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Health management for commercial batteries is crowded with a variety of great issues, among which reliable cycle-life
prediction tops. By identifying the cycle life of commercial batteries with different charging histories in fast-charging mode, we
reveal that the average charging rate c and the resulted cycle life N of batteries obey c = c0N

b, where c0 is a limiting charging rate
and b is an electrode-dependent constant. This c-N law, resembling the classic stress versus cycle number relationship (the S-N
curve or Wohler curve) of solids subject to cyclic loading, could be applicable to most batteries. Such a scaling law, in
combination with a physics-augmented machine-learning algorithm, could foster the predictability of battery life with high
fidelity. The scaling of charging rate and cycle number may pave the way for cycle-life prediction and the directions of
optimization of advanced batteries.
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1. Introduction

There is practical wisdom that engineering systems in cyclic
service often fatigue and may fail catastrophically by accu-
mulated damage originating at small scales not easy to dis-
cern. An analogous mechanism is also encapsulated in
rechargeable batteries. Taking a lithium-ion battery (LIB) for
illustration, the electrode material experiences expansion
during lithiation as lithium atoms are forced to flow in, and a
constrained boundary will introduce internal compressive
stress on average; delithiation gives rise to tensile stress in
the opposite. A complete working cycle of a LIB produces a
reversal of stress status, but something has changed perpe-
tually because the system is different from its original state
on the microscopic perspective. Existing experimental ob-
servations indeed supply a strong correlation between elec-

trochemical degradation and mechanical failure. Electro-
chemically induced fracture in electrodes has been clearly
seen [1,2]. Those electrochemically induced cracks, propa-
gated during charge and discharge cycling, can cause capa-
city performance degradation in LIBs by active material
shedding [3], the loss of electrical contact [2], lithium loss by
SEI formation in the accumulative exposure of crack
surfaces [4], and so on.
However, while the degradation of charge-discharged

batteries resembles and originates from damage evolution in
cyclically stressed structural materials, it is far more intri-
guing to come up with a cycle-life prediction for the former.
Fatigue in batteries involves strongly electro-chemo-me-
chanical coupling, and ought to be a process of multiple
interwoven factors. Environmental factors like the charging
mode and serving history kick in to alter the charging per-
formance of batteries and thereafter their cycle life. A
straightforward parameter like stress in structural materials
for the application of S-N curves is not accessible [5-7].
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Singling out parameters for life assessment of chargeable
batteries is so far under exploration [8-10]. Many key issues,
including the evolution of electrode structure and active
material [3,11-17], solid-electrolyte interphase [4,18,19],
interfacial contact and resistance [20,21], and so on, have
been examined in depth. Regardless of the tremendous pro-
gress on identifying possible mechanisms responsible for
performance degradation, the interwoven mechanisms often
obscure the full picture of the failure process.
In the way to build up a holistic approach to identifying

those interweaving factors accounting for battery life, we
aim to find a physically sound yet pragmatic metric for the
cycle life of batteries by putting aside other issues. Among
the list of fatigue-related factors, changing rate tops for the
commercial competitiveness of batteries [22-26]. Long
charging time of LIBs, even up to several hours, seriously
restricted its widespread adoption of electric vehicles (EVs)
when competing to the refueling time (often 5-10 min) in
gasoline-powered vehicles [27]. The tradeoff between fast-
charging and cycle life stimulates broad interest among re-
searchers to explore possible fast-charging protocols for the
long cycle-life performance of LIBs, in parallel to endeavors

to seek better anode and cathode materials [1,28,29]. It is our
purpose here to (1) reveal a scaling of cycle life of batteries
with one experimentally controllable parameter (fast-char-
ging rate) and to (2) supply accurate cycle-life estimation of
an individual cell with minimum testing data by using the
finding of (1) and its combination with a physics augmented-
machine learning (PA-ML) algorithm.

2. The charging rate versus cycle number in
battery fatigue

We firstly performed a comprehensive literature review on
experimental investigation for charging rate and the number
of cycles in commercial batteries, mainly from Severson
et al. [30,31]. The authors reported a total of 169 tests on
commercial LFP/graphite A123 LIBs. We show in Fig. 1a a
typical fast-charging mode with a multi-stage current in
different states of charge Sc, and the corresponding voltage-
Sc curve is given in Fig. 1b. The charging protocol contains
four stages (3.6 C for Sc ≤ 20%, 6.0 C for Sc ≤ 40%, 5.6 C for
Sc ≤ 60%, and 4.8 C for Sc ≤ 80%), followed by a slow

Figure 1 Average charging rate c and the resulted cycle number N of LIBs. a A typical multi-stage charging protocol and b its corresponding voltage-Sc
curve. c c-N relationship and the fitting results (solid lines) using Eq. (1). Symbols are experimental data from Severson et al. [30,31], see Table S5. d c-N
curves of three types of commercial LIBs with different electrodes, with symbols from experiments and lines using Eq. (1). We here set the cycle life as the
battery’s maximum capacity falling to 70% for NMC/graphite LIBs, 50% for NCA/graphite LIBs, and 80% LFP/graphite LIBs from the capacity retention
curve (NMC: LiNi0.8Mn0.1Co0.1O2, NCA: LiNi0.8Co0.15Al0.05O2, and LFP: LiFePO4, see Table S6).
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constant current (CC, 1 C)-constant voltage (CV, 3.6 V)
charging mode till Sc = 1. In the valuable experiments, the
authors designed four batches of tests with distinct fast-
charging modes (see details in Note S1). To be consistent, we
follow the terms used by the authors and label those data
from the four batches of tests as Batches 1, 2, 3, and 4, in
turn. Often a charging protocol includes a wide range of
charging rates and is not convenient for analysis. We define
an average charging rate c as

c C S S= 1 ( )d ,r c c
0

where is the state of charge at the end of fast-charging, and
C S( )r c is the prescribed charging rate. A total of 169 batteries
were all discharged with the same CC-CV profile at 4 C to
2.0 V with a current cutoff of C/50, in which the average
discharging rate mostly lower than the average charging rate,
so batteries’ cycle life performances are mainly exacerbated
as a result of the fast-charging process.
During charge-discharge cycling of LIBs, degradation of

electrochemical performance is reflected in the capacity
fading. As shown in Fig. 2a, along with gradual capacity
loss, there is an accelerated capacity drop as cycles proceed.
The end-of-life of LIBs―once the capacity retention
reaches a specified value―corresponds to the number of
cycles at that point. Following the suggestion of the authors,
the end-of-life of the LFP/graphite LIBs is commonly de-
fined as serving cycles from its 100% capacity retention to its
80% capacity remaining. In what follows, we refer to the
end-of-life as N.
We firstly examine c as a function of cycle number (N) in

Fig. 1c. Regardless of the rather scattered data, there is a
clear trend between the rapid decay of N with increasing c.

An analogy of the cycle-life law is well-known in structural
materials, the stress-cycle number relationship named the S-
N curve or the Wohler-Basquin curve [6,7]. Therefore, we
introduce for batteries under fast-charging mode a cycle-life
law in the form of

c c N= , (1)b
0

where c0 is a limiting charging rate, and b is a material
constant. Physically, one may consider c0 as a limiting
charging rate that a battery fails after one cycle.
We show in Fig. 1c the prediction using c0 = 45.5 and b =

−0.33 from experimental data in Batch 1. The same para-
meters also well capture the c-N relationship of batteries in
Batches 3 and 4. A different set of parameters, c0 = 38.8 and
b = −0.33, fit the experimental data of Batch 2 better. This
discrepancy may be due to different batches of samples used
in Batch 2. As illustrated in the voltage-capacity curve in Fig.
2b, the voltage from Batch 2 is apparently below those of the
other three batches. Similar to what we see from the S-N
curves of materials of the same type, microstructures and
processing of materials may influence their power-law fati-
gue behavior by altering those parameters. The batch-de-
pendent behavior of batteries is hence not out of the line with
the broad observations of fatigue in most engineering ma-
terials.
We apply Eq. (1) to other commercial LIBs and experi-

mental data from different research groups, as seen in Fig.
1d. LIBs of distinct electrodes, the NMC/graphite LIBs
(blue), the NCA/graphite LIBs (red), and the LFP/graphite
LIBs (black) are shown. With c0 = 19.9, b = −0.44 and c0 =
4.76 × 105, b = −1.87 for the NMC/graphite LIBs (blue line)
and the NCA/graphite LIBs (red line), respectively, Eq. (1)
captures both types of batteries well. For the LFP/graphite

Figure 2 Capacity retention. a A typical capacity retention-cycle life curve from Severson et al. [30]. b Voltage-capacity of all 169 cells during discharging
(at 4 C rate) for the first cycle from experiments. Symbols: data from Severson et al. [30,31]; solid lines: the averaged voltage-capacity for every batch.
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LIBs tested, their electrodes are the same as those tested by
Severson et al. [30,31], and we used the same parameters c0 =
45.5, b = −0.33 and they predict well the degradation of the
LFP/graphite LIBs reported by other research groups
[32-37].

3. Mechanical mechanisms of fatigue by fast-
charging in LIBs

To shed light on the physical origin of the power-law de-
gradation given in Eq. (1), we performed an electro-chemo-
mechanical coupling model to examine the evolution of
stress in electrode materials at different Sc. There involves
the complex electrochemical and mechanical process in a
LIB during charging and discharging, as seen in Fig. 3. It is
noted that while both charging and discharging may impact
the cycle life of batteries, existing experiments are for fast-
charging induced damage. We, therefore, zero in on research
on batteries during fast-charging, although the following
electro-chemo-mechanical coupling model can be applied to
both charging and discharging.

3.1 Electro-chemo-mechanical coupling

We are interested in the stress evolution during fast-char-
ging, which involves the electro-chemo-mechanical coupling
process including charge conversion (Eqs. (S1) and (S2) in
Table S1), mass conservation (Eqs. (S3) and (S4) in Table
S1), and electrochemical reaction (Eqs. (S8)-(S10) in Table
S1). For lithium diffusion induced stress in active material
particles, we consider the most commonly seen structures of
active materials composed of particles and consider a particle
of radius R. When an active material is subject to charge, the
following governing equations summarized in Table S1
should be satisfied:

(1) charge conservation in both solid and liquid phases
(Eqs. (S1) and (S2));
(2) diffusion equation of Li and Li-ions (Eqs. (S3) and

(S4));
(3) mechanical equilibrium (Eq. (S5));
(4) stress-strain relationships (Eq. (S6));
(5) kinematics (Eq. (S7));
(6) bulter-Volmer equation (Eq. (S8));
(7) equations for open circuit potential in both cathode and

anode (Eqs. (S9) and (S10)).
The coupled electro-chemo-mechanical equations are

solved by developing a numerical platform based on the
LIONSIMBA toolbox [38]. Complete definitions of all re-
lated parameters used in Eqs. (S1)-(S10) are tabulated (see
Table S2). The values of parameters involved in the electro-
chemo-mechanical model either come from the references or
are acquired by fitting the tested discharged voltage-time
curve in LIBs. Taking the number 1 cell listed in Table S5 for
demonstration, the model, fed with the given parameters in
Table S2, can capture well the experimental curve in Fig. 3b.
The same set of parameters is used for batteries in one batch.
For different batches, in order to capture the capacity-voltage
curve shown in Fig. 2b, eff changes correspondingly, and is
0.25 in Batch 2, 0.65 in Batch 3, and 0.85 in Batch 4.

3.2 Stress and charging rate

The cathode electrode can experience more serious stress
evolution (even up to several hundred MPa) at high charging
rate conditions because of its poor diffusion perfor-
mance [39-41]. The large stress status can lead to significant
structural failure and greatly influence the cycle-life perfor-
mance. As active materials in both electrodes are particles, as
illustrated in Fig. 3a, we then calculate the stress evolution of
such particles in the cathode during a charging-discharging
cycle. For the four typical charging protocols ofCr versus Sc

Figure 3 Schematic of the electro-chemo-mechanical coupling process in active materials. a An illustration of the LFP/graphite cell electro-chemo-
mechanical model. b Parameter calibration by fitting the voltage-time curve at a constant discharge rate C = 4 Cr .

222108-4J. Wen, et al. Acta Mech. Sin., Vol. 38, 222108 (2022)

https://www.sciengine.com/doi.org/10.1007/s10409-022-22108-x
https://www.sciengine.com/doi.org/10.1007/s10409-022-22108-x
https://www.sciengine.com/doi.org/10.1007/s10409-022-22108-x
https://www.sciengine.com/doi.org/10.1007/s10409-022-22108-x
https://www.sciengine.com/doi.org/10.1007/s10409-022-22108-x
https://www.sciengine.com/doi.org/10.1007/s10409-022-22108-x
https://www.sciengine.com/doi.org/10.1007/s10409-022-22108-x


adopted by Severson et al. [30,31], we check in Fig. 4 the
evolution at the outer surface of the cathode particle during a
full charging and discharging cycle. Note there are 169 in-
dependent simulations in order to match all tests, and here we
show four characteristic charging protocols (see Fig. 4a),
which represent the four batches. Due to the difference in
charging, stress evolution in the particle material of the
cathode differs dramatically, as demonstrated in Fig. 4b.
Lithium concentration and the stress contour in particles of
the cathode are shown in Fig. 4c. We show in Fig. 4d the
maximum during charging, which is also the maximum
principle stress, from a total of 169 calculations and their
corresponding cycle life from experiments. Regardless of the
significant difference in charging protocol, there is a clear
trend of N= d

0 , for 0 and d being two constants. The
same trend is seen if we use either hydrostatic stress p
(positive in tension) or shear stress . Indeed, the other two
principal stress components follow = =2 1 and 03 in
spherical particles, and we have by definition,

p = + +
3 = 2 / 31 2 3 , and = 1

2 = 1
21 3 . In the

fast-charging process, active materials subject to higher
stress are prone to initiate microcracks and play a key role in
the capacity fade in LIBs.

4. Machine learning based cycle-life prediction

Regardless of the complexity arising from both the large
span of temporal and spatial scales and the coupling of multi-
mechanisms, we have shown a reliable relationship between
cycle life and charging rate based on comprehensive ex-
periments on commercial batteries performed by several
groups. There remain further challenges if we examine the
cycle life of a batch of as-received cells. They are the same
from the perspective of a manufacturer, although customers
often find cells ending up with different cycle lives. Given
the machine learning (ML) method’s capability for extract-
ing the prominent feature from big data accounting for
nonlinear mechanical behavior, there is a surge of interest in
employing the ML method for the safety assessment of
batteries. Severson et al. [30,31,42-44] developed the full
data-driven prediction model of LIBs. These developments
showed, in the absence of physical augment, full data-driven
learning can supply accurate and robust predicting results at
the price of a sufficient number of initial cycles, often about
tens to nearly one hundred. With the c-N relationship of Eq.
(1) revealed here, we demonstrate here that a PA-ML algo-
rithm is far more efficient: by fed with information of the
first charging-discharging cycle of a cell, and the developed
PA-ML algorithm predicts the life of the cell with higher
fidelity.

4.1 PA-ML algorithm

We consider two essential mechanisms accounting for the
cycle life of an arbitrary LIB: a general law governing the
history-dependent degradation mechanism of batteries and
the specificities characterizing the battery. Therefore, we
decompose the cycle life of the battery N by accounting for
the two factors:

( )N f g= , , , ( , , , ), (2)M L1 2 1 2

where f describes the influence of M degradation factors
( , , , M1 2 ), and g has L features ( , , , L1 2 ) asso-
ciated with the specific battery. We now focus on the fast-
charging induced capacity fading in LIBs. When charging
rate is used as the governing variable accounting for de-
gradation, the degradation function f is in the form of

( )f c c c( ) = / b
0

1/ , and consequentially, we have the value of g

from g N
f c=

( )
. Alternatively, if we adopt the maximum

principal stress as the single variable of f and implement the
stress-cycle life relationship shown in Fig. 4d, we have

( )f ( ) = / d
0

1/ and g N
f=

( )
.

From the typical multi-stage charging protocol and its
corresponding voltage-Sc curve shown in Fig. 1a and b, along
with previous explorations [30], we consider a total of 17
specific features of a cell, and the whole information is given
in Note S2. To find an optimal subset out of those candidate
features, we adopt the stepwise forward selection method
based on prediction performance [45], and identify eight
features (as detailed in Note S2) as inputs of
g( , , , )L1 2 showing great predictability on the cycle
life of LIBs. The eight features are (1) fast-charging time till
S = 80%c (Tc), (2) standard deviation (STD) of voltage dur-
ing a complete charging (Vc), (3) STD of current during a
complete charging (Ic), (4) STD of voltage during constant
current discharging (Vd), (5) ratio between the normalizedCm

and degradation factor (C c( )md1 when charge is used as the
factor, and C ( )md2 for stress), (6) constant voltage dis-
charging time (Td), (7) initial resistance (Rr), and (8) mea-
sured maximum capacity (Cm), respectively. The values of
these eight features of all 169 tests are also given in Table S5.
For this particular cycle-life prediction, we employed five
different data-driven methods to examine their predictability
of g( , , , )1 2 8 , including the support vector regres-
sion (SVR) with radial basis function (RBF) kernel,
Gaussian process regression (GPR), the gradient boosted
regression trees (GBRT), random forest (RF), and the
artificial neural networks (ANNs) with three kinds of
hidden layers (ANN-1, ANN-2, ANN-3). Three com-
monly used error criteria, to wit RMSE, MAPE, and MAE,
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are used to evaluate their performance. The definitions are
detailed here: (1) the root mean squared error,

n y yRMSE = 1 ( )i
n

i i=1
2 ; (2) the mean absolute percen-

tage error, n
y y

yMAPE = 100%
i
n i i

i=1 ; and (3) the mean

absolute error, n y yMAE = 1
i
n

i i=1 . Here yi and yi are the

observed and predicted cycle lives, respectively. Among the
169 tested batteries, we select randomly two third of the tests
(113) as the training dataset and the remaining 56 tests as the
prediction dataset, from which we obtain one value of
RMSE, MAPE, and MAE for each training method. By re-
peating the process independently for 50 times, the averaged

RMSE, MAPE, and MAE for each of the seven training
methods are obtained and shown in Fig. 5. According to the

predictions of the five models to g N
f c=

( )
in Fig. 5a-c and to

g N
f=

( )
in Fig. 5e-g, the SVR model outperforms the others

and has smaller RMSE, MAE, and MAPE, and we employ
the SVR model for further exploration.
The statistical dependence between each feature with the

value of the specific function g is illustrated by their
Spearman correlation coefficients. In Fig. 5d, the Spearman
correlation shows a trending upward of g on Vc, Ic, and Vd

when the value of g is calculated using g N
f c=

( )
. Figure 5h

Figure 4 Correlation of stress with cycle number N in electrode materials during fast-charging. a Four typical fast-charging modes (see Note S1). b
Evolution of circumferential stress at the outer surface of a cathode particle during a full cycle. c Lithium concentration and contours at different
charging and discharging status keyed in b. d Maximum from 169 calculations versus the corresponding cycle number N from tests (see Table S5). The
solid curve is a fitting using N= d

0 , where d= 4033, = 0.40 .
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suggests trending downward of g on Cmd, Td, and Rr when

g N
f=

( )
. The trend of Tc and Cm are distinct, as seen in Fig.

5d and h. It originates from the fact that Tc is roughly the
inverse of c.

4.2 Cycle life predictability

With the 169 tests as the dataset, now each sample contains
eight features as input and one output g, and the output may

be obtained by using either g N
f c=

( )
or g N

f=
( )

with N from

experiments. We apply three data processing methods to
verify the predictability of the PA-ML model. In method 1,
we consider interval-selected cells in Batches 1 and 2 as the
training and prediction dataset, respectively. For method 2,
cells in Batches 1 and 2 are used as the training dataset and
these in Batch 3 as the prediction dataset; and for method 3,
we set cells in Batches 1 to 3 as the training dataset and these
in Batch 4 as the prediction dataset. The predicted cycle life
from the PA-ML model and those from experiments are
shown in Fig. 6. Figure 6a and b shows the correlation be-
tween our predictor and the observed cycle life, using the
definition of charging rate and the stress for output g, re-
spectively. The coefficient between our predictor and the
observed cycle life reaches 0.89 and 0.90, respectively.
Especially, for method 3, the training dataset only contains
two-step charged LIBs, and the accurate prediction for cycle

life of LIBs with four-step charging suggests that the PA-ML
model performs well for generalization in terms of charging
protocol. As a comparison, the RMSE of the PA-ML model
outperforms the other three models. In contrast to Severson’s
ML model [30] and those hybrid ML models listed in Table
S3, which require the first many cycles (about 100) as a prior,
our PA-ML model gives accurate prediction based on the
very first cycle of a LIB and hence saves experimental time
and the real usable cycle-life of LIBs. Further different error
indicators (RMSE, MAE, and MAPE) are also used to
evaluate the predictive performance of the model (Fig. 6c
and d). The predicted results, listed in Tables S3 and S4,
convincingly highlight the high accuracy and robust pre-
dictability of the PA-ML model for the cycle life prediction
of LIBs.

5. Discussions and conclusions

To approach the power-law of charging rate versus cycle
numbers using experimental data from commercial batteries,
there are several issues that merit further exploration. The
first one is regarding the possibility of failure in both anode
and cathode materials, in contrast to our attention paid to
cathode materials. To address this issue, we also investigate
the stress evolution in the graphite anode particle during
charging and discharging by adopting the same electro-
chemo-mechanical coupling model. We show the maximum

Figure 5 Predictability of data-driven models. a-c Error parameters to examine the predictability of seven data-driven models to g
N
f c= ( )

: a RMSE, b

MAE, and cMAPE. e-g Predictions of seven data-driven models to g
N

f= ( )
: e RMSE, fMAE, and gMAPE. The Spearman coefficients of the selected eight

specific features (see Note S2) when the value of the specific function g of each test is derived from d g
N
f c= ( )

and h from g
N

f= ( )
.
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stress in graphite anode particles in a cycle in Fig. 7. The
magnitude of stresses here, in contrast to those in cathode
particles shown in Fig. 4d, is lower by a factor of two to
three. It is also worth noting that the power-law relationship
is clearly shown in Fig. 4d while data in Fig. 7 are rather
scattered. We therefore draw the conclusion that fatigue in
the cathode particles in those experiments is responsible for
the power-law correlation we suggested here.
A more challenging issue is the applicability of the c-N

curve in real engineering practices. Tests at a laboratory
cover a very limited number of charging and discharging
history. A customer may use a battery in an unexpected
manner, and the SOC window may fall a large span between
0 to 100%, in contrast to a known charging-discharging

profile for research. Investigation on this aspect is still
lacking. As an off-the-shelf strategy, we may start with
constructing a charging spectrum, resembling the stress
spectrum commonly used for stress-controlled fatigue, to
quantify the accumulative damage due to fast-charging
governed fatigue in batteries. The damage due to different
levels of charging rate may be approximated by following
the conventional Minor’s rule for cumulative damage.
To summarize, we reveal a general cycle-life law of

commercial batteries under fast-charging protocols based on
large-scale and well-documented experiments. The average
charging rate c and the resulted cycle life N of LIBs obey
c c N= b

0 , with c0 being a limiting charging rate and b being
anelectrode-dependent parameter. The physical origin of the

Figure 6 Predictability of the PA-ML model for cycle life of LIBs. The predicted cycle life from the PA-ML cycle-life prediction model versus the

observed cycle life using different expressions of the physics law: a g
N
f c= ( )

, b g
N

f= ( )
. c, d RMSE of our PA-ML in comparison with the other three

models corresponding to a and b, respectively.
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power-law degradation is associated with fatigue in active
materials subject to high cyclic stress resulting from fast-
charging. Initiation of microcracks in active materials of
electrodes resulting from cyclic loading gives rise to accu-
mulative damage and exposure of crack surfaces, which in
turn facilitates the formation of SEI layers and resultant
degradation in LIBs. As further illustrated in Fig. 1, we find
that LIBs of the same type of electrodes have a similar value
of b. Since c0 is a limiting charging rate (corresponding to
N = 1), we prefer to have electrode materials of great c0 and
small b for stable and endurable performance. While the c-N
law supplies two tunable parameters for optimization at the
macroscopic level, the Spearman correlation coefficients of
the eight features suggest a set of factors for further finer
tuning.
With the developed c-N curve, we further employ a ML

method with a physics-augmented algorithm to predict the
cycle life of any individual battery. Once the very first cycle
performance and the charging profile are available, we can
further predict the life of that particular battery with high
fidelity. That should be of immediate application for LIBs
selection in industries (e.g., EVs) for minimizing battery
pack inconsistency during fast-charging. The general c-N
relationship and the PA-ML reported here supply a physi-
cally sound approach to realizing health management of
LIBs with reliability prediction and quantifiable parameters
for further optimization, especially in the ever-growing de-
mand for EVs and battery-based energy storage plants.
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商业锂电池充电倍率与循环寿命的标度律
温济慈, 邹庆荣, 张泽卉, 石坚, 魏宇杰

摘要 商用锂电池的健康管理目前存在大量亟待解决的问题, 其中循环寿命的有效预测是电池管理系统的核心目标. 本文通过利

用商业锂电池不同快充倍率下循环寿命的实验结果, 发现并提出了锂电池等效快充倍率c与循环寿命N之间的标度律关系, c = c0N
b

(即c-N准则), 其中c0表示电极材料极限充电倍率, b是与电池材料相关的常数. 这一c-N准则，类似于固体材料疲劳中所周知的S-N
曲线, 适用于不同类型的商业锂电池, 并通过已有的文献数据获得了验证. 结合c-N准则和机器学习方法, 我们发展了一种物理增强

的机器学习模型, 基于前面提出的c-N准则，使用首圈的充放电测试即可实现对电池循环寿命的高精度预测. 这一工作为锂电池循

环寿命预测、健康管理和锂电池的优化提供了基于力学原理的新思路.
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