling of the momentum and energy equations in the lower deck.

The solutions of the compressible triple-deck equations have already been reported by a few
previous works. Lipatov [41] first presented the mathematical details to demonstrate the effect of
localized, unsteady heating elements on the flow properties. Assuming the heating intensity to be
small, Koroteev and Lipatov [42] solved the linearized compressible triple-deck equations analyt-
ically; later numerical solutions [43–45] were able to deal with nonlinearities of the compressible
triple-deck system. Using this system, the cancellation of the T-S waves by localized heating
elements in subsonic boundary layers was studied by Brennan, Gajjar, and Hewitt [46]. The present
work will follow these numerical approaches to obtain the mean-flow distortion induced by the
HCSs. However, to be more accurate to compare with the finite-R calculations, we employ the
Sutherland’s viscosity law Eq. (3) and a realistic Prandtl number, instead of the Chapman viscosity
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law and unity Prandtl number employed by the previous works. It needs to be noted that such a
change does not lead to any new regime, and the only advantage is to provide a more accurate
asymptotic prediction in quantity.

1. Main deck

In the main layer where y = O(1) , the velocity field, density, temperature, and pressure of the
mean flow are expressed as

ϕ̄ =
(
UB, 0, 0,

1

TB
, TB,

1

γ M2

)
+ ε(U1, εV1, 0, R1, T1, 0) + · · · , (8)

where UB(y) = ŪB(0, y) and TB(y) = T̄B(0, y) represent the streamwise velocity and temperature of
the Blasius solution at x = 0, respectively. Note that in Ref. [20], the expansion also includes the
O(ε3	2) terms, which were introduced for matching with the outer layer. The mean-flow distortions
are given by [40,47,48]

U1 = A(X )U ′
B, V1 = −A′(X )UB, R1 = −A(X )T ′

B/T 2
B , T1 = A(X )T ′

B, (9)

where the prime throughout this paper denotes the derivative with respect to its argument, and A is
the displacement function to be determined. To match with the boundary conditions at the wall, we
need to consider a thinner lower deck.

2. Lower deck

In the lower deck, where Y = ε−1y = O(1), we renormalize the coordinates as

X̃ = RX X, Ỹ = RY Y, (10)

where

RX = λ5/4(M2 − 1)3/8C̄−3/8T −3/2
w = O(1), RY = λ3/4(M2 − 1)1/8C̄−5/8T −3/2

w = O(1), (11)

with λ ≡ C̄1/2TwUB,y(0) being the wall shear of the Blasius profile, C̄ = μw/Tw and μw = μ(Tw ).
The width of the surface HCS is rescaled as

D = RX d. (12)

According to Eq. (10), the temperature distribution at the wall Eq. (7) is recast to

T̄ (X̃ , 0) = Tw[1 + �m f (X̃ )], f (X̃ ) =
{

1 for |X̃ | � D/2,

0 otherwise.
(13)

The velocity field, pressure, temperature, density, and viscosity are rescaled as

(Ū , V̄ , P̄, T̄ , R̄, μ̄) =
(

εR−1
U Ũ , ε3R−1

V Ṽ ,
1

γ M2
+ ε2R−1

P P̃, TwT̃ ,
1

Tw

R̃, μwμ̃

)
+ · · · , (14)

where

RU = λ−1/4(M2 − 1)1/8C̄−1/8T −1/2
w ,

RV = λ−3/4(M2 − 1)−1/8C̄−3/8T −1/2
w , (15)

RP = λ−1/2(M2 − 1)1/4C̄−1/4.

From the Sutherland’s viscosity law Eq. (3), we obtain

μ̃ = (Tw + C̄)T̃ 3/2

TwT̃ + C̄
. (16)
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Substituting the rescaled coordinates and flow field into the N-S equations and retaining the
leading-order terms, we obtain the boundary-layer equations,

(R̃Ũ )X̃ + (R̃Ṽ )Ỹ = 0, R̃(ŨŨX̃ + Ṽ ŨỸ ) + P̃X̃ − (μ̃ŨỸ )Ỹ = 0, (17a,b)

P̃Ỹ = 0, R̃(Ũ T̃X̃ + Ṽ T̃Ỹ ) − 1

Pr
(μ̃T̃Ỹ )Ỹ = 0, R̃T̃ = 1. (17c,d,e)

In contrast to the roughness configuration, system Eq. (17) is compressible. The variations of the
density and temperature influence the continuity and momentum equations, whereas the velocity
field influences the convection terms of the energy equation, rendering a coupled nature of the
velocity and temperature. The upstream boundary conditions read

(Ũ , Ṽ , T̃ , R̃, P̃) → (Ỹ , 0, 1, 1, 0) as X̃ → −∞, (18)

whereas the boundary conditions at the wall read

Ũ (X̃ , 0) = Ṽ (X̃ , 0) = 0, T̃ (X̃ , 0) = 1 + �m f (X̃ ). (19a,b,c)

Matching with the main-deck solution, we obtain

Ũ → Ỹ + Ã, T̃ → 1 as Ỹ → ∞, (20a,b)

where Ã is the rescaled displacement function. Ã is related to A (defined in Sec. III A) via

Ã = RY A. (21)

The nonlinear system Eq. (17) can be solved by numerical approaches. To ease the numerical
procedure, we introduce the Dorodnitzyn-Howarth transformation,

ỸDH =
∫ Ỹ

0
R̃dỸ , ṼDH = R̃Ṽ + ∂ỸDH

∂X̃
Ũ . (22)

Then, the system Eq. (17) is reduced to

ŨX̃ + ṼDH,ỸDH
= 0, ŨŨX̃ + ṼDHŨỸDH

+ T̃ P̃X̃ − (μ̃DHŨỸDH
)ỸDH

= 0, (23a,b)

P̃ỸDH
= 0, Ũ T̃X̃ + ṼDHT̃ỸDH

− 1

Pr
(μ̃DHT̃ỸDH

)ỸDH
= 0, (23c,d)

where

μ̃DH = μ̃/T̃ = (Tw + C̄)T̃ 1/2

TwT̃ + C̄
. (24)

The boundary and matching conditions read

Ũ (X̃ , 0) = ṼDH(X̃ , 0) = 0, T̃ (X̃ , 0) = 1 + �m f (X̃ ), (25a,b,c)

Ũ → ỸDH + IT 0 + Ã, T̃ → 1 as ỸDH → ∞, (26a,b)

where

IT 0 =
∫ ∞

0
(T̃ − 1)dỸDH =

∫ ∞

0
(1 − T̃ −1)dỸ . (27)

This system Eq. (23) is closer to the incompressible lower-deck equation system as in Ref. [20],
but we still have the impact of the temperature in the pressure-gradient and viscous terms of the
momentum equation. Comparing the matching condition Eq. (26a) with that for the roughness
configuration (Eq. (B9) in Ref. [20]), we find that the impact of the temperature distortion IT 0 is
equivalent to that of the shape function of the roughness by producing a displacement effect to the
main deck.
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3. Upper deck

The lower-deck equations are not closed, and an additional pressure-displacement (P-D) relation
is obtained by matching the lower-deck solution with the upper-deck solution through the main-deck
one. The upper deck has a thickness of y ∼ ε−1, and its governing equation in a supersonic flow
is a rescaled Helmholtz equation, whose solution follows two characteristic curves, and only the
radiating branch satisfies the physical situation of the mean flow distorted by the HCS. Applying
the transverse momentum equation at the lower boundary, we can obtain the P-D relation [49],

P̃(X̃ ) = −ÃX̃ (X̃ ). (28)

The nonlinear system Eq. (23) with boundary and matching conditions Eqs. (25) and (26), and the
P-D relation Eq. (28) are to be solved numerically. The detailed numerical method is introduced in
Appendix A 1. In the limit of �m � 1, the system can be solved analytically, which is similar to
Ref. [42].

4. A composite solution

The mean flow in the boundary layer can be expressed in terms of a composite solution,

u = UB + εUB,yA + εR−1
u (Ũ − Ỹ − Ã) + · · · , T = TB + Tw(T̃ − 1) + εTB,yA + · · · . (29a,b)

B. Perturbation field

Being different from subsonic boundary layers, the supersonic boundary layers could sup-
port a multiplicity of instability modes [2]. The first modes with oblique angles greater than
tan−1

√
M2 − 1 belong to the viscous nature [50], while the other modes belong to the inviscid

nature, which are driven by the generalized inflectional point of the base flow. In the asymptotic
framework, the viscous mode is described by the classical triple-deck structure [51], whereas the
inviscid mode is described by a double-layered structure, a main layer where y = O(1) and a Stokes
layer where y = O(R−1/2). In this paper, we only focus on the inviscid mode.

1. Main layer

According to Refs. [13,20], the inviscid Mack mode in the main layer can be described by the
Rayleigh equation, and therefore, we introduce φ̂ = (v̂, p̂)T as the eigenfunction of the eigenvalue
system. If the HCS is absent, then the main-layer perturbation in the neighborhood of x = 0 is
expressed as

E[φ̂(y; x = 0) + · · · ] ei[ε−1
∫

α(X )dX+βz−ωt] +c.c., (30)

where α, β, ω, and E denote the streamwise wave number, spanwise wave number, frequency, and
amplitude, respectively, and c.c. the complex conjugate. For a spatially evolving mode, ω and β are
real, and α = αr + i αi is complex with −αi representing the growth rate. For normalization, we let
p̂(0) = 1.

As the Mack mode approaches the HCS vicinity, the perturbation is deformed by the mean-flow
distortion, which can be expressed in terms of an asymptotic series,

φ̃(X, y, z, t ) = E (φ̃0 + εφ̃1 + · · · ) ei[ε−1
∫ X
−∞ αdX+βz−ωt] +c.c. (31)

Note that in Ref. [20], the third-order terms, of O(ε4	2), were also taken into account, to reveal the
impact of the nonparallelism and to match with the outer solutions with a length scale of O(L/δ∗).
Because these terms are much smaller than the low-order terms, we do not show them in this paper
for brevity.

Because the mean-flow distortion induced by the HCS varies in a longer length scale than the
Mack wavelength, the leading-order perturbation can be expressed as

φ̃0(X, y) = C0(X )φ̂(y) + · · · , (32)
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where φ̂ satisfies the Rayleigh equation,

LRφ̂ ≡ (∂y − H0)φ̂ = 0 with H0 =
( U ′

B
UB−c

−M2S2
0−α̃2TB

S0

− S0
TB

0

)
, (33)

where S0 = i α(UB − c), c ≡ ω/α, and α̃ =
√

α2 + β2. The operator LR ≡ (∂y − H0) is referred to
as the Rayleigh operator. It is seen that the viscous terms do not appear in the equations of this
order, rendering the inviscid nature of the main layer. Note that Eq. (33) may become singular when
c is real, which happens for a neutral mode. Therefore, a viscous critical layer where UB = c with
a thickness of O(R−1/3δ), must be taken into account. Alternatively, in the numerical process, we
can employ a simpler numerical method as in Ref. [13], namely, the integration path around the
critical point is detoured by adding a negative imaginary part to y and extending the mean flow to
the complex plane.

Equation (33) is subject to the nonpenetration condition at the wall and the attenuation condition
in the far-field, namely,

v̂(0) = 0; p̂(y) → 0 as y → ∞. (34a,b)

Equation (33) with Eq. (34) forms an eigenvalue system, which can be solved numerically using the
Malik’s approach [52]; a brief introduction can be found in Appendix B.

It should be noted that for a high-M hypersonic boundary layer with an extremely cold wall, the
second mode near the upper-branch neutral point is likely to radiate acoustic waves to the far field
[53,54]. The condition for the emergence of the radiating mode is that the instability must propagate
supersonically with respect to the freestream velocity, namely, the phase speed is slower than the
slow-acoustic speed 1 − 1/M or faster than the fast-acoustic speed 1 + 1/M. For the radiating mode,
the nonpenetration condition Eq. (34a) is still valid, but the attenuation condition Eq. (34b) must be
changed to an oscillatory one to represent the radiated acoustic waves, i.e.,

p̂(y) ∼ ei kyy as y → ∞, (35)

where the complex wall-normal wave number ky is given by ky = −[M2(α − ω)2 − α̃2]
1/2

. Here the
minus sign on the right-hand side is selected to ensure the wave is outgoing, namely, (dω/dky)r > 0.
Thus, if cr < 1 − 1/M, the upper boundary condition Eq. (34b) should be replaced by

p̂′ = i ky p̂ as y → ∞. (36)

Because the main-layer solution of the perturbation does not lead to any singularity in the lower
deck, it directly matches with the Stokes-layer solution to satisfy the no-slip condition at the wall.
Analysis to be shown in Sec. III B 3 reveals that an outflux of O(ε2) is produced from the Stokes
layer. As pointed out by Refs. [13,20], the accuracy of the Rayleigh solution could be improved
remarkably if this O(ε2) correction is taken into account, which leads to an improved boundary
condition for Eq. (34a),

v̂(0) = −ε2C p̂(0), C = C1/2
w

[ i(γ − 1)ωM2

(− i ωPr)1/2
+ α̃2Tw

(− i ω)3/2

]
, (37)

where − i ≡ e3π i /2 and Cw = μwTw. This correction can be also obtained from the Stokes-layer
analysis Eq. (56) (taking a case without any HCS). Because the parameter C in Eq. (37) is practically
large for high Mach numbers and wall temperatures, the improved boundary condition renders a
more precise prediction of the dispersion relation of the Mack instability especially in the hypersonic
regime. The system Eq. (33) with Eqs. (37) and (34b) can be rewritten by

L̄Rψ̂ ≡ (∂y − H̄0)ψ̂ = 0, with ψ̂(1)(0) = 0 ψ̂(2)(∞) → 0, (38)
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where ψ̂ = (ψ̂(1), ψ̂(2) )T ≡ (v̂ + ε2C p̂, p̂)T , and

H̄0 =
({H0}11 + ε2C{H0}21 {H0}12 − ε2C({H0}11 + ε2C{H0}21)

{H0}21 −ε2C{H0}21

)
. (39)

Substituting Eq. (30) with Eqs. (31) and (32) into Eq. (2) and retaining the O(Eε) terms, we
obtain the governing equations for the second-order perturbations, ψ̃1 ≡ (ṽ1 + ε2C p̃1, p̃1)T ,

L̄Rψ̃1 = − i
∂H̄0

∂α
C′

0(X )ψ̂ + H̄1A(X )C0(X )ψ̂, (40)

where H̄1 = dH̄0/dy. Matching with the lower-deck perturbation as will be shown in Sec. III B 2,
we obtain the boundary conditions for the second-order perturbations,

ṽ1(X, 0) = −I1(X )C0(X )v̂y(0), p̃1(X,∞) → 0, (41a,b)

where, from Eq. (58) (to be introduced in Sec. III B 3), I1(X ) = (H1IT 1(X ) − εH2IC1(X ) +
εH3I f 1(X )), with

H1 = 1

ω2M2/(α̃2Tw ) − 1
, H2 = i ωC

α̃2Tw

H1 H3 = (− i ω)−1/2C1/2
w H1, (42)

IT 1 =
∫ ∞

0
(T̃ − 1)dY = R−1

Y ĨT 1 ≡ R−1
Y

∫ ∞

0
(T̃ − 1)dỸ , IC1 = C1/2

00 − 1, I f 1 = C1/2
00 �m f ,

(43)

C00(X ) = μ̃(X, 0)T̃ (X, 0). Therefore, the regularized boundary conditions for Eq. (40) read

(ψ̃1)(1)(X, 0) = −I1(X )C0(X )v̂y(0), (ψ̃1)(2)(X,∞) → 0. (44a,b)

For a radiating mode, Eq. (44b) is replaced by (ψ1)(2),y(X,∞) = i ky(ψ1)(2)(X,∞).
Following a standard treatment as in Refs. [55,56], the system Eq. (40) with boundary conditions

Eq. (44) can be recast to

L̄Rψ̃1 = − i
∂H̄0

∂α
C′

0(X )ψ̂ + H̄1A(X )C0(X )ψ̂ + I1C0(X )δ(y)D, (45)

(ψ̃1)(1)(X, 0) = 0, (ψ̃1)(2)(X, y) → 0 [or (ψ̃1)(2),y = i ky(ψ̃1)(2)] as y → ∞, (46)

where δ is the Dirac δ function, and D = [−ψ̂ ′
(1)(0), 0]T .

2. Lower deck

Now we consider the lower deck where Y = O(1), the analysis of which determines the outflux
velocity as in Eq. (41a). Applying Eq. (31) at the bottom of the main layer, and taking into account
the linearized N-S equations, we can estimate the magnitudes of the perturbations in the lower deck,

(ũ, ṽ, w̃, ρ̃, θ̃ , p̃) = E (ū0, εv̄0, w̄0, ρ̄0, θ̄0, p̄0) e− i(βz−ωt ) + · · · + c.c. (47)

Substitute of the mean flow Eq. (14) with the perturbations Eq. (47) into the N-S equations, we
obtain

− i ωρ̄0 + R̃

Tw

(ū0,x + v̄0,Y + i βw̄0) + R̃Y

Tw

v̄0 = 0, − i ω
R̃

Tw

ū0 = −p̄0,x, (48a,b)

p̄0,Y = 0, − i ω
R̃

Tw

w̄0 = − i β p̄0, (48c,d)

R̃

Tw

(− i ωθ̄0 + TwT̃Y v̄0) = − i ω(γ − 1)M2 p̄0, TwT̃ ρ̄0 + θ̄0

TwT̃
= γ M2 p̄0. (48e,f)
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Note that R̃ is a function of X̃ (or X ) and Ỹ , and the perturbation in this layer is inviscid to
leading-order accuracy. Matching with the main-layer solution Eq. (31), it is found that

p̄0 = C0(X ) ei ε−1
∫ X
−∞ αdX p̂(0) = C0(X ) ei

∫ x
−∞ αdx p̂(0). (49)

The dependence of p̄0 on the streamwise coordinate separates into two scales, O(1) and O(ε).
Solving Eq. (48), we obtain, to leading-order accuracy,

(ū0, w̄0, v̄0) =
(αTwT̃

ω
,
βTwT̃

ω
, i ωM2Y − i α̃2Tw

ω

∫ Y

0
T̃ dY + εv̄01

)
p̄0, (50a,b,c)

θ̃0 = (γ − 1)M2TwT̃ p̄0 − i T̃Y Tw

ω
v̄0, ρ̄0 = M2 p̄0

TwT̃
+ i T̃Y v̄0

ωTwT̃ 2
, (50d,e)

where εv̄01 is the outflux from the Stokes layer. Because the thickness of the Stokes layer is of
O(ε2), we can estimate that the order of magnitude of this term is O(ε). Since the outflux is rather
small, the Stokes-layer perturbations plays a secondary role on the scattering process. We perform
the analysis of the Stokes layer is only for completeness, and in the numerical calculations in Sec. V,
the O(ε) terms will not be considered.

As Ỹ → ∞, the transverse velocity perturbation behaves as

v̄0 →
[(

i ωM2 − i α̃2Tw

ω

)
Y − i α̃2Tw

ω
IT 1 + εv̄01

]
p̄0. (51)

From Eq. (50) we know that

(ū0, w̄0, θ̄0) →
[

α

ω
,
β

ω
, (γ − 1)M2

]
Tw[1 + �m f (X )] p̄0 as Ỹ → 0. (52)

Obviously, these solutions do not satisfy the no-slip and isothermal conditions, and so a Stokes layer
needs to be taken into account.

3. Stokes layer

In the Stokes layer where y ∼ ε2, we introduce a local coordinate

YS = ε−2y. (53)

Following Ref. [13], we obtain the Stokes-layer solutions

(ũ, w̃) =
(

α

ω
,
β

ω

)[
1 − exp

(( − i ω

CwC00

)1/2

YS

)]
Tw[1 + �m f (X )] p̄0 + · · · , (54a,b)

θ̃ = (γ − 1)M2

[
1 − exp

((− i ωPr

CwC00

)1/2

YS

)]
Tw[1 + �m f (X )] p̄0 + · · · . (54c)

Such solutions guarantee the validation of the wall boundary conditions.
Integrating the continuity equation in the Stokes layer, we obtain the transpiration velocity

ṽ = ε2

[(
i ωM2 + α̃2Tw(1 + �m f )

i ω

)
YS − i(γ − 1)(CwC00)1/2ωM2

(− i ωPr)1/2

(
1 − e( − i ωPr

CwC00
)1/2YS

)

− α̃2(CwC00)1/2Tw(1 + �m f )

(− i ω)3/2

(
1 − e( − i ω

CwC00
)1/2YS

)]
p̄0. (55)

In the limit of YS → ∞,

ṽ → ε2

[(
i ωM2 + α̃2Tw(1 + �m f )

i ω

)
YS − (CwC00)1/2

(
i(γ − 1)ωM2

(− i ωPr)1/2
+ α̃2Tw(1 + �m f )

(− i ω)3/2

)]
p̄0.

(56)
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Therefore, an outflux εv̂10 [defined in Eq. (50c)] is induced to the lower deck, where

v̂10 =
[

− C
(
C1/2

00 − 1
) − (CwC00)1/2 α̃2Tw�m f

(− i ω)3/2

]
p̄0. (57)

Combining Eqs. (51) and (57), we obtain the wall boundary condition of the main-layer trans-
verse velocity,

ṽ1(X, 0) = −H1

[
IT 1 − ε

(
i ωCIC1

α̃2Tw

+ (− i ω)−1/2C1/2
w I f 1

)]
C0(X )v̂y(0), (58)

where p̄0(0) has been converted to v̄y(0) through the Rayleigh equation at the wall. Thus, we obtain
the boundary condition for ṽ1 in Eq. (44).

It should be mentioned that for a case without any HCS, for which C00 = 1 and �m = 0, the
second term on the right-hand side of Eq. (56) determines the O(ε2) outflux from the Stokes layer
to the main layer, leading to the improved boundary condition Eq. (37).

C. Amplitude equation and transmission coefficient

In this subsection, we will consider the evolution of the amplitude of the oncoming Mack
mode, whose interaction with the HCS is characterized by a transmission coefficient T . Following
Ref. [14], the transmission coefficient is defined as the ratio of the Mack amplitude downstream of
the HCS to that upstream, such that the shift of the transition onset is explicitly determined by the
asymptotic model.

Introduce the adjoint vector of the Rayleigh equation, ψ̂
† = (ψ̂

†
(1), ψ̂

†
(2))

T , which satisfies(
∂y + H̄T

0

)
ψ̂

† = 0, with ψ̂
†
(2)(0) = 0, ψ̂

†
(1)(y) → 0 asy → ∞. (59a,b,c)

Again, for a radiating mode, Eq. (59c) is replaced by ψ̂
†
(1),y = i kyψ̂

†
(1) as y → ∞. For normalization,

we let ψ̂
†
(1)(0) = 1.

The system Eq. (45) with the boundary condition Eq. (46) has nontrivial solutions only if the

right-hand side of Eq. (45) is orthogonal to the adjoint vector ψ̂
†

(solvability condition). This leads
to the amplitude equation,

i C′
0(X ) = [A(X )K0 + I1(X )K1]C0(X ), (60)

where the efficiency functions are

K0 = 〈φ̂†
, H̄1φ̂〉

〈φ̂†
, (∂H̄0/∂α)φ̂〉

, K1 = 〈φ̂†
, δ(y)D〉

〈φ̂†
, (∂H̄0/∂α)φ̂〉

, (61a,b)

〈φ†,φ〉 ≡
∫ ∞

0
(φ†)T φdy (62)

denotes the inner product. Here AK0 represents the effect of the main-layer mean-flow distortion,
where the strength of the mean-flow distortion A and the instability property K0 are readily
separated; I1K1 is induced by the effect of the HCS on the Mack mode from the underneath lower
and Stokes layers. From Ref. [20] we know that K0 = K1.

Because the impact of the HCS in the upstream limit is exponentially small, we put

C0(X ) → 1 as X → −∞. (63)

Solving the amplitude Eq. (60) subject to Eq. (63), we obtain

C0(X ) = exp

[
− i K0

∫ X

−∞
(A(X ) + I1(X ))dX

]
. (64)
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The transmission coefficient T can be evaluated by the behavior of C0 in the downstream limit,
which is essentially an integral of A and I1 from −∞ to ∞. This treatment has been used in Ref. [20].
However, we may face a difficulty in the present circumstance. It can be inferred from Ref. [40] that
for low roughness, the displacement function A decays like X −5/3 in the downstream limit, implying
that the integral of A to infinity is bounded. However, the displacement function for a linear HCS
(�m � 1) decays like

A ∼ X −2/3 as X → ∞, (65)

as shown in Ref. [42], leading to an unbounded value of
∫ ∞
−∞ AdX . Note that such a scaling was

obtained by assuming �m � 1, but as will be confirmed numerically in Fig. 3(b), it also holds when
� = O(1). The implication is that it is not possible to obtain a convergent transmission coefficient
for a HCS-induced scattering problem. There may be two ways to overcome this shortcoming:

(1) The first way is to interpret
∫ ∞
−∞ AdX in the sense of Hadamard finite-part integral as in

Ref. [14]. Let us denote

J∞ =
∫ ∞

−∞
AdX =

∫ N0

−∞
AdX +

∫ ∞

N0

AdX ≈
∫ N0

−∞
AdX − 3A∞N1/3

0 , (66)

where N0 is a sufficiently large value such that the asymptote of A(X ) for X > N0 is arrived, namely,

A(X ) ≈ A∞X −2/3 + O(X −5/3) for X � N0. (67)

It can be proved that ∂J∞/∂N0 is zero to leading order, indicating that the choice of N0 does not
affect the whole integral; a numerical proof can be seen in Appendix A of Ref. [14].

(2) The second way is to truncate the integral at some finite XN . We define the transmission
coefficient as

T ≡ C0(XN ) = exp[− i K0(D1 + H1D2 − εH2D3 + εH3D4)], (68)

where

D1 =
∫ XN

−∞
AdX, D2 =

∫ XN

−∞
IT 1dX, D3 =

∫ XN

−∞
IC1dX, D4 =

∫ XN

−∞
I f 1dX. (69a,b,c,d)

In this sense, T is dependent on the location of XN . Because we are going to compare our
theoretical predictions with the HLNS calculations, a fair comparison should be made by measuring
the transmission coefficient at the same location. Therefore, we choose XN = εxN , where xN is a
sufficiently downstream location for the HLNS calculation. In this paper, we choose xN = 50, where
the asymptote Eq. (65) has been reached; a detailed discussion will be provided in Sec. V C 2.

Comparing Eq. (66) with Eq. (78a), we find that J∞ and D1 are differed by −3A∞X 1/3
N , which

is the infinite part of the integral as XN → ∞. The implication is that the two ways represent two
different physical meanings. The first way ignores the infinite part of the integral and provides a
convergent integral in the ideally downstream limit, however, since the laminar state will eventually
transition to turbulence, the ideal downstream phase is not related to the physical situation. Since
the displacement function does not change its sign for any X , its accumulation (D1) increases
monotonically as XN increases. From the physical point of view, such an accumulation indeed
leads to a gradual change of the transmission coefficient with XN , and therefore, the second way
is employed for the following calculations.

Considering that the terms εH2D3 and εH3D4, both of which are of O(ε), are quantitatively
small, Eq. (68) can be simplified as

T = exp[− i K0(D1 + H1D2)]. (70)

It is also confirmed numerically that the effect of the O(ε) terms are negligible.
Let us revisit the transmission coefficient for roughness cases introduced in Eq. (2.32) of

Ref. [20], which reads T = exp[− i K0(D1 + hD2)], where h is the height of the roughness and
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D2 is an integral of the surface shape function of the roughness. In such an expression, the impact of
the instability property, K0, and that of the mean-flow distortion, D1 and hD2, are readily separated.
However, for the cases of HCSs, a prefactor H1, associated with the instability property, appears in
front of the term D2, leading to a more complicated dependence of T on the two factors. H1D2

appears in the same place as hD2 in the roughness configuration, indicating that the HCS can play
an equivalent role as the roughness, and H1IT 1 is quantitatively equivalent to the geometric function
of the surface roughness.

IV. DNS AND HLNS APPROACHES

A. DNS approach

Alternatively, one can re-express the full N-S Eqs. (2) in terms of the conservative form [57] and
solve the nonlinear equation system directly by numerical schemes, which is referred to as DNS.
The DNS code in this paper is the same as that used in Refs. [19,20,31].

The calculations include two steps. First, one needs to calculate the steady mean flow distorted
by the surface HCS, ϕ̄ in Eq. (4). For a 2D HCS, we choose a rectangular computational domain
[x0, xI ] × [0, yJ ]. I + 1 and J + 1 nonuniform grid points that are clustered near the HCS and the
wall are used in the streamwise and wall-normal directions, respectively. Each grid point is labeled
by (i, j) with i ∈ [0, I] and j ∈ [0, J]. The convective and viscous terms are discretized by the
fifth-order partial and fourth-order central finite difference schemes, respectively, and the third-
order Runge-Kutta method is used for time advancing. At the inlet of the computational domain,
x0, the Blasius solution is introduced because the impact of the HCS is somewhat local. The no-
slip, nonpenetration and isothermal conditions are imposed at the wall, y = 0. A buffer region is
introduced near the outlet x ∈ [xI , xI + 	buffer] with 	buffer denoting the length of the buffer region,
and the outflow condition is used at the upper boundary yJ . The calculation is carried out until the
solution converges to a time-independent state.

Second, we calculate the unsteady perturbation field ϕ̃ in the selected domain. If the perturbation
is 3D, then we need to introduce a spanwise coordinate z and extend the mean flow such that it is
uniform in the z direction. The numerical approach is exactly the same as that of the first step except
for the inflow condition, which is changed to the sum of a steady mean flow and a harmonic Mack
mode with an infinitesimal amplitude,

ϕ(x0, y, z, t ) = ϕ̄(x0, y) + ϕ̃(x0, y, z, t ). (71)

For a position sufficiently upstream of the HCS, where the nonparallelism of the base flow is rather
weak, the second term on the right-hand side of Eq. (71) is further expressed as

ϕ̃(x, y, z, t ) = Eϕ̂(y; x0) ei(
∫ x

x0
αdx+βz−ωt ) +c.c., (72)

where ϕ̂(y; x0) is the perturbation profile at x = x0, and the amplitude E is taken to be 10−8. The
complex wave number α and the perturbation profile ϕ̂ are the eigenvalue and eigenfunction of
compressible O-S equations

A(α; ϕ̄, ω, β, R, M )ϕ̂ = 0, (73)

where the coefficient matrix A can be found in Ref. [52].
In this paper, we choose x0 = −40, xI = 110, yJ = 100, I = 1600, J = 300 and 	buffer = 63,

and 200 grid points are assigned in the buffer region. After obtaining the perturbation field, we
calculate the transmission coefficient using

T = maxy{maxt>t0 [T̃ (xN , y, t0)]}with−HCS

maxy{maxt>t0 [T̃ (xN , y, t0)]}without−HCS
, (74)

where t0 is a time instant after which the perturbation field is statistically steady. In our calculations,
we choose t0 = 150π/ω. As mentioned in Sec. III C, we select xN = 50.
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B. HLNS approach

If the mean flow has been obtained by the first step of Sec. IV A, then we can calculate the
perturbation evolution (the second step) in a more efficient manner. As in Ref. [19], an infinitesimal
perturbation can be expressed as

ϕ̃ = Eϕ̆(x, y) ei α0x ei(βz−ωt ) +c.c., (75)

where α0 is a reference complex wave number introduced for convenience of numerics. α0 is simply
selected as the eigenvalue solution of the compressible O-S equations at the inlet x = x0. In contrast
to Eq. (72), Eq. (75) describes the perturbation in the whole computational domain, including that
near the HCS. Substituting Eq. (75) into the N-S equation system and neglecting the O(E2) terms,
we obtain a linear system,

(D̃ + Ã∂x + B̃∂y + Vxx∂xx + Vyy∂yy + Vxy∂xy)ϕ̆(x, y) = 0, (76)

where the coefficient matrices D̃, Ã, B̃, Vxx, Vyy, and Vxy can be found in the Appendix of Ref. [19].
Under a proper discretization, the linear system Eq. (76) is reduced to a system of algebraic
equations, Mq̃ = r̃, where the coefficient matrices M̃, the unknown vector q̃ and the inhomogeneous
forcing r̃ were illustrated in Ref. [19].

In the HLNS calculation, the computational domain is the same as that in Sec. IV A, and 801 ×
301 grid points are employed, which is only a half of those used in DNS. Careful resolution studies
have been carried out. The transmission coefficient now is defined as

T = maxy[|T̆ (xN , y)|]with HCS

maxy[|T̆ (xN , y)|]without HCS
. (77)

V. NUMERICAL RESULTS

A. Oncoming conditions and instability of the base flow

A number of case studies with different M, Tw and T∞ are listed in Table I, in which each case
is denoted by a four-character string. The first two characters, “M1” and “M2,” are for M = 4.5
and 5.92, respectively. The last two characters distinguish the choices of T∞ and Tw: “T1(T5),”
“T2(T6),” “T3(T7),” and “T4(T8)” are for Tw/Tad = 1.0, 0.75, 0.5, and 0.25, respectively, where
Tad denotes the adiabatic wall temperature; “T9” is for Tw/Tad ≈ 0.072, an extremely cold wall;
“T1” to “T4” are for cold oncoming temperatures (T∞ = 65.15K for M1 and T∞ = 48.69K for
M2; wind tunnel conditions); “T5” to “T9” are for T∞ = 226.5, a flight condition at an altitude
of 30 000 m. The shape constant 	, the nominal boundary-layer thickness δ99, the location of
the generalized inflectional point (GIP) yc and the velocity at the GIP Uc are also shown. Note
that the GIPs in cases M1T4, M1T8, and M2T9 disappear. A few representative base-flow profiles
can be found elsewhere, such as Refs. [13,20]. Three representative Reynolds numbers for each
M are selected. For cases M1T1 to M1T8, we select R = 50 000, 25 000, and 10 000, denoted as
R1, R2, and R3, respectively; for cases M2T1 to M2T9, we select R1, R2, and R3 to represent
R = 131 820, 65 910, and 26 364, respectively. For instance, a case study with (M, Re, T∞, Tw ) =
(4.5, 50 000, 65.15K, 4.4) is denoted by case M1T1R1.

Figure 2 plots the phase speeds cr and growth rates −αi of the 2D Mack modes for cases M1T1,
M1T4, M2T1, M2T4, and M2T9. The triangles and circles are the solutions of the O-S Eqs. (73)
for R1 and R3, respectively, whereas the blue solid and pink dashed lines are the predictions of
the improved Rayleigh Eq. (38) for R1 and R3, respectively. Let us first look at the O-S solutions.
From the left column, we can see that for each case, two branches of discrete modes emerge from
cr = 1 − 1/M (the slow-acoustic speed) and 1 + 1/M (the fast-acoustic speed), respectively, which
are referred to as the slow and fast modes, respectively. The curves for different Reynolds numbers
almost overlap, indicating a rather weak effect of R on the phase speed. As ω increases, the phase
speeds of the two branches approach each other, and intersect at a synchronization frequency ωs.
For the five panels (a, c, e, g, i), ωs ≈2.0, 1.15, 1.9, 1.1, and 0.98, respectively. The growth rates,
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FIG. 2. Dependence on ω of cr (left column) and −αi (right column) of the 2D Mack modes, where the
velocities of the fast and slow acoustic waves, 1 ± 1/M, are marked in the left column. (a), (b) case M1T1;
(c), (d) case M1T4; (e), (f) case M2T1; (g), (h) case M2T4; (i), (j) case M2T9. The horizontal lines in the right
column represent the zero-growth lines.
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as shown in the right column, show overall two unstable regions, which are referred to the first and
second modes, respectively. The second modes are more unstable, and for the five panels, the most
unstable frequency corresponding to the peaks of the second modes, ωg, are about 2.1, 1.3, 2.0, 1.3,
and 1.1, respectively, slightly greater than ωs. For the extremely cold wall case, case M2T9R3, a
radiating mode emerges when ω > 1.27. Detailed discussion for the radiating mode can be found
in Ref. [53].

In Fig. 2, the asymptotic predictions by the improved Rayleigh system Eq. (38) agree quite well
with the O-S solutions in the unstable frequency band for most of the cases. Note that for neutral
modes, because of the appearance of the viscous critical layer, the eigenfunctions of the Rayleigh
equation and its adjoint equation are singular, and so the calculations around the neutral point are
difficult and not shown. However, from the physical point of view, we are interested in the scattering
of the unstable modes, for which the calculations do not encounter with that difficulty. Appreciable
error appears only for cases M1T1R3 and M2T1R3 (adiabatic wall temperature and low Reynolds
number), and the discrepancies are restricted in a narrow frequency band around the intersection
frequency of the first and second modes.

B. Mean-flow distortion

1. Solutions in the lower deck of the compressible triple-deck system

Solving numerically the nonlinear system Eqs. (23)–(28), we obtain the mean-flow distorted
by the surface HCS. The verification of the triple-deck calculations is provided in Appendix A 2.
Figure 3(a) compares the streamwise evolution of the displacement function Ã for different �m.
For a cooling strip, Ã is always positive, whereas for a heating strip, Ã is always negative. This
is in contrast to the roughness configuration [20], namely, for both humps and indentations, the
displacement function is always negative. For both the heating and cooling strips, the displacement
functions approach zero in the upstream limit, and deviate from zero in the HCS vicinity. For the
same |�m|, |Ã| for a cooling strip is slightly greater than that for a heating strip. In the linear
regime, |�m| � 1, the normalized displacement function, |Ã/�m| = −Ã/�m must collapse to a
single curve. To check the effect of nonlinearity, Fig. 3(b) depicts −Ã/�m for different �m. Overall,
the nonlinearity is not strong, and the peak of −Ã/�m at X̃ ≈ 0 becomes slightly greater as �m

decreases monotonically. The implication is that the nonlinearity leads to a slightly greater distortion
for a cooling strip, but a slightly weaker distortion for a heating strip. In the downstream limit,
all the curves decay like Ã ∼ X̃ −2/3, which agrees with the scaling law predicted by the linear
approximation in Ref. [42]. Figure 3(c) shows the streamwise evolution of IT 1, which is to be used
for the prediction of the transmission coefficient. IT 1 is positive for �m > 0 and negative for �m <

0, in contrast to Ã. It will be shown in Eq. (6) that H1 is almost real and positive, thus, from the
definition of the transmission coefficient Eq. (70) we know that the opposite sign of IT 1 and Ã
implies opposite effect of each individual on the scattering process. Again, a cooling strip produces
greater mean-flow distortion than a heating strip with the same |�m|. The behavior of IT 1 in the
downstream limit can be estimated as follows. Since Ã ∼ X̃ −2/3 in the large-X̃ limit, it is obtained
from Eq. (20a) that the mean velocity Ũ ∼ Ỹ + X̃ −2/3Ũ1, where Ũ1 is an O(1) function of Ỹ . Noting
that the compressibility is the leading-order effect, balance of the continuity equation determines
that R̃ ∼ 1 + X̃ −2/3R̃1, and thus T̃ ∼ 1 + X̃ −2/3T̃1, where R1 and T1 are also O(1) functions of Ỹ .
Therefore, T̃ − 1 ∼ X̃ −2/3, so is IT 1. The black dot-dot-dashed lines in Fig. 3(c) show the scaling
X̃ −2/3, which agrees perfectly with the numerical results for large X̃ .

2. Mean-flow distortion for different cases

It is indicated from Eq. (70) that whether the HCS plays a stabilizing or destabilizing role depends
on the combined effect of K0 and D1 + H1D2. Only the latter is associated with the mean-flow
distortion. According to Eqs. (10), (21), and (69), we can re-express D1 and D2 in terms of the

053901-18



EFFECT OF SURFACE TEMPERATURE STRIPS …

-5 0 5 10
0

0.1

0.2

0.3

Θm=0.25
Θm=0.5
Θm=-0.25
Θm=-0.5A

~

X
~

_

|A|

~

(a)

-5 0 5 10
10-2

10-1

100

X
~

(b)

-0.6 -0.3 0 0.3 0.60.4

0.45

0.5

0.55

-5 0 5 10
0

0.2

0.4

0.6

0.8

Θm=0.25

Θm=0.5

Θm= -0.25

Θm= -0.5

X
~

(c)

FIG. 3. Streamwise evolution of |Ã| (a), −Ã/�m (b), and |IT 1| (c) for (T∞, Tw ) = (65.15K, 4.4) and D = 1
with different �m. For the solid curves in panel (a), |Ã| = −Ã.

triple-deck variables,

D1 = R−1
Y R−1

X

∫ XN

−∞
ÃdX̃ , D2 = R−1

Y R−1
X

∫ XN

−∞
ĨT 1dX̃ . (78a,b)

Table II lists the calculated D1 and D2 for different M, Re, T∞, Tw, �m, d, and D. Each case is
labeled by an eight-character string: the first four characters are from Table I, distinguishing M,
T∞, and Tw; the fifth and sixth characters distinguish the Reynolds numbers, which were defined
in Sec. V A; the last two characters distinguish the cases for different HCSs. It is seen that D1

and D2 are always with opposite signs, and D1 is negative (positive) for a heating (cooling) strip.
Decrease of Tw leads to monotonic decreases of both |D1| and |D2|, indicating a weaker mean-flow
distortion, whereas decrease of T∞ only leads to a slightly stronger mean-flow distortion. For fixed
(M, T∞, Tw,�m, d∗

δ99
), |D1| and |D2| increase as R reduces. As expected, the mean-flow distortion is

stronger as |�m| and/or d increase.

3. Comparison of the compressible triple-deck solutions with DNS results

Figure 4(a) compares the streamwise distribution of ŨỸ |w, T̃Ỹ |w, and P̃ rescaled by the lower-deck
scaling for case M1T1R1-1, where P̃ for DNS denotes the pressure at the wall. The agreement
of T̃Ỹ |w between the two curves is excellent; although the triple-deck predictions of ŨỸ |w and
P̃ are less accurate compared to the DNS results, they have already captured the overall trend.
Figure 4(b) shows a good agreement of the lower-deck temperature profiles obtained by the
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FIG. 4. Comparison of the lower-deck base flow between the triple-deck calculation (red solid lines) and
DNS result (green dashed lines) for case M1T1R1-1. (a) Streamwise evolution of the wall velocity shear
ŨỸ |w , the wall temperature gradient T̃Ỹ |w and the wall pressure P̃, where P̃ is shifted for plotting convenience;
(b) temperature profiles at five representative stations.

triple-deck calculation and DNS. Upstream of the heating strip, the profiles agree with the Blasius
solution. After passing the leading edge of the heating strip, the wall temperature immediately
increases to Tw(1 + �m), leading to a negative temperature gradient in the near-wall region. At
a further downstream position, e.g., X̃ = 0, the fluids within the lower deck are heated up, which
simultaneously leads to a gradual reduction of |T̃Ỹ |w|. After passing the trailing edge of the heating
strip, the wall temperature changes to Tw immediately, and the fluids away from the wall tend
to be cooled, leading to a positive temperature gradient near the wall. Although not shown, the
profile tends to recover to the Blasius profile in further downstream stations. Figure 5 further
compares the main-layer mean-velocity distortion ū − UB, given by Eq. (29), for cases M1T1R1-1
and M1T4R1-1. Note that the normalized width of the heating strip for the latter case is greater. The
agreement between the two calculations are better for the cold-wall case [Fig. 5(b)]. The reason is
that in the scaling relations Eqs. (11) and (15), Tw is assumed to be of O(1), but it is practically large
for an adiabatic wall. In Eq. (11), it even appears with a power of −3/2, which leads to a relatively
greater error. Nevertheless, for case M1T1R1-1, the triple-deck calculation is still able to capture
the overall “C” shape of the ū − UB profiles as the DNS result shows.

C. Scattering calculations

1. Efficiency functions

It is inferred by Eq. (70) that the transmission coefficient T = exp[− i K0(D1 + H1D2)] is
determined by both the mean-flow distortion (D1 and D2) and the instability property (H1 and K0).
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FIG. 5. Comparison of the mean-velocity distortion ū − UB between the triple-deck solution (red solid
lines) and DNS (green dashed lines) for cases M1T1R1-1 (a) and M1T4R1-1 (b).
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FIG. 6. Dependence on ω of the prefactor H1 for (M, R, Te) = (4.5, 50 000, 65.15K ) (a), (b), where the
vertical dashed lines represent the neutral frequencies, and the circles and rectangles denote the frequencies of
the most unstable modes and the synchronization points, respectively.

The destabilizing effect appears when T > 1, or the imaginary part of K0(D1 + H1D2) is positive,
while the opposite is true for the stabilizing effect. The factors associated with the mean-flow
distortion, D1 and D2, are obtained by integrating the triple-deck solutions Ã and IT 1, respectively,
and their combined effect D1 + H1D2 is also influenced by H1. Figure 6 plots the dependence of
H1 on ω in the second-mode frequency band for cases M1T1R1 to M1T4R1. H1r varies gently
for each case, which increases with Tw monotonically. Remarkably, the imaginary part H1i is two
orders of magnitude smaller than H1r . The implication is that the value D1 + H1D2 (from the
triple-deck calculations we know that D1 and D2 are of the same order of magnitude, but with
opposite signs) stays almost real and shows rather weak dependence on ω. Therefore, the signs
of K0,i and D1 + H1rD2 determine the stabilizing or destabilizing effect of the HCS, although the
intensity of the scattering effect relies on the absolute value of the latter. For a heating strip, we
know that D1 < 0 < D2 and −D1 > H1rD2, and so D1 + H1rD2 < 0. Therefore, a heating strip
plays a destabilizing (or stabilizing) role when K0,i is negative (or positive). The opposite is true for
a cooling strip. This explains why a heating strip and a cooling strip play the opposite roles for the
same Mack frequency bands, in contrast to the roughness cases in which a hump and an indentation
play the same role for the same Mack frequency bands.

Figure 7 plots the efficiency function K0 for representative cases. As is inferred by Eq. (70), K0r

is related to the phase of T , while K0i determines the amplification factor. Overall, K0,i, is positive
when ω is above a critical value ωc, but is negative for subcritical frequencies. The emergence of the
critical frequency has been explained in Ref. [20]. A brief summary is as follows. The numerator
of K0 defined in Eq. (61) is almost pure imaginary for all frequencies (as proven in Ref. [20]),

and the critical state appears when the real part of the denominator of K0, i.e., 〈φ̂†
, (∂H̄0/∂α)φ̂〉,

crosses zero. This condition is always satisfied at a particular frequency (the critical frequency) in
the second-mode frequency band in hypersonic boundary layers. The critical frequencies for cases
M1T1, M1T4, M2T1, and M2T4 are ωc ≈2.1, 1.3, 2.0, and 1.3, respectively. They agree with the
most unstable frequencies ωg as illustrated in Sec. V A.

Interestingly, from simulations of the roughness-Mack interaction in adiabatic hypersonic bound-
ary layers [17,18], it was concluded that the critical frequency ωc is the synchronization frequency
ωs; the same conclusion was drawn for the HCS-Mack interaction [38]. This is because for adiabatic
cases, the synchronization frequency ωs is quite close to the most unstable frequency of the second
mode ωg, as illustrated in Sec. V A. However, when more cases with lower wall temperatures are
considered, the difference between ωs and ωg becomes more appreciable, and it is clear that the
critical frequency agrees with ωg, instead of ωs.
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FIG. 7. Dependence of the efficiency functions K0,r (left column) and K0i (right column) on ω for
(M, R, T∞) = (4.5, 50 000, 65.15K ) (a), (b) and (M, R, T∞) = (5.92, 131 820, 48.69K ) (c), (d). The horizontal
dashed lines in panels (b) and (d) are for K0,i = 0. The vertical dashed lines, circles, and rectangles are the same
as those in Fig. 6. The horizontal colored bars in panels (c) and (d) represent the unstable frequency bands of
the second modes.

2. Comparison of the transmission coefficient between the asymptotic predictions and the numerical results

Figure 8(a) compares the perturbation temperature obtained by DNS between the cases with and
without the HCS. In the upper-half plane, the colored contours show the evolution of the perturbation
temperature for case H1T4R1-1 with ω = 1.12, in the second-mode frequency band, while those in
the lower-half plane display the perturbation evolution for the same parameters on a flat plate. The
heating strip in the upper-half plane is within the region x ∈ [−6.96, 6.96] as marked by the red line.
The perturbations show two peaks: one is in the near-wall region, and the other one is at the edge
of the boundary layer, which is a typical second-mode feature in a supersonic boundary layer. The
mean-flow distortion of the temperature is also shown in the upper-half plane. The perturbations
for both subplots show overall exponential amplifications as they propagate downstream, and the
amplitude is remarkably greater when the HCS appears, indicating a destabilizing effect of the HCS
on the second mode at this frequency.

Figure 8(b) plots the evolution of the temperature amplitude AT normalized by its value at
the inlet boundary for five representative frequencies. Each curve shows an exponential growing
behavior, indicating a linear amplification of the sufficiently weak perturbation introduced. A kink is
observed in the vicinity of the HCS center for each curve, caused by the scattering effect of the HCS.
The agreement between the HLNS and DNS results is perfect. A clear illustration of the scattering
of the perturbation amplitude is to normalize it by that of the flat-plate case, Ā(x) = AT /AT,flat, as
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FIG. 8. (a) The perturbation temperature (colored contours) and the mean-temperature distortion (contin-
uous lines) for case M1T4R1-1 (upper-half plane) and the flat-plate case (lower-half plane), where ω = 1.12.
(b) Normalized temperature amplitude obtained by the DNS (continuous curves) and HLNS (circles) ap-
proaches for case M1T4R1-1.

Fig. 9 shows for two representative frequencies (a subcritical frequency ω = 1.16 and a supercritical
frequency ω = 1.40). The HLNS predictions agree perfectly with the DNS results. In the upstream
limit, Ā is unity, whereas in the downstream limit, it grows like x1/3, as the fitting curve indicates.
This can be inferred by the asymptotic predictions: since A → X −2/3 as X → ∞, as indicated by
Eq. (65), the amplitude evolution given by Eq. (64) grows like X 1/3. Therefore, the transmission
coefficient T cannot be defined as the normalized amplitude in the limit of X → ∞ as for the
roughness configuration (for which A decays like X −5/3 [20]). As illustrated in Sec. III C, the
transmission coefficient is defined as Ā at a sufficiently downstream station xN where the asymptote
has already been reached. In the asymptotic theory, the transmission coefficient, defined by Eq. (70),
is also dependent on XN , because D1 and D2 are defined by the integral of A and IT 1 from −∞
to XN . Figure 10 shows the variation of D1 and D2 on xN for case M1T4R1-1. Their absolute
values increase with xN ≡ ε−1XN like x1/3

N , agreeing with the asymptotic predictions based on the
downstream behaviours of A and IT 1. Using these values, we can predict the transmission coefficient
for different xN values, which are shown by the red circles in Fig. 9. For the two selected frequencies,
the agreement between the HLNS calculations and the asymptotic predictions is satisfactory when
x is greater than about 40 (where the asymptotic state reaches), but a trend of deviation of the
two families of curves is observed as x approaches further downstream. This is because in our
asymptotic theory, the nonparallel effect of the base flow, which interacts with the “wake” of
the near-field perturbation and leads to a rescattering effect, is neglected, whereas in the HLNS
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FIG. 9. Amplitude evolution normalized by that of the flat-plate case for case M1T4R1-1: (a) for ω =1.16;
(b) for 1.40.
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FIG. 10. Variation of D1 and D2 on xN ≡ ε−1XN for case M1T4R1-1.

calculations, the nonparallelism is included. The reason why we neglect the nonparallelism in the
asymptotic theory is that its effect does not appear in the leading-order terms in the inner region
where x = O(ε−1). However, as x reaches the outer region where x = O(ε−4	−2), the nonparallel
effect is accumulated to an O(1) impact, modifying the transmission coefficient quantitatively; a
discussion can be found in Fig. 15 of Ref. [20]. In this paper, we avoid the lengthy discussions of the
effect of the nonparallelism on the transmission coefficient, because the asymptotic prediction can
still be reasonably fine when xN is not set to be too large. Therefore, for this case, we select xN = 50,
which is also confirmed to be a reasonable choice for other cases. Having obtained the mean flow
distortions D1 and D2 in Sec. V B 2 and the efficiency functions K0 and H1 in Sec. V C 1, we can
predict the transmission coefficient according to Eq. (70). The solid lines in Fig. 11(a) shows the
dependence of |T | on ω for (M, R, T∞,�m, d∗/δ99) = (4.5, 50000, 65.15K, 0.5, 8), where four Tw

values are considered. The scattering effect, measured by ||T | − 1|, of the first mode is rather weak,
and so we only focus on the unstable second-mode frequency band. Reducing Tw results in a lower
unstable frequency band. Each curve exhibits a critical frequency ωc, above or below which the
heating strip plays a stabilizing or destabilizing role. ωc is rather close to the most unstable frequency
of the second mode, as marked by the horizontal dot-dot-dashed lines. The HLNS calculations,
shown by the dashed lines with circles, are plotted for comparison, which are confirmed to be
sufficiently accurate as compared to the DNS results (crosses) for cases M1T3R1-1 and M1T4R1-1.
The stabilizing or destabilizing frequency bands predicted by the asymptotic theory are confirmed
by HLNS calculations. However, the asymptotic theory overpredicts appreciably the scattering
effect for both supercritical and subcritical frequencies for case M1T1R1-1. As the wall temperature
is reduced, the agreement becomes much better; the agreement for Tw = 1.1, case M1T4R1-1, is
excellent. Actually, as discussed in Sec. III C, whether the HCS plays a stabilizing or destabilizing
role is determined by K0 and H1 (weak dependence), whereas the intensity of the scattering effect
is determined by the mean-flow distortion. Therefore, the inaccuracy of the asymptotic theory for a
hotter wall is attributed to the approximate nature of the triple-deck solution, as shown in Fig. 5. For
each curve, the greatest error of the asymptotic prediction appears at the lower- and upper-branch
neutral frequencies. This is because the Rayleigh solutions at these frequencies are less accurate due
to the critical-layer effect.

Figures 11(b)–11(d) show the same comparisons as Fig. 11(a) for a different set of parameters. In
Fig. 11(b), the only difference is that the temperature of the oncoming flow T∞ is changed to 226.5K,
a flight condition. The overall trend is the same, but in quantity the scattering effect is slightly
weaker than the low-T∞ cases. In Fig. 11(c), we consider the M = 5.92 cases, and the conclusions
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FIG. 11. Comparison of the transmission coefficient |T | between the asymptotic prediction and
HLNS calculation for (�m, d/δ99) = (0.5, 8). (a) (M, R, T∞) = (4.5, 50000, 65.15K ), (b) (M, R, T∞) =
(4.5, 50000, 226.5K ), (c) (M, R, T∞) = (5.92, 131820, 48.69K ), (d) (M, R, T∞) = (5.92, 26364, 226.5K ).
Solid lines: asymptotic predictions; dashed lines: HLNS calculations; crosses in (a) DNS results. The vertical
dot-dot-dashed lines mark the most unstable mode, and the horizontal colored bars mark the unstable frequency
band of the second mode.

remain the same. Figure 11(d) particularly shows a representative case with radiating mode, in
which the wall temperature is extremely cool, Tw = 0.5 ≈ 0.07Tad . In the unstable frequency band,
the asymptotic predictions agree well with the HLNS calculations, except in the region near the
lower-branch neutral frequency of the second mode. When the mode is in the radiating frequency
band, the transmission coefficient is almost unity, indicating a rather weak scattering effect of the
heating strip. Figure 12(a) shows the impact of the HCS intensity �m on the transmission coefficient.
Comparing case M1T8R1-2 with case M1T8R1-1, we find that the scattering effect increases with
�m as expected. For each ω, D1 and D2 are almost doubled when �m is increased from 0.5 (case
M1T8R1-1) to 1.0 (case M1T8R1-2), so is |T | − 1. When the heating strip (case M1T8R1-1) is
replaced by the cooling strip (case M1T8R1-3), the scattering effect is reversed. Such a phenomenon
is in contrast to the roughness configuration [20], in which humps and indentations play the same
role on the Mack modes with the same frequency band. This is readily explained by the asymptotic
prediction of T in Eq. (70). For roughness configurations, H1 = 1 and D2 appears as the integration
of the surface shape function; remarkably, the term D1 + H1D2 does not change its sign for both
humps and indentations due to the strong nonlinear effect. However, the nonlinearity is weak for
HCSs, and it is found that D1 + H1D2 is negative for a heating strip and positive for a cooling strip,
leading to the opposite impact of the heating and cooling strips. Again, the agreement between the
asymptotic predictions and HLNS calculations are quite satisfactory.
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FIG. 12. Comparison of |T | between the asymptotic prediction and HLNS calculation for different �m

(a) and D (b), where (M, T∞, Tw, R) = (4.5, 226.5K, 1.1, 50 000). Solid lines: asymptotic predictions; dashed
lines: HLNS calculations.

The impact of the HCS width D on the transmission coefficient is shown in Fig. 12(b). Decrease
of D leads to a reduction of the scattering effect, which again disagrees with that for the roughness
configuration. This is mainly attributed to the prefactor H1 in Eq. (70). For roughness configura-
tions, as D varies, D1 and D2 vary with the same magnitude, leading to an unchanged nature of
D1 + D2. However, for HCS configuration, since the prefactor H1 appears in the D2 term, and it is
of only O(0.1), the sum of D1 and H1D2 is mainly dependent on the former, leading to a positive
relationship between |D1 + H1D2| and D. In Fig. 13, we plot the |T |-ω curves for three Reynolds
numbers. The scattering effect increases with decrease of R monotonically, which is again different
from the roughness configuration. The explanation is as follows. For fixed d∗/δ99, as R decreases,
the width of the roughness or the HCS under the triple-deck scaling D increases. As explained in
Ref. [20], increase of D does not lead to an apparent change of the transmission coefficient, and the
positive dependence of the scattering effect on R is caused by the positive dependence of K0,i on
R. However, as explained in the last paragraph, for the HCS configuration, increase of D leads to
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FIG. 13. Comparison of |T | between the asymptotic prediction and HLNS calculation for R = 50 000,
25 000, and 10 000, where (M, T∞, Tw, �m, d/δ99) = (4.5, 226.5, 1.1, 0.5, 8). Solid lines: asymptotic predic-
tions; dashed lines: HLNS calculations.
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FIG. 14. Asymptotic predictions of the growth rate (a) and the transmission coefficient (b) on the spanwise
wave number β for case M1T8R1-1.

a much stronger scattering effect, and such an effect overwhelms the positive dependence of K0,i

on R, leading to the negative dependence of the scattering effect on R. Now we consider the 3D
effect of the scattering process. Here, the heating strip (with �m = 0.5) is still taken to be 2D, but
the oncoming Mack mode is 3D. Choosing case M1T8R1-1 with four representative frequencies in
the unstable second-mode frequency band, Fig. 14(a) shows the dependence of the growth rate −αi

on the spanwise wave number β. The growth rate damps with increase of β for each frequency, and
the damping rate is higher for a lower frequency. Figure 14(b) shows the transmission coefficient,
|T |, which increases with β overall, indicating that the 3D effect of the oncoming Mack mode for a
heating strip leads to a stronger destabilizing effect or a weaker stabilizing effect. For ω = 1.35, we
see that the heating strip plays a stabilizing role when β < 1.4, whereas it enhances the oncoming
Mack mode for higher spanwise wave numbers. Although not shown, the 3D effect for a cooling
strip leads to a weaker destabilizing effect or a stronger stabilizing effect.

VI. CONCLUDING REMARKS AND DISCUSSION

In this paper, we develop a large-R asymptotic theory to describe the effect of 2D HCSs on
both 2D and 3D oncoming inviscid Mack instabilities in supersonic or hypersonic boundary layers.
This work is for a canonic problem to shed light on the physical mechanisms by which surface
imperfections impact on boundary-layer transition to turbulence. In the asymptotic analysis, the
width of the HCS is taken to be of O(R1/4δ∗), and the mean-flow distortion can be described by the
triple-deck formalism even when the intensity of the HCS �m is of O(1). Being different from the
roughness-Mack interaction [20], the HCS-Mack interaction is more complicated because the lower
deck is compressible to leading-order accuracy. Numerical calculations of the nonlinear compress-
ible triple-deck system with the Sutherland’s viscosity law are conducted, which is superior to the
existing calculations [43–45] with Chapman viscosity and unity Prandtl number.

The inviscid Mack modes, including the first modes with the oblique angle smaller than
tan−1

√
M2 − 1 and all the higher-order modes, are described by the solutions of the Rayleigh

equation in the main layer, combined with a viscous correction from the underneath Stokes layer.
The interaction between the HCS and the oncoming Mack modes is quantified by an explicit
model obtained by the multiscale analysis in the large-R asymptotic framework. The asymptotic
theory reveals that the HCS plays an equivalent role as the roughness, showing two interaction
regimes: (1) the HCS induces a displacement effect to the mean flow in the main deck, which
distorts the oncoming perturbation directly; (2) the HCS interacts with the Mack modes in the
lower deck and the Stokes layer, generating an inhomogeneous unsteady outflux to the main-layer
Rayleigh equation. Following Refs. [14,20], the overall effect of the HCS on the oncoming mode is
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characterized by a transmission coefficient, which measures the change of the asymptotic amplitude
of the instability at the localized HCS and can be readily converted to the shift of the transition
location. An explicit model to calculate the transmission coefficient is presented, in which the impact
of the mean-flow distortion and the instability property are readily separated.

A systematic study, based on different Mach numbers, Reynolds numbers, wall temperatures and
HCS intensities, is presented. It is found that a heating (cooling) strip enhances (suppresses) the
inviscid modes with frequencies lower than a critical value, whereas the stabilizing (destabilizing)
effect appears for supercritical frequencies. It is confirmed from all the case studies that the critical
frequency is the most unstable frequency of the second mode, instead of the synchronization
frequency as in some previous works, although the two frequencies are close to each other in a
few cases. Notably, three phenomena in contrast to the roughness configuration [20] are found,
namely, (1) a hump and an indentation play the same stabilizing or destabilizing role on the inviscid
modes with the same frequency band, but a heating strip and a cooling strip play the opposite role,
(2) increase of the roughness width does not affect the scattering effect apparently, but increase of
the HCS width leads to a stronger scattering effect, and (3) reducing the Reynolds number leads to a
less pronounced scattering effect for a HCS configuration, but it leads to a stronger scattering effect
for a roughness configuration. All of these are readily explained by our asymptotic theory. For a 3D
oncoming Mack mode propagating over a heating strip, increase of its spanwise wave number leads
to a weaker stabilizing role or a stronger destabilizing role, but the opposite is true for a cooling
strip.

The solutions of the asymptotic theory are compared to the Harmonic linearized Navier-Stokes
(HLNS) calculations and direct numerical simulation (DNS) results, and favorable agreement is
achieved especially when the wall temperature of the boundary layer is low. Although the asymptotic
prediction is less accurate for a higher wall temperature due to the approximate nature of the triple-
deck solutions, the overall trend of the interaction process is well captured by the asymptotic theory.
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APPENDIX A: NUMERICAL APPROACH FOR SOLVING THE COMPRESSIBLE
TRIPLE-DECK SYSTEM AND ITS VERIFICATION

1. Numerical details

We re-express the nonlinear system Eq. (23) in terms of a group of first-order differential
equations,

ŨX̃ + ṼDH,ỸDH
= 0, −ŨṼDH,ỸDH

+ ṼDHŨỸDH
+ T̃ P̃X̃ − ∂ g̃

∂ỸDH
= 0, (A1a,b)

Ũ T̃X̃ + ṼDHT̃ỸDH
− 1

Pr

∂ h̃

ỸDH
= 0, g̃ = μ̃DH

∂Ũ

∂ỸDH
h̃ = μ̃DH

∂T̃

∂ỸDH
, (A1c,d,e)

where Ũ , ṼDH, T̃ , P̃, g̃, and h̃ are to be solved. Note that Eq. (A1a) has been substituted into the
convection term ŨX̃ in Eq. (A1b).

The computational domain is selected as X̃ ∈ [X̃0, X̃I ], ỸDH ∈ [0, ỸDH,J ], and I + 1 and J + 1
nonuniform grid points that are clustered near (X̃ , ỸDH) = (0, 0) are employed in the streamwise and
transverse directions, respectively. Each grid point is denoted by (X̃i, ỸDH, j ), and the grid spacings
	i and 	 j are defined as X̃i − X̃i−1 and ỸDH, j − ỸDH, j−1, respectively. The equations are discretized
at the half point (i − 1

2 , j − 1
2 ), such that a two-point second-order difference scheme is formed.

Ũi, j and T̃i, j denote the corresponding values at (X̃i, ỸDH, j ), whereas ṼDH,i, j , g̃i, j and h̃i, j denote the
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corresponding values at (X̃i−1/2, ỸDH, j ). P̃i represents the pressure at X̃i, whereas Ãi the displacement
function at X̃i−1/2. Thus, the nonlinear system Eq. (A1) is discretized as

	 j

2	i
(Ũi, j + Ũi, j−1) + (ṼDH,i, j − ṼDH,i, j−1) = 	 j

2	i
(Ũi−1, j + Ũi−1, j−1), (A2a)

(
Ũi− 1

2 , j−1ṼDH,i, j − Ũi− 1
2 , jṼDH,i, j−1

) + (g̃i, j − g̃i, j−1) = 	 j

	i
T̃i− 1

2 , j− 1
2
(P̃i − P̃i−1), (A2b)

	 j

2	i
Ũi− 1

2 , j− 1
2
(T̃i, j + T̃i, j−1) + 	 j (ṼDH,i, j + ṼDH,i, j−1)

4μ̃DH,i, j
(h̃i, j + h̃i, j−1)

− 1

Pr
(h̃i, j − h̃i, j−1) = 	 j

2	i
Ũi− 1

2 , j− 1
2
(T̃i−1, j + T̃i−1, j−1), (A2c)

Ũi, j − Ũi, j−1 − 	 j

μ̃DH,i, j
(g̃i, j + g̃i, j−1) = −(Ũi−1, j − Ũi−1, j−1), (A2d)

T̃i, j − T̃i, j−1 − 	 j

μ̃DH,i, j
(h̃i, j + h̃i, j−1) = −(T̃i−1, j − T̃i−1, j−1), (A2e)

where μ̃DH,i, j = μ̃DH(T̃i− 1
2 , j− 1

2
), and Ũi− 1

2 , j− 1
2

and T̃i− 1
2 , j− 1

2
are the average of the corresponding

values at the four surrounding points. Ũi− 1
2 , j in Eq. (A2b) denotes (Ũi, j + Ũi−1, j )/2.

The problem is solved by the following iterative method:
(i) Set the initial flow field as (Ũ , ṼDH, T̃ , g̃, h̃, Ã, P̃) = (ỸDH, 0, 1, 1, 0, 0, 0).
(ii) Express the discretized system Eq. (A2) with boundary conditions in terms of an inhomoge-

neous linear system,

�̃i f̃ i = r̃(i−1), (A3)

where f̃ i = (ṼDH,i,0, Ũi,0, T̃i,0, g̃i,0, h̃i,0, ṼDH,i,1, Ũi,1, · · · , ṼDH,i,J , Ũi,J , T̃i,J , g̃i,J , h̃i,J )T , and the argu-
mented coefficient matrix �̃+

i = [�̃i|r̃(i−1)] has the form

�̃+
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄0 r̄ (i−1)
0

C1 D1 r (i−1)
1

C2 D2 r (i−1)
2

... ... ...

CJ DJ r (i−1)
J

D̄J+1 r̄ (i−1)
J+1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

with

C̄0 =
⎡
⎣1 0 0 0 0

0 1 0 0 0
0 0 1 0 0

⎤
⎦, D̄J+1 =

[
0 0 0 1 0
0 0 1 0 0

]
,

Cj =

⎡
⎢⎢⎢⎢⎢⎣

−1 	 j

2	i
0 0 0

0 −1 0 −d j 0
0 0 −1 0 −d j

−Ũi− 1
2 , j 0 0 −1 0

0 0 	 j

2	i
Ũi− 1

2 , j− 1
2

0 ṼDHi, j+ṼDHi, j−1

4 d j + 1
Pr

⎤
⎥⎥⎥⎥⎥⎦,
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FIG. 15. Comparisons of the present results with reference results: (a) for a supersonic case [42]; (b) for a
subsonic case [44].

Dj =

⎡
⎢⎢⎢⎢⎢⎣

1 	 j

2	i
0 0 0

0 1 0 −d j 0
0 0 1 0 −d j

Ũi− 1
2 , j−1 0 0 1 0

0 0 	 j

2	i
Ũi− 1

2 , j− 1
2

0 ṼDHi, j+ṼDHi, j−1

4 d j − 1
Pr

⎤
⎥⎥⎥⎥⎥⎦,

r̃(i−1)
j =

⎡
⎢⎢⎢⎢⎢⎣

	 j

2	i
(Ũi−1, j + Ũi−1, j−1)

−(Ũi−1, j − Ũi−1, j−1)
−(T̃i−1, j − T̃i−1, j−1)
	 j T̃i− 1

2 , j− 1
2
	P̃i−1

	 j

2	i
Ũi− 1

2 , j− 1
2
(T̃i−1, j + T̃i−1, j−1)

⎤
⎥⎥⎥⎥⎥⎦,

d j = 	 j/μ̃DH,i, j,

	P̃i−1 = (P̃i − P̃i−1)/	i,

r̄ (i−1)
0 = [0, 0, 1 + �m f (X̃i )]T ,

r̄ (i−1)
J+1 = (1, 1)T .

The unshown elements in �̃+
i are all zero.

We solve for f̃ i from the linear system Eq. (A3) by marching from i = 1 to I , where the elements
associated with i in �̃+

i are given by the previous iteration (or the initial values for the first iteration).
(iii) When a sweep is over, we calculate Ãnew

i and P̃new
i by

Ãnew
i = 1

2
(Ũi,J + Ũi−1,J ) −

J∑
j=1

1

4
(T̃i, j−1 + T̃i−1, j−1 + T̃i, j + T̃i−1, j )	 j,

P̃new
i =

{
− Ãnew

i+1−Ãnew
i

0.5(	i+	i+1 ) for i = 1 ∼ I − 1,

P̃new
I−1 for i = I.

An under-relaxation method is employed for updating P̃ and Ã. For instance, P̃ is updated by P̃ +
σ (P̃new − P̃), where σ is an under-relaxation factor ranging from 0.001 to 0.01.

(iv) Repeat the iteration from step (ii) until the condition
∑I

i=1 |Ãnew
i − Ãi| � 10−6 is satisfied.

2. Verification of our code for triple-deck calculations

To verify our code for the triple-deck calculations, Fig. 15 compares our numerical solutions
with the existing results, an analytical solution for a supersonic configuration [42] and a numerical
result for a subsonic configuration [44]. Note that for subsonic flows, the P-D relation Eq. (28) is
replaced by P̃(X̃ ) = π−1

∫ ∞
−∞ Ã(ξ )/(X̃ − ξ )dξ . For both calculations, the Chapman viscosity law

and the unity Prandtl number are used to be coincide with the reference results. Good agreement is
achieved, confirming the accuracy of our numerical solutions.
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APPENDIX B: NUMERICAL APPROACH FOR SOLVING THE RAYLEIGH EQUATION

The numerical approach follows Ref. [52], and here we present a brief summary for solving the
Rayleigh Eq. (33) with homogeneous boundary conditions.

For a fixed X , the computational domain y ∈ [0, yJ ] is discretized into J + 1 nonuniform grid
points, which are clustered near y = 0. Each grid point is denoted as y j , and the grid spacing 	 j =
y j − y j−1. The equations are discretized by a two-point fourth-order difference scheme,

φ̂ j − φ̂ j−1 = 	 j

2

[(
dφ̂

dy

)
j

+
(

dφ̂

dy

)
j−1

]
− 	2

j

12

[(
d2φ̂

dy2

)
j

−
(

d2φ̂

dy2

)
j−1

]
+ O

(
	5

j

)
. (B1)

Introduce B = (dH0/dy + H2
0 ). Then, from the Rayleigh operator, dφ̂/dy = H0φ̂, we know that

d2φ̂/dy2 = Bφ̂. Thus, Eq. (B1) with the homogeneous boundary conditions can be expressed in
terms of a homogeneous linear system,

�̃ f̃ = 0, (B2)

where f̃ = (v̂0, p̂0, v̂1, p̂1, . . . , v̂J , p̂J )T , and the coefficient matrix �̃ has the form

�̃ =

⎡
⎢⎢⎢⎢⎢⎣

C̄0

C1 D1

C2 D2

... ...

CJ DJ

D̄J+1

⎤
⎥⎥⎥⎥⎥⎦,

with C̄0 = [1 0], D̄J+1 = [0 1], Cj = I + 	 j

2 H0, j−1 + 	2
j

12 B j−1, Dj = −I + 	 j

2 H0, j −
	2

j

12 B j . Note that the unshown elements in �̃ are all zero. Using Gaussian elimination algorithm, we
can calculate the determinant of �̃.

Since Eq. (B2) is an eigenvalue problem, our purpose is to solve for a complex α for a given real
ω such that |�̃| = 0. This can be done by use of an iterative method as follows:

(1) Give an initial guess for α, which should be close to the eigenvalue;
(2) Calculate the determinant |�̃|(α) and its derivative with respect to α, d|�̃|

dα
(α);

(3) Update α by the Newton method until the eigenvalue converges.
Note that to increase the stability of the numerical scheme, we can employ a second-order

iterative method as in Eq. (3.15) of Ref. [52].
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