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ABSTRACT

The effects of the Coriolis force in inhomogeneous rotating turbulence are studied in the paper. Linear analyses and numerical simulations
both reveal that energy is transported to the slowly rotating fields, and the energy distribution is proportional to X�2

3 ðx3Þ. The scale energy is
almost spatially self-similar, and the inverse cascade is reduced by inhomogeneous rotation. The corresponding evolution equation of the
scale energy, i.e., the generalized Kolmogorov equation, is calculated to study the scale transport process in the presence of inhomogeneity.
The equation is reduced to twice the energy transport equation at sufficiently large scales, which is verified by numerical results. In addition,
the results reveal the dominant role of the corresponding pressure of the Coriolis force in the spatial energy transport. An extra turbulent
convention effect in r-space solely in slowly rotating fields is also recognized. It can be associated with the small-scale structures with strong
negative vorticity, whose formation mechanism is similar to rotating condensates. Finally, by vortex dynamic analyses, we find that the corre-
sponding pressure of the Coriolis force transports energy by vorticity tube shrinking and thickening. The effects of the Coriolis force can be
divided into two components: one is related to the gradient of rotation, and the other is associated with the strength of rotation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0084098

I. INTRODUCTION

Rotation is widespread in geophysical,1 astrophysical,2 and indus-
trial flows.3 Previous studies focus on rotating flows with constant4 or
unsteady rotation rates.5 However, inhomogeneous rotation is ubiqui-
tous in natural flows, such as cyclones and anticyclones,6 tornadoes,1 b
planes,7 and quasi-Keplerian flows.8–10 In the b plane, the Coriolis
parameter varies approximately linearly with respect to latitudes.11,12

The quasi-Keplerian flow is defined as the rotating flow with its spe-
cific angular momentum and angular velocity, respectively, increasing
and decreasing in the radial direction.8

In homogeneous rotating turbulence, the rotation has been
extensively investigated by researchers.13–16 As rotation is strength-
ened, the forward cascade is reduced, while the inverse cascade is
intensified.13,17–20 By the resonant wave theory,21 the nonlinear triadic
interactions can be divided into two categories due to their resonant
properties. Using an instability hypothesis, Waleffe21 argued that
resonant triadic interactions drive the flow to become quasi-two-
dimensional. By numerical simulation, Chen et al.18 verified the pre-
diction of Waleffe,21 and they also revealed that through non-resonant
triadic interactions, energy is transferred to slow modes, i.e., the modes

of kz¼ 0. These non-resonant triadic interactions are suppressed as
the Rossby number decreases.22 Therefore, the flows with smaller
Rossby numbers need more time to reach the steady state. Moreover,
Yokoyama and Takaoka23 introduced two ansatzes, net locality and
efficiency of the nonlinear energy transfer, and proposed a way to
determine the energy-flux vectors in homogeneous rotating turbu-
lence. By the energy-flux vectors, Yokoyama and Takaoka23 verified
the prediction of the weak turbulence theory, and they also associated
the inverse cascade with the quasi-two-dimensionalization. The cas-
cades above also imply that the energy dissipation is suppressed by
rotation, and energy piles up at large scales, which leads to conden-
sates. Condensates have two distinct mechanisms:24 rotating conden-
sates and viscous condensates. Rotating condensates are associated
with the breaking of the two-dimensionalization condition, while
viscous condensates are similar to the saturation mechanism in two-
dimensional flows. Seshasayanan and Alexakis24 further sketched the
phase space diagram of the condensates in the Re, Ro parameter plane.
As for the scaling laws, Zhou25 derived a spectrum of k�2 by phenom-
enological models, which is supported by simulations26,27 and experi-
ments.28 However, wave turbulence theories29 and large eddy
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simulations30 both suggested that the spectrum of k�3 will be reached
in the limit of large Reynolds numbers, small Rossby numbers, and
long times.

Considering the presence of spatial transports induced by inho-
mogeneous rotation, a more general approach is necessary to describe
the scale dynamics. The second-order structure function could be
regarded as a proxy of energy associated with a given scale,31–37 which
is also known as the scale energy. Therefore, the evolution equation of
the second-order structure function can be used to depict the flux
interchange between given scales as well as positions.32 The equation
was discussed in detail and extended to higher orders by Hill.31 Since
the equation can be reduced to the Kolmogorov equation in homoge-
neous isotropic turbulence, it is also known as the generalized
Kolmogorov equation (GKE). The GKE was also applied to turbulent
channel flows33,37 for the energy transfer in physical and r-space.
Cimarelli et al.34 further identified two dynamic processes as driving
mechanisms for the energy fluxes: one in the near-wall region and
another one further away from the wall. The former is related to the
near-wall turbulence regeneration cycle, and the second suggests an
outer self-sustaining mechanism. They34 also proposed a simple equa-
tion that could capture most of the rich dynamics. Recently, the GKE
was used to describe the scale-by-scale dynamics in wall flows with
separation and reattachment.35,37

The paper is organized as follows. The Navier–Stokes (N–S)
equations in the inhomogeneous rotating frame are discussed in Sec.
II. Furthermore, in Sec. III, we give the details of numerical simula-
tions and verify the linear approximation. The results of the scale
energy and the GKE are discussed in Sec. IV. By the GKE, the effects
of inhomogeneous rotation are investigated in detail, especially those
related to the Coriolis force. Next in Sec. V, we present the vortex
dynamic processes associated with the spatial energy transports.
Finally, conclusions will be given in Sec. VI.

II. N–S EQUATIONS IN THE INHOMOGENEOUS
ROTATING FRAME

The relations of the velocity and acceleration between the rotat-
ing frame and the inertial frame are

uI ¼ uR þX� x;

du
dt

� �
I
¼ du

dt

� �
R
þ 2X� uR

þX� X� x þ dX
dt

� x;

8>>>>><
>>>>>:

(1)

where u is the velocity, X is the angular velocity, x is the position, the
subscript R represents the rotating frame, and the subscript I repre-
sents the inertial frame. In the inertial frame, the incompressible N–S
equations can be written as

du
dt

� �
I
¼ f �rp0 þ �r2uI ;

r � uI ¼ 0;

8><
>: (2)

where f is the forcing term, p0 is the pressure, and � is the kinematic
viscosity. In the inhomogeneous rotating frame with X ¼ X3ðx3Þe3, it
can be derived from Eq. (1) that

r � uI ¼ 0;

r2uI ¼ r2uR þ @2X3

@x23
e3 � x;

8<
: (3)

where e3 is the unit vector parallel to the x3 axis,X is aligned with the
x3 axis, and only depends on x3.

The incompressible N–S equations in the rotating frame can be
derived from Eqs. (1)–(3) as

@u
@t

¼ �ðu � rÞu�rp0 þ �r2uþ �
@2X3

@x23
e3 � x þ f

þ 2u�X�X� ðX� xÞ � dX
dt

� x;

r � uI ¼ 0;

8>>>><
>>>>:

(4)

where the subscript R is ignored. There are three fictitious forces: the
Coriolis force 2u�X, the centrifugal force �X� ðX� xÞ, and the
Euler force (i.e., the azimuthal force) �ðdX=dtÞ � x.38 In addition,
there is also the residual viscous effect �@2X3=@x23e3 � x. In homoge-
neous rotating turbulence, the centrifugal force is curl-free and thus can
be merged with the pressure term,39 and the Euler force is simply zero.
However, in the inhomogeneous case with X ¼ X3ðx3Þe3, the centrifu-
gal force and the Euler force is expanded, respectively, as follows:

�X� ðX� xÞ ¼ 1
2

� @X2
3

@x3

 !
ðx21 þ x22Þe3 þrðX� xÞ2

" #
;

� dX
dt

� x ¼ u3
@X3

@x3
ðx2e1 � x1e2Þ:

(5)

When a particle moves toward the field with a higher rotation rate
(that is, u3@X3=@x3 > 0), the Euler force will suppress its rotation,
which is analogous to the starting procedure (@X=@t > 0) of a rotat-
ing system.38

In cylinder coordinates fq;/; zg, the residual viscous term, the
first components of the centrifugal force, and the overall Euler force
can be written as

�
@2X3

@x23
e3 � x ¼ �

@2X3

@x23
jxje3 � /;

� @X2
3

@x3
ðx21 þ x22Þe3 ¼ � @X2

3

@x3
jqj2e3;

� dX
dt

� x ¼ �u3
@X3

@x3
jqj/;

(6)

which introduce the influence of the radius vector q and the angular
vector /. They cannot be periodic and conflict with the boundary con-
ditions of our simulations. Therefore, these terms are neglected for
simplification.

Similar to the situation of the b plane,11,40 the effects of the Coriolis
force are the focus. Then, the N–S equations have the same form as those
in the homogeneous rotating flows,41 which can be written as

@u
@t

¼ �ðu � rÞu�rpþ �r2uþ f þ 2u�X;

r � u ¼ 0;

8<
: (7)

where p is the modified pressure including the original pressure p0 and
the second term of the centrifugal force in Eq. (5).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 035108 (2022); doi: 10.1063/5.0084098 34, 035108-2

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0084098/16636678/035108_1_online.pdf

https://scitation.org/journal/phf


III. NUMERICAL SIMULATIONS AND LINEAR
APPROXIMATION
A. Numerical setup

Three direct numerical simulations are carried out for inhomoge-
neous rotating flows. The triply periodic pseudo-spectral method and
third-order Runge–Kutta technique are applied to the simulations.
The angular velocity X is aligned with the third direction and only
relies on the coordinate of the third direction, i.e., X ¼ X3ðx3Þe3. The
computational domains and meshes are doubled in the third direction,
which are ½2p�2 � 4p and 10242 � 2048, respectively.

The N–S equations in the inhomogeneous rotating frame38,41 is
given in Eq. (7). The forcing term f is calculated in the Fourier space as42

f̂ ðkÞ ¼ �f ûðkÞ
nf ûðkÞ � ûðkÞ
� � ; (8)

where^represents the value in the Fourier space, �f is the energy injec-
tion rate, and nf is the number of energy injection wavenumbers.

Rotating turbulence is quantified by two non-dimensional
parameters: the Reynolds number Re and the Rossby number Ro.
Typically, the Rossby number of the synoptic scales at mid-latitudes in
the atmosphere is approximately 0.1.43 The two non-dimensional
parameters here can be defined as39

Re ¼ �
1=3
f k�4=3

f =�;Ro ¼ k2=3f �
1=3
f =2�X; (9)

where �X is the mean rotation rate, and kf is the forcing wavenumber.
Considering the case of the b plane11 and the requirement of

infinite-order smooth derivatives of the pseudo-spectral method, we
suppose that the rotation rate varies along the rotating axis as

X3ðx3Þ=�X ¼ 1� a cos ðx3=2Þ; (10)

where a is the variation ratio, and x3 2 ½0; 4p�.
Three cases are involved in the paper. For all the three cases, the

forcing wavenumbers kf ¼ f8; 9g, the mean rotating rate �X ¼ 10:42,
the kinematic viscosity � ¼ 10�3, and the energy injection rate �f
¼ 0:1. The non-dimensional parameters Re¼ 26.76 and Ro¼ 0.093.
All the statistics in the paper are averaged over at least 53.6 eddy turn-
over times after reaching the steady state, where the eddy turnover
time T0 ¼ LF=U , the scale LF ¼ 2p=kf , and the root mean square
velocity U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihuiuiiL=3

p
. The variation ratio a varies from 0.0 to 0.5.

Notably, when a ¼ 0:0, the case is homogeneous. Other parameters
are mentioned in Table I.

B. Structures and spectra

Figure 1 illustrates the vortex structures of all the three cases by
the Q criterion. Notably, the column structures in Fig. 1(a) are thin

and dense compared with previous results.44 It can be attributed to the
doubled domain in the third direction, which intensifies the interac-
tions between the slow manifolds and the fast manifolds with mini-
mum jk3j45 and reduces the inverse cascade. Furthermore, the upper
components of Figs. 1(a)–1(c) reveal that as the variation becomes
more intense, more structures with strong vorticity (Q> 1500) con-
centrate on the slowly rotating fields. The stronger the vortices are, the
more interference there is among them, and thus more microvortexes
(mostly with negative vorticity) form in the slowly rotating fields, as
shown in the lower components of Fig. 1(c) by the red color.

Considering the spectral behaviors of inhomogeneous rotating
flows, since the flows are inhomogeneous in the third direction, the
Fourier transform is only performed in other two dimensions. The
velocity uðk1; k2; x3Þ can be calculated as

uðk1; k2; x3Þ ¼ 1
N1N2

X
x1

X
x2

uðxÞ exp �iðk1x1 þ k2x2Þ½ �; (11)

where N1 and N2 are the mesh sizes of the first two dimensions, and
i ¼ ffiffiffiffiffiffi�1

p
. Furthermore, the corresponding spectrum can be written as

Eðk?; x3Þ ¼ 1
2

X
k21þk22¼k2?

u�ðk1; k2; x3Þ � uðk1; k2; x3Þ; (12)

where k? is the wavenumber perpendicular to the rotating axis. The
average spectrum over x3 is calculated as

Eðk?Þ ¼ 1
N3

X
x3

Eðk?; x3Þ; (13)

where N3 is the mesh sizes of the third dimension. The average spectra
over x3 are given in Fig. 2. As the variation ratio become stronger
(from case A to case C), the energy at the large scales (k? � 2) is sup-
pressed, while the energy at other scales is less affected. Moreover, in
the inertial region (20 < k? < 100), Eðk?Þ � k�2:8

? . The spectra of
case C (a ¼ 0:5) at different positions x3 are shown in Fig. 3. Since the
spectra are symmetric about x3 ¼ 2p, there are only the spectra of half
domains, i.e., x3 2 ½0; 2p�. As x3 varies from 0 to 2p, the rotation
becomes stronger, the energy becomes weaker, especially the energy in
the dissipative region (k> 100). In other words, the small-scale energy
and dissipation in the slowly rotating fields are far larger than those in
the fast rotating fields, which could be associated with the abundant
small structures in the slowly rotating fields shown in Fig. 1(c).

C. Linear approximation

The vorticity equation can be derived from the N–S equations
[Eq. (4)] as

@x

@t
�ðx �rÞuþðu �rÞx¼ �r2xþr� fþ2r�ðu�XÞ; (14)

where the Lamb vector is used to replace the turbulent convection in
the derivation, i.e., u� x ¼ �u � ru�rð12 juj2Þ. Referring to the
Taylor–Proudman theorem,46 neglecting the viscous term, the forcing
term, and the turbulent convection term (Ro 	 1), the vorticity equa-
tion yields

@x

@t
¼ 2r� ðu�XÞ: (15)

TABLE I. Descriptions of the data. a: the variation ratio of rotating rate; U: the root
mean square velocity; T0: the eddy turnover time; g: the Kolmogorov dissipative
scale; Dx: the numerical grid spacing; and Dt: the time increment.

Case a U T0 g=Dx UDt=Dx

A 0.00 1.25 0.59 1.63 0.016
B 0.25 1.16 0.64 1.63 0.015
C 0.50 1.05 0.70 1.63 0.025
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If the motion is steady (@=@t ¼ 0), and considering that
X ¼ X3ðx3Þe3, the equation can be reduced as

0 ¼ @ðX3uÞ
@x3

� u3
@X3

@x3
e3: (16)

Multiplying the three components of the equation with
fX3u1;X3u2; u3g separately and integrating in the x3 axis, it can be
deduced that u21X

2
3; u

2
2X

2
3 and u23 are independent of x3. If averaging

over the x1 � x2 plane, the turbulent kinematic energy can be obtained
as

E?ðx3Þ ¼ C1=X
2
3; Ekðx3Þ ¼ C2; (17)

where E?ðx3Þ ¼ hu21 þ u22i?=2; Ekðx3Þ ¼ hu31i?=2; h�i? represents
the average over the x1 � x2 planes, and Ci ¼ const.

Figure 4 gives the energy distributions of case B and case C.
Figure 4(a) gives the distribution with respect to the non-
dimensional rotation rate X3ðx3Þ=�X, while Fig. 4(b) takes x3 as the
abscissa. The inset of Fig. 4(b) shows the details at the region of
x3 2 ½3:5p; 4:0p�. In Fig. 4(a), E?ðx3Þ fits well with X�2

3 for the two
cases. This can be verified in Fig. 4(b) as well. More precisely,
as shown in the inset of Fig. 4(b), for case C, when x3 < 0:32p or
x3 > 3:6p; E?ðx3Þ deviates from the prediction of the linear
approximation. Moreover, Ekðx3Þ 
 0, which is approximately a
constant, as expected.

FIG. 1. 3D rendering of the vortex structures shown by the Q criterion: (a) case A, a¼ 0; (b) case B, a ¼ 0:25; and (c) case C, a ¼ 0:50. Blue: x3 > 0; red: x3 < 0. The
domain is divided into two components for each case: the upper component shows the results of Q> 1500, and the lower component gives the results of Q> 100.

FIG. 2. The average spectra over x3. Dash line: k�2:8
? .

FIG. 3. The spectra with different x3 of case C (a ¼ 0:5). Dash line: k�2:8
? . In the

direction of the arrow, x3 varies from 0 to 2p, and X3ðx3Þ increases.
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IV. THE TRANSFER PROCESSES

Since the flow is inhomogeneous in the third direction, the
energy transports in geometrical space are as important as those
among scales. To study them simultaneously, the second-order struc-
ture function (i.e., the scale energy) and its evolution equation (i.e., the
GKE31–34) are calculated.

A. Scale energy

The velocity increment at the position X and separation r is illus-
trated in Fig. 5. The velocity at two positions x and x0 are denoted as u
and u0, respectively. The velocity increment and scale energy at the
position X and separation r are written as

duðX; rÞ ¼ u� u0;
du2ðX; rÞ ¼ duðX; rÞ � duðX; rÞ; (18)

where X ¼ ðx þ x0Þ=2, and r ¼ x � x0. For simplification, in this
paper, we only consider the separation r with r3 ¼ 0. Moreover, since
the flows satisfy the translation and rotation invariance on the x1 � x2
plane, the scale energy is averaged over the x1 � x2 plane and the ring
of r ¼ jrj, i.e.,

hdu2i?ðx3 ¼ X3; rÞ ¼ 1
N1N2Nr

X
X1

X
X2

X
jrj¼r

du2ðX; rÞ; (19)

where Nr is the number of points with jrj ¼ r.
To exclude the influence of the amplitudes of the average energy,

the normalized scale energy hd�u2i? is calculated as

hd�u2i?ðx3; rÞ ¼ hdu2i?ðx3; rÞ=Eðx3Þ; (20)

where Eðx3Þ ¼ Ekðx3Þ þ E?ðx3Þ. When the separation r ! 1, the
two-point correlation of the two points x and x0 is negligible, i.e.,
limr!1 hu � u0i? ¼ 0. Furthermore, the asymptotic behavior of
hd�u2i? can be derived as

lim
r!1hd�u2i? ¼ lim

r!1ð4E � 2hu � u0i?Þ=E ¼ 4: (21)

Figure 6 gives the normalized scale energy hd�u2i?. As predicted,
when the separation r ! 1, the normalized scale energy hd�u2i? tends
to be 4. Furthermore, in the dissipative region (r < 0:022p), hd�u2i?
� r2, which is consistent with the prediction of Kolmogorov.47

hd�u2i? � r1:8 in the inertial region (0:03p < r < 0:08p), which can
be associated with the spectrum Eðk?Þ � k�2:8

? .

FIG. 4. Energy distributions: (a) log –log plot of Ekðx3Þ and E?ðx3Þ with respect to
X3ðx3Þ=�X. Dash line: X�2

3 . (b) Plot of Ekðx3Þ and E?ðx3Þ with respect to x3.

FIG. 5. Sketch of the velocity increment.

FIG. 6. The log –log plot of the normalized scale energy hd�u2i? with respect to
the separation r at different position x3. Black lines: case A; red lines: case B; and
blue lines: case C. In the direction of the arrows, x3 varies from 0 to 2p, and
X3ðx3Þ=�X increases. The inset gives the details around the peak in linear
coordinates.
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Moreover, in Fig. 6, comparing the results of case C (a ¼ 0:5)
with those of case A (a ¼ 0:0), the small-scale motion (r < 0:2p) of
case C is intensified due to inhomogeneity. In other words, the inho-
mogeneity reduces the inverse cascade and intensifies the forward cas-
cade. It is because the inhomogeneity introduces additional triadic
interactions, which break the isolation of slow manifolds from other
manifolds.4 Moreover, the normalized scale energy distributions are
almost independent of x3, which means the scale energy is geometri-
cally self-similar. The inset of Fig. 6 allows for finer distinctions of the
results with different x3. As x3 increases, the rotation becomes stron-
ger, and the peak of scale energy slightly moves to smaller scales.

B. Energy transport equation

Before studying the scale transport process, the energy transport
equation in physical space is discussed at first. To better understand
the transport process, pressure decomposition48 is needed. Taking the
divergence of Eq. (7), the resulting equation is

r2p ¼ �r � ðu � rÞu½ � þ 2r � ðu�XÞ; (22)

which means that the pressure term can be divided into two compo-
nents corresponding to the turbulent convection and the Coriolis force
separately, i.e., p ¼ pn þ pc. The composition of the term and the cor-
responding pressure term is solenoidal. It is closely related to the vor-
tex dynamics discussed in Sec. V.

Contracting the N–S equations [Eq. (7)] with u and averaging in
the x1 � x2 plane lead to

@E
@t

¼ P þ UþPc þPn; (23)

where Eðx3Þ ¼ Ekðx3Þ þ E?ðx3Þ. The terms on the right-hand side
(RHS) are

P ¼ hu � fi?; (24a)

U ¼ 1
2
�
@2

@x23
hu � ui? � �hru : rui?; (24b)

Pc ¼ � @

@x3
hu3pci?; (24c)

Pn ¼ � 1
2

@

@x3
hu � u u3i? � @

@x3
hu3pni?; (24d)

where P is the production term; U is the viscous term, including the
viscous diffusion term �@2hu � ui?=@x23=2 and the pseudo-dissipation
term ��hru : rui?; Pc is the Coriolis term plus the corresponding
pressure term; andPn is the turbulent convection term plus the corre-
sponding pressure term. In the derivation above, we use u � ðu�XÞ
¼ 0 and @h�i?=@x1 ¼ @h�i?=@x2 ¼ 0.

To verify the steady state, @E=@t of Eq. (23) is calculated. The
max value of case B maxfj@E=@tjg ¼ 0:035 and that of case C
maxfj@E=@tjg ¼ 0:020. Since case A is homogeneous (a¼ 0), the
case is not discussed here. The results of case B are more difficult to
reach balance than those of case C, due to the weaker variation ratio a
of case B. Figure 7 presents all the terms on the RHS of Eq. (23). In
both Figs. 7(a) and 7(b), @E=@t � 0, P> 0 and U < 0. More specifi-
cally, in Fig. 7(a), P and U are approximately equal, while in Fig. 7(b),
the dissipation U is obviously larger than the production P when
x3 < 0:8p, which can be attributed to the small vortices with negative

vorticity shown in Fig. 1(c). The structures are produced by interfer-
ence among adjacent columnar vortices. Additionally, in Fig. 7, Pc

transports energy from the fast rotating fields (x3 > 0:84p for case B
and x3 > 0:56p for case C) to the remaining domains. In contrast,Pn

transports energy inversely due to the inhomogeneity of energy
distributions.

C. The generalized Kolmogorov equation and
reliability verification

According to the relationships among the partial derivatives,31

@

@xi
¼ @

@ri
þ 1
2

@

@Xi
;

@

@x0i
¼ � @

@ri
þ 1
2

@

@Xi
;

@

@Xi
¼ @

@xi
þ @

@x0i
;

@

@ri
¼ 1

2
@

@ri
þ @

@Xi

� �
;

(25)

the GKE can be derived from the N–S equations [Eq. (4)] as

1
2
@

@t
hdu2i? ¼ @

@X3
� 1
2
du2 u�3 � du3 dpþ 1

4
�

@

@X3
du2

� �
?

þ rr � � 1
2
du du2 þ �rrdu

2

� �
?

þ hdu � dfi? � h��i?; (26)

where rr ¼ @=@r1 e1 þ @=@r2 e2 þ @=@r3 e3, � represents the sum at
points x and x0, and the pseudo-dissipation h��i? ¼ �h@ui@xj

@ui
@xj

þ @u0i
@x0j

@u0i
@x0j
i?.

FIG. 7. All terms of the energy transport equation vs the position x3: (a) case B,
a ¼ 0:25 and (b) case C, a ¼ 0:50. P: the production term; U: the viscous term;
Pc : the Coriolis term and the corresponding pressure term; and Pn: the turbulent
convection term and the corresponding pressure term.
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Similar to the scale energy in Eq. (19), all the terms in Eq. (26) of sepa-
ration r are averaged over the x1 � x2 plane and the ring of r ¼ jrj.
The terms on the RHS represent the spatial transport, scale transport,
production, and pseudo-dissipation in sequence. The spatial trans-
port can be divided into the turbulent convection � @

@X3
h12 du2 u�3i?,

pressure transport � @
@X3

hdu3 dpi?, and viscous diffusion @
@X3

h14 � @
@X3

du2i?. The transport in r-space includes the turbulent convec-
tionrr � h� 1

2 dui and viscous diffusionrr � h�rrdu2i?. The decom-
position of pressure [Eq. (22)] is also performed here. The pressure
transport in geometrical space is divided into two components corre-
sponding to the turbulent convection and the Coriolis force sepa-
rately, i.e.,

� @

@X3
hdu3 dpi? ¼ � @

@X3
hdu3 dpni? � @

@X3
hdu3 dpci?: (27)

Similar to the asymptotic behaviors of the scale energy, the
asymptotic behaviors of all terms of the GKE [Eq. (26)] can be written
as

1
2
lim
r!1 hdu2i? ¼ 1

2
hu � ui? ¼ 2E; (28a)

lim
r!1 hdu � dfi? ¼ 2hu � fi? ¼ 2P; (28b)

1
4
� lim
r!1

@2

@X2
3
hdu2i? þ � lim

r!1r2
rhdu2i? � lim

r!1h��i?

¼ �
@2

@x23
hu � ui? � 2�hru : rui?;¼ 2U; (28c)

� lim
r!1

@

@X3
hdu3 dpci? ¼ �2

@

@x3
hu3pci? ¼ 2Pc; (28d)

�1
2
lim
r!1

@

@X3
hdu2u�3i? �1

2
lim
r!1rr � hdudu2i? � lim

r!1
@

@X3
hdu3 dpni?

¼� @

@x3
hu �uu3i? �2

@

@x3
hu3pni? ¼ 2Pn: (28e)

Thus, when r ! 1, the GKE is reduced to Eq. (23)�2. Figure 8 shows
the results of the GKE (divided by 2) of case C at the separation
r ¼ 0:48p. The subscript k is to distinguish the terms of the GKE

from those of the energy transport equation. Compared with Fig. 7(b),
the results are almost the same, which verify the validity of the GKE
and the above prediction of the asymptotic behaviors.

There are also some relationships between the transport pro-
cesses in geometrical space and r-space. For the turbulent convection
in the direction of x3, there is a relation,

lim
r!1� 1

2
@

@r3
hdu3 du2i? ¼ lim

r!1� 1
2

@

@X3
hdu2 u�3i?

¼ � 1
2

@

@x3
hu � u u3i?: (29)

Similarly, for the viscous diffusion, there is another equality,

lim
r!1 �

@2

@r23
hdu2i? ¼ lim

r!1
�

4
@2

@X2
3
hdu2i? ¼ �

2
@2

@x23
hu � ui?: (30)

Figure 9 gives the results of turbulent convection [in (a)] and vis-
cous diffusion [in (b)] at separation r ¼ 0:48p. As predicted, the trans-
port terms in geometrical space and r-space are almost the same. It
may be confusing that the viscous diffusion oscillates violently. This is
acceptable given that viscous diffusion is two orders of magnitude less
than the other terms (such as turbulent convection) at the separation
r ¼ 0:48p.

D. Transport process in r-space

The average in the r-space32,33 is calculated on the two-
dimensional circle domains perpendicular to the rotating axis. In other
words, for a generic quantity qðr0; x3Þ at the separation r0 and position
x3, its average in the r-space Qðr; x3Þ is given as

FIG. 8. All terms of the GKE (divided by two) of case C at the separation
r ¼ 0:48p. The subscript k is to distinguish with the terms of the energy transport
equation.

FIG. 9. Verification of the GKE. (a) The comparison of the turbulent convection
term in r-space (only the component in the third direction) and geometrical space.
(b) The comparison of the viscous diffusion term in r-space (only the component in
the third direction) and geometrical space. The separation of the data r ¼ 0:48p.
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Qðr; x3Þ ¼ 1
N<r

X
r0<r

qðr0; x3ÞNr0 ; (31)

whereN<r is the number of points with jrj < r, and Nr0 is the number
of points with jrj ¼ r0. By the average in the r-space, 1

2 hdu2i?ðr ¼ r1; x3Þ can be interpreted as the mean scale energy of r < r1.
In addition, by the Gauss divergence theorem, the scale transports
averaged in the r-space can be written as the fluxes from r � r1 to
r < r1.

32 Compared with the original definition, the r-space average
can better depict the transport processes of scale.

Then, using the GKE [Eq. (26)] and neglecting the time deriva-
tive term, the average GKE can be written as

0 ¼ Tg þ Tr þ Vg þ Vr þ Tp þ Cp þ P þ D; (32)

where Tg and Tr arise from turbulent convection in geometrical space
and r-space, Vg and Vr relate to the viscous diffusion, Tp and Cp give
the contributions of the pressure corresponding to the turbulent con-
vection and the Coriolis force, P is due to production, andD represents
the pseudo-dissipation. The scale transport process Tr and Vr can be
divided into two components due to the directions of transports,
respectively,

Tr ¼ Tr;k þ Tr;?; (33a)

Vr ¼ Vr;k þ Vr;?; (33b)

where Tr;k and Vr;k are the scale transports parallel to the rotating axis
x3, Tr;? and Vr;? are the scale transports perpendicular to the rotating
axis. Since only the separation r with r3 ¼ 0 is considered, Tr;? and
Vr;? act as fluxes, while Tr;k and Vr;k can be regarded as source
terms.34 For simplification, Eq. (32) is reorganized as

0 ¼ T þ Tr;? þ V þ Cp þ P þ D; (34)

where the residual turbulent convection T and the viscous effect V can
be written as

T ¼ Tg þ Tr;k þ Tp; (35a)

V ¼ Vr;? þ Vr;k þ Vg þ D: (35b)

T includes all the terms related to the turbulent convection except
Tr;?, and V represents all the effects associated with the viscosity.

All terms in Eq. (34) of case C is shown in Fig. 10. Figure 10(a)
gives the results of x3 ¼ 0:22p (in slowly rotating fields), and Fig. 10(b)
shows the results of x3 ¼ p (in fast rotating fields). First, in this figure,
Tr;? presents split energy transports (forward transports to small scales
when r < 0:14p and inverse transports to large scales when r > 0:14p
at x3 ¼ 0:22p), and its influence disappears when r ! 1 (r > 0:50p
at x3 ¼ 0:22p). More importantly, at the separation r � 10�2; Tr;? at
x3 ¼ 0:22p is far larger than that at x3 ¼ p, which can be associated
with the abundant small-scale structures with strong negative vorticity
in Fig. 1(c). The interactions of the adjacent columnar vortices cascade
energy to small scales, similar to rotating condensates.24 In addition,
the results show that Cp > 0 at x3 ¼ 0:22p and Cp < 0 at x3 ¼ p,
which represent that energy is transferred from fast rotating fields
(x3 ¼ p) to slowly rotating fields (x3 ¼ 0:22p) by the Coriolis
force. The effects of the residual turbulent convection T only
appear at large separations (r > 0:5p). In contrast to Cp, T < 0 at
x3 ¼ 0:22p and T> 0 at x3 ¼ p, which are consistent with the
results in Fig. 7.

The three components of the residual turbulent convection
[Eq. (35a)] are shown in Fig. 11. As shown in the figure, Tg and Tr;k
come to the same results at large scales [r > 0:32p at x3 ¼ 0:22p in
Fig. 11(a), and r > 0:24p at x3 ¼ p in Fig. 11(b)], which is consistent
with the asymptotic behavior in Eq. (29) and Fig. 9(a). Additionally, Tg
and Tr;k both transfer energy from the slowly rotating fields to the fast
rotating fields, in contrast to the Coriolis effects (Cp). Tp has opposite
sign with the other two terms (Tg and Tr;k), which reduces the spatial
transport effects but not changes the transport direction of the overall
turbulent convection effects (T). The four components of the viscous
effect [Eq. (35b)] are shown in Fig. 12. Vr;k and Vg come to the same
results at large scales, which is consistent with the asymptotic behavior
in Eq. (30) and Fig. 9(b). Moreover, Vr;k and Vg are close to zeros at all
separations r and positions x3, similar to the results in channel flows.33

The pseudo-dissipation D is independent of the separation r. It is
because that D is calculated by the sum at points x and x0, then aver-
ages over the x1 � x2 plane, which does not introduce the effects of
the separation r. In addition, Vr;? is always positive and transports
energy from large scales to small scales, and the effect disappears at
large separations (r > 0:2p).

In addition, in Figs. 10–12, all terms of GKE at x3 ¼ 0:22p are
larger than those at x3 ¼ p, which could be associated with the stron-
ger turbulent strength and interaction of adjacent columnar vortices at
x3 ¼ 0:2p. Furthermore, when r > 0:08p, the geometrical transport
processes (Tg ;Tp;Cp) and source terms (Tr;k; P;D) play leading roles.
However, in the inertial and dissipative region (r < 0:08p), only the
scale turbulent convection Tr;?, the viscous scale transport Vr;?, and

FIG. 10. All terms of the GKE vs the separation r of case C (a ¼ 0:5): (a)
x3 ¼ 0:22p and (b) x3 ¼ p. Tr ;?: the turbulent scale convection perpendicular to
the rotating axis; Cp: the pressure transport corresponding to the Coriolis force; P:
the production; T: the residual turbulent convection; and V: the viscous effect.
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the pseudo-dissipation D are significant. This is consistent with the
traditional view of local isotropy.47 In other words, small-scale behav-
iors are less affected by external effects.

V. VORTEX DYNAMIC PROCESSES

To further reveal the dynamic process, this paper studies the evo-
lution of an axisymmetric columnar vorticity tube under inhomoge-
neous rotation. It should be noted that the definition of the vorticity
tube is different from that of the vortex structure shown by the Q crite-
rion in Fig. 1. The tangent line of any vortex filament on the tube is
parallel to the direction of the vorticity, while the Q criterion addresses
the magnitude of the vorticity. Since Ek ¼ oðE?Þ in Fig. 4, it is reason-
able to suppose that uk ¼ u3 
 0 and @X3=@x3 ¼ const > 0. At the
beginning, @E?=@x3 ¼ @ðu21 þ u22Þ=@x3=2 ¼ 0; x? ¼ 0 and x ¼ x?
þxk ¼ xk. The Coriolis force in the vorticity equation [Eq. (15)] can
be decomposed as

2r� ðu� XÞ 
 2u
@X3

@x3
þ 2X3x? � e3 ¼ F1 þ F2; (36)

where F1 is associated with the gradient of rotation, and F2 is related
to the strength of rotation.

Figure 13 shows the evolution of a columnar vorticity tube. At
first, F2 ¼ 0; F1 is perpendicular to the vortex filament, which twists
the columnar vortex and produces helicity (H ¼ u � x). Even though
the vortex is twisted, the shape of the tube is unchanged at first. Then,
x? 6¼ 0 and F2 6¼ 0. F2 faces toward the outer normal of the section,
leading to section expansion and vortex shrinking. Then, x and F2

rotate. Finally, x? faces toward the outer normal of the section,
F2 ¼ �F1, and helicity diminishes.

To conclude, the section of the columnar vorticity tube expands
in the direction of @X3=@x3 > 0. Considering the conservation of vor-
ticity fluxes in the tube, the vorticity component xk decays in the
direction of @X3=@x3 > 0. Furthermore, considering the axial symme-
try and uk ¼ u3 
 0, it can be deduced that @E?=@x3 < 0. The analy-
ses above qualitatively explain the dynamic process. The quantitative

FIG. 11. The residual turbulent convection vs the separation r of case C: (a)
x3 ¼ 0:22p and (b) x3 ¼ p. Tg is the geometrical turbulent convection, Tp is the
pressure transport Tp, and Tr ;k is the scale convection parallel to the rotating axis.

FIG. 12. The viscous effect vs the separation r of case C: (a) x3 ¼ 0:22p and (b)
x3 ¼ p. Vr ;? is the viscous diffusion perpendicular to the rotating axis, Vr ;k is the
viscous diffusion parallel to the rotating axis, Vg is the viscous diffusion in geometri-
cal space, and D is the pseudo-dissipation.

FIG. 13. Sketch of the evolution of a columnar vortex.
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results can be obtained by the balance of F1 and F2, which has been
demonstrated by the linear prediction [Eq. (17)].

VI. CONCLUSIONS

In conclusion, in inhomogeneous rotating turbulence, energy is
transferred to the slowly rotating fields by the Coriolis force.
According to the linear analyses, the distribution of energy
� X�2

3 ðx3Þ, which has been verified by simulations. Moreover, the
simulations showed that the normalized scale energy hd�u2i? � �r2 in
the dissipative region, hd�u2i? � �r1:8 in the inertial region, and the dis-
tribution is geometrically self-similar. Compared with the homoge-
neous case, inhomogeneous rotation reduces the inverse cascades by
linking the slow manifolds and other manifolds. Then, the transport
process was studied in geometrical space and r-space simultaneously
by the energy transport equation and the GKE. The asymptotic behav-
iors of the scale energy and GKE were analyzed theoretically and
numerically. Moreover, the results of the GKE showed that the corre-
sponding pressure of the Coriolis force transports energy from the fast
rotating fields to the slowly rotating fields. Furthermore, the vortex
structure and the GKE both revealed an extra energy scale transfer
mechanism in the slowly rotating fields associated with the interfer-
ence among adjacent columnar vortices, which is similar to the rotat-
ing condensate. Finally, we offered an intuitive physical interpretation
for the spatial transport process by vortex dynamic analyses. The main
effects of the Coriolis force on a vorticity tube can be decomposed into
two components: one is associated with the gradient of rotation, and
the other is related to the strength of rotation. The corresponding pres-
sure of the Coriolis force transports energy to the slowly rotating fields
by vortex shrinking and thickening. In the process, helicity appears at
first and diminishes to zero in the end.

In this paper, we investigated several new phenomena and their
intrinsic mechanisms associated with the inhomogeneous effects of
the Coriolis force. It may help to understand the structures and
dynamics of inhomogeneous rotating flows. Moreover, the introduc-
tion of inhomogeneity needs further theories different from traditional
spectral analysis methods (such as the resonant wave theory49).
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