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A B S T R A C T

Based on linear wave theory, the hydrodynamic problem of the array of truncated cylinders with relative
motion is studied, and the calculation formulas of hydrodynamic force/moment, added mass, and added
damping coefficients are given. Firstly, the effect of the evanescent mode on the hydrodynamic coefficients are
studied by the truncated two-cylinders as an example. And based on this, an approximation formula for the
heave added mass of the truncated two-cylinders is given. After that, a fast formula for calculating the added
mass coefficient of an oscillating cylinder of the rectangularly arranged array with a large number of cylinders
caused by evanescent mode is presented. Finally, the approximate calculation method of the hydrodynamic
coefficients for a large number of rectangular arrays with a given amplitude are summarized. The method is
able to efficiently solve the hydrodynamic coefficients of the array with a large number of cylinders, providing
an idea to evaluate the performance of such models in engineering.
1. Introduction

In recent years, researchers have proposed various types of floating
structures, such as deep-sea platforms, wave energy converts, and
offshore wind turbine foundations, due to the need for marine devel-
opment. Such structures can usually be modeled as isolated truncated
cylinders or as arrays of truncated cylinders. Therefore, the diffrac-
tion/radiation problem of truncated cylindrical structures has received
a lot of research attention.

The first study of the truncated cylinder diffraction problem was
conducted by Miles and Gilbert (1968), which was subsequently mod-
ified by Garrett (1971). They all applied the idea of region boundary
matching. Sabuncu and Calisal (1981) and Yeung (1981) both studied
the radiation problem of a truncated cylinder at finite water depth
and gave analytical formulas for the added mass and the added damp-
ing coefficients of the cylinder for different modes of motion. Bhatta
and Rahman (2003) extended the radiation problem of the truncated
cylinder at finite water depth to the case with incident waves.

Compared with the isolated truncated cylinder case, the analysis of
the radiation problem for truncated cylindrical arrays requires consid-
eration of the interactions between the cylinders, making the solution
more difficult. Truncated cylindrical arrays can be divided into two
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types, oscillation in unison or independently. To solve the problem of
diffraction/radiation of multiple three-dimensional bodies, Kagemoto
and Yue (1986) combined the direct matrix method (Simon, 1982)
and the multiple scattering method (Ohkusu, 1974) to obtain an exact
algebraic method. This theory has been used as the basic theory for
hydrodynamic analysis of the array of truncated cylinders, taking into
account the propagating and evanescent modes between cylinders. Kim
(1993) gave the analytical solution of the wave radiation for six-degree-
of-freedom motions of 𝑁 bottom-mounted vertical circular cylinders,
which is an extension of Linton and Evans (1990)’s diffraction theory
of this model. Yılmaz and Incecik (1998) studied the radiation of
truncated cylindrical arrays using the method of Kagemoto and Yue
(1986), and gave some results for heave and surge forces. McNatt et al.
(2015) proposed a new method for computing the diffraction transfer
matrix that significantly reduces the computation time of the Kage-
moto and Yue (1986)’s method. The radiation problems of truncated
cylindrical arrays that can oscillate independently have also received
some attention. Based on the large spacing assumption, Williams and
Abul-Azm (1989) investigated the hydrodynamic coefficients of an
array of floating cylinders using a modified plane wave technique,
where the fluid motion is induced by a prescribed forced oscillation
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of one of the components. Mavrakos (1991) proposed a more efficient
semi-analytical method to study the radiation of arrays of interacting
vertical axisymmetric bodies with the relative motion for a given mo-
tion case, in which the effect of evanescent modes is taken into account.
For truncated four-cylinders with relative motion, Siddorn and Taylor
(2008) examined the hydrodynamic characteristics of the array for a
given cylinder amplitude and considered the effect of evanescent modes
in their analysis. Child and Venugopal (2010) applied the method
of Siddorn and Taylor (2008) to study the hydrodynamic response of
an array of floating wave energy devices, and based on the improved
computational power, the authors used a genetic algorithm to optimize
the disposition of the array. The hydrodynamic loads acting on an array
of truncated cylinders with each cylinder oscillating independently
with different prescribed amplitudes were calculated by Zeng and Tang
(2013). Later, Zeng et al. (2016) considered the effect of evanescent
modes in his study. The oscillating water column device is also a typical
the wave energy conversion, which is an important application of the
truncated cylindrical array model. There have been many studies on an
array of oscillating water column (OWC) devices, where each device is
independent and contains both inner and outer chambers (Konispoliatis
and Mavrakos, 2016; Konispoliatis et al., 2016). Progress on truncated
cylindrical arrays in the field of wave energy generation can be found
in Göteman et al. (2020). Besides, some scholars have also focused
on the radiation of non-cylindrical floating structure arrays (Zheng
et al., 2019). Kang et al. (2020) conducted numerical and experimental
studies on the dumbbell-shaped bridge cofferdam.(Cong et al., 2020)
studied Hydrodynamic interaction among multiple columns in front of
a vertical wall. Two different solutions have been developed for the
calculation of mean drift wave force. One is based on the direct pressure
integration and the other is based on the application of momentum
conservation theorem in a limited fluid volume surrounding a certain
cylinder in the array. To study the hydrodynamic properties of a point-
absorbing wave-energy converter (WEC), Zhang et al. (2021b) studied
the radiation problem of a floating cylindrical buoy with a hemispher-
ical bottom. Cong et al. (2021) dealt with a new combined concept
consisting of an oscillating water column (OWC) device and an offshore
wind turbine for the multi-purpose utilization of offshore renewable
energy resources. In addition, they developed a self-adaptive Gauss
integration method to treat the nearly singular integration that occurs
when the field and source points are very close to each other. Real
sea conditions are usually more complex, so irregular waves have been
studied by many scholars (Grice et al., 2015a,b; Xie et al., 2017; Lu
et al., 2020; Sriram et al., 2021). Tromans et al. (1991) first proposed
a physical model of New Wave and used the linear superposition of
potential flow theory to simulate extreme waves. Zhang et al. (2021a)
studied the interaction of focused waves with a fixed vertical cylinder
using numerical methods. Interestingly, in recent years, some scholars
have focused on the problem of water waves and porous cylindrical
arrays (Wang et al., 2022).

Very Large Floating Structures (VLFS), usually with a large number
of cylindrical arrays as support structures, have attracted a great deal
of interest from researchers in recent years. The excessive number
of columns in the array will cause near trapped-mode (Maniar and
Newman, 1997; Chatjigeorgiou, 2018; Chatjigeorgiou et al., 2019)
on the one hand, resulting in a steep increase in the amplitude of
the hydrodynamic force; on the other hand, the conventional method
requires a large amount of computer memory and computation time. To
overcome the solution difficulties, Murai et al. (1999) proposed a new
numerical method to study a very large floating structure supported by
several independent cylinders. In this model, the columns can be con-
sidered as connected by a thin elastic plate. They applied the method
to the hydrodynamic analysis of a 12,000-cylinders structure, but the
study neglected the effect of evanescent modes between the cylinders.
Later, Kashiwagi (2000) proposed a new hierarchical interaction theory
2

to study the diffraction/radiation phenomenon of a large number of
cylindrical arrays considering the evanescent modes. They first dis-
persed the array into a number of clusters, and then combined these
clusters into larger clusters, and repeated this process until the array
was formed. Using this method, they evaluated the hydrodynamic char-
acteristic of an array containing 5120 cylinders. Poter and Evans (2005)
studied the surface waves of square columns of infinite arrays using
multiple Galerkin methods, Rayleigh–Bloch surface waves are described
by a localized wave motion which does not propagate energy away
from the array. Thompson et al. (2008) proposed a new approximation
method for scattering by long finite arrays. and the hydrodynamic
results of a single row of 101 columns were calculated. Within the
framework of linearization, Garnaud and Mei (2009) considered a
periodic array of small buoys with similarly small separation compared
to the typical wave length. The method of homogenization (multiple
scales) is used to derive the equations governing the macro-scale be-
havior of the entire array. These equations are then applied to energy
extraction by an infinite strip of buoys, and by a circular array. Singh
and Babarit (2014) developed a computational approach to investigate
wave interaction effects in sparse arrays of floating bodies based on
linear water wave theory. And presented the hydrodynamic result of
arrays of 50 wave energy converters. Goteman et al. (2015) presented
a novel method to model the hydrodynamic interactions and power
output of very large wave energy farms, an interaction distance cut-off
is introduced to improve the computational cost with acceptable ac-
curacy. Using this approach, they studied the hydrodynamic problems
of 252 WECs. A new method is presented to compute the diffraction
transfer matrix from plane incident waves by McNatt et al. (2015),
they studied a large farm of 101 wave energy converters in regular
waves. A hierarchical wave interaction theory is reviewed by Kashiwagi
(2017), and introduced experimental results that were obtained using a
structure consisting of 64 truncated vertical circular cylinders arranged
in a periodical array of 4 rows and 16 columns, this method saves
the calculation time effectively. Linear water wave theory is used to
study loads imposed on finite line arrays of rigid, bottom-mounted,
surface-piercing, vertical cylinders by surface water waves (Bennetts
et al., 2017). And an efficient solution method for line arrays is in-
troduced that captures the Rayleigh–Bloch wave modes supported by
unperturbed arrays from the scattering characteristics of an individual
cylinder. Using this method, they studied the hydrodynamic problems
of 200 cylinders. Zeng et al. (2019) proposed an analytical formula for
the fluctuation spacing and peak/valley locations of the non-trapped
region of the hydrodynamic curve for a large number of bottom-
mounted cylinders. Based on this formula, the hydrodynamic envelope
curve of the array can be calculated quickly and accurately, which
greatly improves the efficiency of structural hydrodynamic assessment.

All of the above studies considered the diffraction/radiation prob-
lem for a large number of cylindrical arrays in the presence of incident
waves. And at present, there is no simplified method available for
preliminary engineering calculations to solve the radiation problem
for a large number of truncated cylindrical arrays with relative mo-
tion between cylinders of given motion amplitude. In this paper, the
arrangement type of cylindrical arrays is divided into three types,
and an approximate calculation method for the added mass coefficient
caused by the influence of a certain oscillating cylinder suffering from
evanescent modes is proposed. The algebraic sum of this value and
the added mass coefficient due to the radiative motion of an isolated
cylinder is the total added mass coefficient to which the cylinder is
subjected. For arrays with multi-cylinder and multi-mode oscillations,
the oscillations of each cylinder can be decomposed first and then
linearly superimposed. The method can efficiently solve the radiation
problem for cylindrical arrays of thousands in number.

The work in this paper is divided into five sections. Section 1 is the
introduction. Section 2 presents the formulation for truncated circular
cylinders. Section 3 gives the approximate analytical solutions ignor-
ing evanescent mode for the array of truncated cylinders. Section 4
provides the approximate calculation formula of the hydrodynamic
coefficients of the array with a large number of cylinders. Section 5

is the conclusion of the paper.
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Fig. 1. Sketch of an array of truncated cylinders.

2. Formulation for truncated cylinders

2.1. The boundary value problem

When the trajectory length of wave water particle in a cycle is small
compared with the characteristic size of the cylinder (i.e. Keulegan–
Carpenter number is small, e.g. less than 2), the flow separation and
friction can be ignored, and inertial force is dominant. In addition, con-
sidering the large ratio of cylinder diameter to wavelength (e.g. greater
than 0.15), the diffraction effects should be considered. The wave
steepness and cylinder motion are small, and the first-order theory is
applicable. The present study is carried out under the above condi-
tions. To sum up, the following assumptions are adopted: the fluid is
incompressible, inviscid, the flow is unseparated and the motions of
cylinders and waves are sufficiently small to linearize. In other words,
this study is carried out within the framework of linear water wave
theory. In benign sea state, the first-order hydrodynamic responses of
floating body within this theoretical framework have been serving the
field of offshore engineering with great success, and its applications
are wide-spread. Obtaining the solution based on linearized theory is
an essential step in the design of a new project. It is often sufficient
for routine design and analysis in benign sea states, and can provide
reference information for further nonlinear analysis and even extreme
loads analysis in harsh sea states.

In the context of linear water wave theory, the five degrees of
freedom motion (surge, sway, heave, roll, and pitch) of 𝑁 uniformly
rigid truncated cylinders of the same size is studied in this paper. Each
cylinder in the array floats freely on the water surface. The mode of
the yaw motion, which is axisymmetric about the cylinder, is ignored.

The schematic diagram of an array consists of 𝑁 truncated cylinders
is shown in Fig. 1(𝑎). The array of truncated cylinders is located in
the right-handed Cartesian coordinate system 𝑂𝑥𝑦𝑧, which is a global
coordinate system. The 𝑥𝑜𝑦 plane is located on the still-water level,
and 𝑂𝑧 is vertically upward. The 𝑗th cylinder is located in the local
cylindrical coordinate system (𝑟𝑗 , 𝜃𝑗 , 𝑧𝑗 ), 𝑗 = 1, 2, 3,… , 𝑁 . The origin
𝑂𝑗 of the local cylindrical coordinate system is located at the center of
the 𝑗th cylinder. The coordinate of the origin 𝑂𝑗 of each cylinder in
the Cartesian coordinate system 𝑂𝑥𝑦𝑧 is

(

𝑥𝑗 , 𝑦𝑗
)

. The radius of each
cylinder in the array is 𝑎. The distance and angle between the 𝑘th
cylinder and 𝑗th cylinder are 𝑅𝑗𝑘 and 𝛼𝑗𝑘, respectively. The coordinates
of any point 𝑃 (𝑥, 𝑦) in the field are

(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

in the 𝑗th local cylindrical
coordinate system and

(

𝑟𝑘, 𝜃𝑘, 𝑧
)

in the 𝑘th local cylindrical coordinate
system.

The vertical parameters of the array and the region division are
illustrated by taking the 𝑗th cylinder as an example, as shown in
Fig. 1(𝑏). The water depth is 𝐻 , which is assumed to be constant. The
draft of the cylinder is ℎ. The region is divided into two sub-regions: the
exterior region (𝑎 ≤ 𝑟 ≤ ∞, 0 ≤ 𝜃 ≤ 2𝜋,−𝐻 ≤ 𝑧 ≤ 0) and the core region
0 ≤ 𝑟 ≤ 𝑎, 0 ≤ 𝜃 ≤ 2𝜋,−𝐻 ≤ 𝑧 ≤ −ℎ .
3

( )
It is assumed that the velocity potential and all the motion are time
harmonic with angular frequency 𝜔, therefore the velocity potential of
the exterior region 𝛷𝑅𝐷−𝐸 (𝑟, 𝜃, 𝑧, 𝑡) and the core region 𝛷𝑅𝐷−𝐶 (𝑟, 𝜃, 𝑧, 𝑡)
can be written as

𝛷𝑅𝐷−𝐸 (𝑟, 𝜃, 𝑧, 𝑡) = Re
[

𝜙𝑅𝐷−𝐸 (𝑟, 𝜃, 𝑧) ⋅ 𝑒−i𝜔𝑡
]

, 𝛷𝑅𝐷−𝐶 (𝑟, 𝜃, 𝑧, 𝑡)

= Re
[

𝜙𝑅𝐷−𝐶 (𝑟, 𝜃, 𝑧) ⋅ 𝑒−i𝜔𝑡
]

, (1)

where Re is the real part of the parameter, 𝜙𝑅𝐷−𝐸 and 𝜙𝑅𝐷−𝐶 the spatial
factors of the velocity potential of the core region and the exterior
region, i =

√

−1 the imaginary unit, 𝑡 time.
The displacement of cylinder 𝑗 in the 𝑠th mode is

𝛯𝑗𝑠 (𝑡) = Re
[

𝜉𝑗𝑠 ⋅ 𝑒
−i𝜔𝑡] , (2)

where 𝜉𝑗𝑠 is the spatial factors of the motion amplitude, 𝑠 = 1, 2, 3, 4, 5
the modes of surge, sway, heave, roll, and pitch.

𝛷𝑗
𝑅𝑠−𝐸 and 𝛷𝑗

𝑅𝑠−𝐶 denote the radiation velocity potential of cylinder
𝑗 in the 𝑠th mode for the exterior region and the core region, respec-
tively. Similar to the expression of Eq. (1), their spatial factors are
𝜙𝑗𝑅𝑠−𝐸 and 𝜙𝑗𝑅𝑠−𝐶 , respectively. The coordinate of the centroid of the
cylinder is (0, 0, �̄�) when the cylinder is still floating on the water. The
spatial factor 𝜙𝑗𝑅𝑠−𝐸 of radiation potential of cylinder 𝑗 in the 𝑠th mode
for the exterior region satisfies the Laplace equation, the linear free
surface condition, the impermeable condition on the body surface, the
impermeable seabed condition and the Sommerfeld condition:

∇2𝜙𝑗𝑅𝑠−𝐸 = 0, 𝑎 ≤ 𝑟 <∞, −𝐻 ≤ 𝑧 ≤ 0, (3)

𝜕𝜙𝑗𝑅𝑠−𝐸
𝜕𝑧

− 𝜔2

𝑔
𝜙𝑗𝑅𝑠−𝐸 = 0, 𝑧 = 0, 𝑎 ≤ 𝑟 <∞, (4)

𝜕𝜙𝑗𝑅𝑠−𝐸
𝜕𝑟

= i𝜔𝜉𝑗𝑠 ⋅ �̃�𝑠, 𝑟 = 𝑎, −ℎ ≤ 𝑧 ≤ 0, (5)

𝜕𝜙𝑗𝑅𝑠−𝐸
𝜕𝑧

= 0, 𝑧 = −𝐻, 𝑎 ≤ 𝑟 <∞, (6)

and

lim
𝑟→∞

√

𝑟

(

𝜕𝜙𝑗𝑅𝑠−𝐸
𝜕𝑟

− i𝑘0𝜙
𝑗
𝑅𝑠−𝐸

)

= 0, (7)

where 𝑘0 is wavenumber, 𝑔 is the acceleration of gravity, and

�̃�𝑠 =
[

𝑛1, 𝑛2, 𝑛3, 𝑦𝑛3 − (𝑧 − �̄�) 𝑛2, (𝑧 − �̄�) 𝑛1 − 𝑥𝑛3
]

(8)

is the generalized normal vector of the object surface.
The spatial factor 𝜙𝑗𝑅𝑠−𝐶 of radiation potential of cylinder 𝑗 in the

𝑠th mode for the core region satisfies the Laplace equation, the im-
permeable condition on the body surface and the impermeable seabed
condition:

∇2𝜙𝑗𝑅𝑠−𝐶 = 0, 0 < 𝑟 ≤ 𝑎,−𝐻 ≤ 𝑧 ≤ −ℎ, (9)

𝜕𝜙𝑗𝑅𝑠−𝐶
𝜕𝑧

= −i𝜔𝜉𝑗𝑠 ⋅ �̃�𝑠, 𝑧 = −ℎ, 0 < 𝑟 ≤ 𝑎, (10)

𝜕𝜙𝑗𝑅𝑠−𝐶
𝜕𝑧

= 0, 𝑧 = −𝐻, 0 < 𝑟 ≤ 𝑎. (11)

The impermeable condition on the body surface, which is satisfied
by 𝜙𝑗𝑅𝑠−𝐸 and 𝜙𝑗𝑅𝑠−𝐶 , can be further expressed as follows by replacing
Eq. (8) into Eq. (5) and Eq. (10), respectively:

𝜕𝜙𝑗𝑅𝑠−𝐸
𝜕𝑟

= −i𝜔𝜉𝑗𝑠 ⋅ 𝑓𝑠 (𝑧)
∞
∑

𝑚=−∞
𝜆𝑚𝑠𝑒

i𝑚𝜃 , 𝑟 = 𝑎, −ℎ ≤ 𝑧 ≤ 0, (12)

𝜕𝜙𝑗𝑅𝑠−𝐶 = −i𝜔𝜉𝑗𝑠 ⋅
𝜕𝛬𝑠 (𝑟, 𝑧)

∞
∑

𝜆𝑚𝑠𝑒
i𝑚𝜃 , 𝑧 = −ℎ, 0 < 𝑟 ≤ 𝑎, (13)
𝜕𝑧 𝜕𝑧 𝑚=−∞
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where

𝑓𝑠 (𝑧) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑠 = 1, 2
0, 𝑠 = 3
− (𝑧 − �̄�) , 𝑠 = 4
(𝑧 − �̄�) , 𝑠 = 5,

(14)

𝛬𝑠 (𝑟, 𝑧) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, 𝑝 = 1, 2
1

2(𝐻−ℎ)

[

(𝑧 +𝐻)2 − 𝑟2

2

]

, 𝑝 = 3
𝑟

2(𝐻−ℎ)

[

(𝑧 +𝐻)2 − 𝑟2

4

]

, 𝑝 = 4

− 𝑟
2(𝐻−ℎ)

[

(𝑧 +𝐻)2 − 𝑟2

4

]

, 𝑝 = 5,

(15)

nd

1𝑠 =

⎧

⎪

⎨

⎪

⎩

1
2 , 𝑠 = 1, 5
0, 𝑠 = 3
1
2i , 𝑠 = 2, 4,

𝜆0𝑠 =

⎧

⎪

⎨

⎪

⎩

0, 𝑠 = 1, 5
1, 𝑠 = 3
0, 𝑠 = 2, 4,

𝜆−1𝑠 =

⎧

⎪

⎨

⎪

⎩

1
2 , 𝑠 = 1, 5
0, 𝑠 = 3
− 1

2i , 𝑠 = 2, 4,

𝜆𝑚𝑠 = 0, 𝑚 ≠ 0, ±1 (16)

At the boundary of the sub-regions, the spatial factors of velocity
otential satisfy the appropriate transmission conditions:
𝑗
𝑅𝑠−𝐸 = 𝜙𝑗𝑅𝑠−𝐶 , 𝑟 = 𝑎, −𝐻 ≤ 𝑧 ≤ −ℎ, (17)

𝜕𝜙𝑗𝑅𝑠−𝐸
𝜕𝑟

=
𝜕𝜙𝑗𝑅𝑠−𝐶
𝜕𝑟

, 𝑟 = 𝑎, −𝐻 ≤ 𝑧 ≤ −ℎ. (18)

According to Eqs. (3)–(18), 𝜙𝑗𝑅𝑠−𝐸 and 𝜙𝑗𝑅𝑠−𝐶 could be obtained,
hich are the basis of solving the hydrodynamic problems of the array
f truncated cylinders.

.2. The solutions for velocity potentials

The radiation velocity potential 𝜙𝑗𝑅𝑠−𝐸 of cylinder 𝑗 in the 𝑠th mode
or the exterior region is
𝑗
𝑅𝑠−𝐸 = −i𝜔0𝜉

𝑗
𝑠 ⋅

(

𝐑𝑗𝑠
)𝑇

⋅ 𝝍𝐷−𝐸
𝑗 , (19)

here
(

𝐑𝑗𝑠
)𝑇

is the radiative characteristic coefficient, which is a row
ector. Each element 𝑅𝑗𝑠 (𝑛, 𝑚) of the vector is as follows:

𝑗
𝑠 (𝑛, 𝑚) =

⎧

⎪

⎨

⎪

⎩

𝐷𝑚0𝑠 cosh(𝑘0𝐻)

𝐻
′(1)
𝑚 (𝑘0𝑎)⋅𝑁1∕2

0

, 𝑛 = 0

𝐷𝑚𝑛𝑠
𝐾′𝑚(𝑘𝑛𝑎)⋅𝑁1∕2

𝑛
, 𝑛 ≥ 1.

(20)

he solution of coefficient 𝐷𝑚𝑛𝑠 could be found at Zeng and Tang
2013), Zeng et al. (2016). 𝐻 (1)

𝑚 = 𝐽𝑚 + i𝑌𝑚 is the first kind of Hankel
unction of order 𝑚. 𝐽𝑚 and 𝑌𝑚 are the first and second kind of Bessel
unction of order 𝑚, respectively. 𝐾𝑚 is the first kind of modified Bessel
unction of order 𝑚. 𝑘0 and 𝑘𝑛 are wavenumbers, which are determined
y the following dispersion relation:

0 tanh(𝑘0𝐻) = 𝜔2∕𝑔, 𝑘𝑛 tan(𝑘𝑛𝐻) = −𝜔2∕𝑔. (21)

xpressions 𝑁0 and 𝑁𝑛 can be written as

0 =
1
2
[1 +

sinh(2𝑘0𝐻)
2𝑘0𝐻

], 𝑁𝑛 =
1
2
[1 +

sin(2𝑘𝑛𝐻)
2𝑘𝑛𝐻

].

Vector 𝝍𝐷−𝐸
𝑗 represents partial diffraction wave in the exterior region.

The expression of its element is as follows:

𝜓𝐷−𝐸
𝑗 (𝑛, 𝑚) =

{

𝑌0(𝑧)𝐻𝑚(𝑘0𝑟𝑗 )𝑒
i𝑚𝜃𝑗 , 𝑛 = 0

𝑌𝑛(𝑧)𝐾𝑚(𝑘𝑛𝑟𝑗 )𝑒
i𝑚𝜃𝑗 , 𝑛 ≥ 1.

(22)

Expression 𝑌𝑛 is a vertical characteristic function, expressed as

𝑌𝑛(𝑧) =

{ cosh[𝑘0(𝑧+𝐻)]
cosh(𝑘0𝐻) , 𝑛 = 0

(23)
4

cos[𝑘𝑛(𝑧 +𝐻)], 𝑛 ≥ 1.
Based on the Bessel addition theorem (Abramowitz and Stegun,
1964), Eq. (19) can be further written as follows:

𝜙𝑗𝑅𝑠−𝐸 = −i𝜔0𝜉
𝑗
𝑠 ⋅

(

𝐑𝑗𝑠
)𝑇

⋅ 𝐓𝑗𝑘 ⋅ 𝝍𝐼
𝑘 , (24)

where 𝐓𝑗𝑘 is the coordinate transformation matrix, expressed as

𝐓𝑗𝑘(𝑛, 𝑚, 𝑙) =
{

𝐻𝑚−𝑙(𝑘0𝑅𝑗𝑘)𝑒
i𝛼𝑗𝑘(𝑚−𝑙), 𝑛 = 0

𝐾𝑚−𝑙(𝑘𝑛𝑅𝑗𝑘)𝑒
i𝛼𝑗𝑘(𝑚−𝑙)(−1)𝑙 , 𝑛 ≥ 1 .

(25)

Vector 𝝍𝐼
𝑘 represents the partial incident wave. The expression of its

lement is as follows:

𝐼
𝑘 (𝑛, 𝑚) =

{

𝑌0(𝑧)𝐽𝑚(𝑘0𝑟𝑘)𝑒i𝑚𝜃𝑘 , 𝑛 = 0
𝑌𝑛(𝑧)𝐼𝑚(𝑘𝑛𝑟𝑘)𝑒i𝑚𝜃𝑘 , 𝑛 ≥ 1.

(26)

The diffraction potential of cylinder 𝑗 as all the other cylinders
scillate in the 𝑠th mode is
𝑗
𝐷𝑠−𝐸 =

(

𝐀𝑗𝑠
)𝑇

⋅ 𝝍𝐷−𝐸
𝑗 =

(

𝐀𝑗𝑠
)𝑇

⋅ 𝐓𝑗𝑘 ⋅ 𝝍𝐼
𝑘 , (27)

here
(

𝐀𝑗𝑠
)𝑇

is a row vector of the unknown coefficient of wave
iffraction, and any element of it is 𝐴𝑗𝑚𝑛𝑠.

Therefore, the total incident potential in the vicinity of cylinder 𝑘 is
he sum of the radiation potentials and the diffraction potentials caused
y the other 𝑁-1 cylinders oscillate in the 𝑠th mode, as follows:

𝐼
𝑅𝑘 =

𝑁
∑

𝑗=1,𝑗≠𝑘

[

−i𝜔𝜉𝑗𝑠 ⋅
(

𝐑𝑗𝑠
)𝑇 +

(

𝐀𝑗𝑠
)𝑇

]

⋅ 𝐓𝑗𝑘 ⋅ 𝝍𝐼
𝑘 . (28)

For cylinder 𝑘 in the 𝑠th mode, the diffraction coefficients 𝐀𝑘𝑠
nd the total incident potential coefficients 𝐀𝑘𝑠 = 𝐁𝑘 ⋅

∑𝑁
𝑗=1,𝑗≠𝑘 𝐓

𝑇
𝑗𝑘 ⋅

−i𝜔0𝜉
𝑗
𝑠 ⋅ 𝐑

𝑗
𝑠 + 𝐀𝑗𝑠

)

can be connected by the diffraction transfer matrix
𝐸
𝑗 , which are given in the Appendix. Therefore, we obtain a system
f linear equations to determine the unknown coefficients 𝐴𝑗𝑚𝑛𝑠:

𝑘
𝑠 = 𝐁𝑘 ⋅

𝑁
∑

𝑗=1,𝑗≠𝑘
𝐓𝑇𝑗𝑘 ⋅

(

−i𝜔0𝜉
𝑗
𝑠 ⋅ 𝐑

𝑗
𝑠 + 𝐀𝑗𝑠

)

. (29)

The Eq. (29) is truncated to an 𝑁𝑛0
(

2𝑚0 + 1
)

-dimensional system of
linear equations, where 𝑛 = 0, 1, 2,… , 𝑛0 − 1, 𝑚 = −𝑚0,… , 𝑚0. In this
ase, if we have the oscillation amplitude 𝜉𝑗𝑠 (𝑠 = 1, 2, 3, 4, 5), we can
btain the diffraction coefficient vector 𝐀𝑗𝑠 of the array for the exterior
egion. Then, the total radiation velocity potential in the vicinity of
ylinder 𝑗 in the 𝑠th mode for the exterior region can be written as
𝑗𝑠
𝑅𝐷−𝐸 =

[

−i𝜔𝜉𝑗𝑠 ⋅
(

𝐑𝑗𝑠
)𝑇 +

(

𝐀𝑗𝑠
)𝑇

]

⋅ 𝝍𝐷−𝐸
𝑗

+
𝑁
∑

𝑖=1,𝑖≠𝑗

[

−i𝜔𝜉𝑖𝑠 ⋅
(

𝐑𝑖𝑠
)𝑇 +

(

𝐀𝑖𝑠
)𝑇

]

⋅ 𝐓𝑖𝑗 ⋅ 𝝍𝐼
𝑗 . (30)

In all modes, the total radiation velocity potential in the vicinity of
ylinder 𝑗 can be written as

𝑗
𝑅𝐷−𝐸 =

5
∑

𝑠=1
𝜙𝑗𝑠𝑅𝐷−𝐸 . (31)

Similarly, the total radiation velocity potential in the vicinity of
ylinder 𝑗 can be written as

𝑗
𝑅𝐷−𝐶 =

5
∑

𝑠=1

{

−i𝜔𝜉𝑗𝑠 ⋅ 𝜑
𝑗
𝑅𝑠−𝐶

+
𝑁
∑

𝑖=1,𝑖≠𝑗

[

−i𝜔𝜉𝑖𝑠 ⋅
(

𝐑𝑖𝑠
)𝑇 +

(

𝐀𝑖𝑠
)𝑇

]

⋅ 𝐓𝑖𝑗 ⋅
(

𝐁𝐶𝑗
)𝑇

⋅ 𝝍𝐷−𝐶
𝑗

}

, (32)

here 𝜑𝑗𝑅𝑠−𝐶 is the radiation potential of cylinder 𝑗 in the core region,
𝐶
𝑗 is the transfer matrix of cylinder 𝑗 in the core region. See Appendix

or details. The vector 𝝍𝐷−𝐶
𝑗 is the partial-wave functions in the core

egion, and its elements are expressed as

𝐷−𝐶
𝑗 (𝑛, 𝑚) =

⎧

⎪

⎨

⎪

𝑟|𝑚|𝑗 𝑒i𝑚𝜃𝑗 , 𝑛 = 0

𝐼𝑚
( 𝑛𝜋𝑟𝑗
𝐻−ℎ

)

𝑒i𝑚𝜃𝑗 , 𝑛 ≥ 1.
(33)
⎩
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2.3. The hydrodynamic forces and moments

The dynamic pressure of fluid can be expressed as follows:

𝑃
(

𝑟𝑗 , 𝜃𝑗 , 𝑧, 𝑡
)

= Re
[

𝑝
(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

⋅ 𝑒−i𝜔𝑡
]

. (34)

where 𝑝
(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

is the spatial factor of dynamic pressure, which can
be written as follows in the framework of linear water wave theory:

𝑝
(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

= i𝜌𝜔 ⋅ 𝜙𝑗𝑅𝐷(𝑟𝑗 , 𝜃𝑗 , 𝑧), (35)

where 𝜌 is the density of the fluid, 𝜙𝑗𝑅𝐷(𝑟𝑗 , 𝜃𝑗 , 𝑧) is the total radiation
potential in the core (or the exterior) region.

The hydrodynamic forces and moments of cylinder 𝑗 in the 𝑠th mode
can be expressed as
{

𝐹 𝑗𝑠 = ∬𝑆 𝑝(𝑟𝑗 , 𝜃𝑗 , 𝑧) ⋅ �̃�𝑠𝑑𝑆, 𝑠 = 1, 2, 3
𝑀 𝑗

𝑠 = ∬𝑆 𝑝(𝑟𝑗 , 𝜃𝑗 , 𝑧) ⋅ �̃�𝑠𝑑𝑆, 𝑠 = 4, 5
, (36)

where �̃�𝑠 is the generalized normal vector shown in Eq. (8). The
relationship between the added mass 𝜇𝑠1𝑠2

(

𝑠1, 𝑠2 = 1, 2, 3, 4, 5
)

and
the damping coefficient 𝜆𝑠1𝑠2

(

𝑠1, 𝑠2 = 1, 2, 3, 4, 5
)

is as follows:

𝜌∬𝑆
𝜙𝑗𝑠2𝑅𝐷

(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

⋅ �̃�𝑠1d𝑆 = 𝜇𝑠1𝑠2 +
i𝜆𝑠1𝑠2
𝜔

. (37)

Where, The added mass 𝜇𝑠1𝑠2 and damping coefficient 𝜆𝑠1𝑠2 are non-
dimensionalized by 𝜌𝜋𝑎2ℎ and 𝜌𝜋𝑎2ℎ𝜔, respectively. Then, the added
mass 𝜇𝑠1𝑠2 and the damping coefficient 𝜆𝑠1𝑠2 are expressed as follows:

⎧

⎪

⎨

⎪

⎩

𝜇𝑠1𝑠2 = Re
[

𝜌∬𝑆 𝜙
𝑗𝑠2
𝑅𝐷

(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

⋅ �̃�𝑠1d𝑆
]

𝜆𝑠1𝑠2 = 𝜔 Im
[

𝜌∬𝑆 𝜙
𝑗𝑠2
𝑅𝐷

(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

⋅ �̃�𝑠1d𝑆
] , (38)

where 𝜇𝑠1𝑠2 and 𝜆𝑠1𝑠2 represent the added mass and the damping coef-
ficient in the 𝑠1 direction of radiation velocity potential 𝜙𝑗𝑠2𝑅𝐷

(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

due to oscillation in the 𝑠2th mode.

3. Approximate analytical solutions ignoring evanescent mode

By studying the interaction between floating cylinders and wave
field, the hydrodynamic characteristics of each floating cylinder can be
obtained, which is a theoretical foundation for the structural design,
strength check and fatigue analysis of the floating structures. The key
to evaluate the hydrodynamic characteristics of floating cylinders is
to accurately calculate the interaction between them. The interaction
between cylinders mainly includes two aspects: propagating mode and
evanescent mode. When (Kagemoto and Yue, 1986)’s exact algebraic
method is used to solve the hydrodynamic problems of floating cylin-
ders, the existence of evanescent mode greatly increases the difficulty
of solving. It is found that the influence of evanescent mode between
cylinders on hydrodynamic characteristics can be ignored in some
cases. Previous studies mainly focused on the case that the number
of cylinders is small and the spacing between adjacent cylinders is
large, but there is no research on the effect of evanescent mode in the
case of small cylinder spacing. This paper focuses on the influence of
evanescent mode of truncated cylinders array with small spacing on the
hydrodynamic coefficients.

For Eqs. (24), (27), (28), (29), (30) and (32), 𝑛 = 0 in the coordi-
nate transformation matrix 𝐓𝑗𝑘 represents the propagating mode, and
𝑛 ⩾ 1 represents the evanescent modes. In some case, the coordinate
transformation matrix 𝐓𝑗𝑘 can be reduced to the following by using
the approximation method which ignores the influence of evanescent
mode:

𝑇𝑗𝑘(𝑛, 𝑚, 𝑙) =

{

𝐻𝑚−𝑙(𝑘0𝑅𝑗𝑘)𝑒
i𝛼𝑗𝑘(𝑚−𝑙), 𝑛 = 0

0, 𝑛 ⩾ 1 .
(39)

In this case, the dimension of matrix calculation will be reduced
from 𝑁𝑛0

(

2𝑚0 + 1
)

to 𝑁
(

2𝑚0 + 1
)

, which reduces the memory and
time required for program calculation.
5

Fig. 2. Geometric configuration of the array with five truncated cylinders.

3.1. Effect of evanescent mode between cylinders on hydrodynamic coeffi-
cients

Here, an array of truncated cylinders as shown in Fig. 2 was inves-
tigated to study the effect of the evanescent mode between cylinders
on hydrodynamic coefficients. The black solid circle and the hollow
circle denote oscillating and fixed cylinders, respectively. The cylinder
spacing is 𝑅. The ratio of the water depth and draft to the radius of the
cylinder is 𝐻∕𝑎 = 20, and ℎ∕𝑎 = 10, respectively. The ratio of cylinder
spacing is taken as 𝑅∕𝑎 = 2.4, 3.0, and 5.0.

𝜇
𝑠𝑖𝑠𝑗
𝑖𝑗

(

𝜆
𝑠𝑖𝑠𝑗
𝑖𝑗

)

denote the added mass (damping) coefficient of cylinder
𝑖 in the 𝑠𝑖 direction due the oscillation of cylinder 𝑗 in the 𝑠𝑗 direction,
where 𝑠𝑖 = 1, 2, 3, 4, 5. Kagemoto and Yue (1986)’s exact algebraic
method and formula (39) without considering evanescent mode are
applied respectively. Given the oscillation of cylinder 1, the added
mass and damping coefficient of cylinder 1 and 4 under three kinds
of cylinder spacing-radius ratios were investigated.

Fig. 3 shows the added mass and damping coefficient of cylinder 1
and 4 as cylinder 1 oscillates in sway mode with prescribed unit ampli-
tude. The added mass and damping coefficient are non-dimensionalized
by 𝜌𝜋𝑎2ℎ and 𝜌𝜋𝑎2ℎ𝜔, respectively. Fig. 4 shows the added mass and
damping coefficient of the cylinder 1 and 4 as cylinder 1 oscillates
in heave mode with prescribed unit amplitude. It can be seen from
Fig. 3(𝑎), (𝑏) and Fig. 4(𝑎), (𝑏) that the evanescent mode has a great
influence on the added mass, which cannot be ignored.

It can be found from Figs. 3(𝑎) and 4(𝑎) that the added mass which
ignores the evanescent mode between cylinders tends to be a constant
with the increase of dimensionless wavenumber. It can be concluded
from the later discussion that this constant is actually the added mass
caused by the radiation motion of a single cylinder. It can be found from
Figs. 3(𝑏) and 4(𝑏) that the added mass, which ignores the evanescent
mode, tends to zero with the increase of dimensionless wavenumber.
This shows that the added mass of the fixed cylinder is almost caused by
the evanescent mode between the cylinders. A good agreement between
results of the exact algebraic method and the results of this paper
which ignore the evanescent mode is observed from the comparison
in Fig. 3(𝑐), (𝑑) and Fig. 4(𝑐), (𝑑). It can be concluded the damping
coefficient is only affected by the propagating mode. In addition, when
the wavenumber increases gradually, the damping coefficient caused
by the propagating mode tends to zero.

According to the above analysis and numerical test results, even
if the cylinder spacing is very small, the evanescent modes between
cylinders have little effect on the damping coefficient, but have a great
influence on the added mass. Therefore, the effect of evanescent mode
can be ignored in the study of damping coefficient.

Next, we focus on the characteristics of the added mass in order to
get a simplified and fast calculation method. Fig. 5(𝑎) and (𝑏) show the
added mass caused by the evanescent mode under the corresponding
conditions of Figs. 3 and 4, respectively. Obviously, with the increase of
dimensionless wavenumber, the added mass caused by the evanescent
mode tends to be constant. This phenomenon is not accidental and has
been confirmed by a large number of numerical experiments on other
arrangements and cylinder numbers. This property is the basis of the
simplified formula for calculating the added mass.
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Fig. 3. Hydrodynamic coefficients of cylinder 1 and 4 as cylinder 1 oscillates in sway mode with prescribed unit amplitude. (𝑎) cylinder 1: added mass. (𝑏) cylinder 4: added
mass. (𝑐) cylinder 1: damping coefficient. (𝑑) cylinder 4: damping coefficient.

Fig. 4. Hydrodynamic coefficients of cylinder 1 and 4 as cylinder 1 oscillates in heave mode with prescribed unit amplitude. (𝑎) cylinder 1: added mass. (𝑏) cylinder 4: added
mass. (𝑐) cylinder 1: damping coefficient. (𝑑) cylinder 4: damping coefficient.
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Fig. 5. The added mass of cylinder 1 and 4 caused by evanescent mode as cylinder 1 oscillates in sway mode (𝑎) and heave mode (𝑏) with prescribed unit amplitude.
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.2. Mechanism analysis of effect of evanescent mode between cylinders on
ydrodynamic coefficients

In order to analyze the influence mechanism of evanescent mode
etween cylinders on hydrodynamic coefficients, the simplest truncated
wo-cylinders model is discussed in this paper. Both cylinders are
ocated on the 𝑥-axis. Cylinder 1 oscillates in any mode with prescribed
nit amplitude and cylinder 2 is fixed. The heave hydrodynamic coef-
icients 𝜇3311

(

𝜆3311
)

of cylinder 1 caused by the heave motion with unit
mplitude of itself are analyzed theoretically. In this case, the total
adiation potential which causes the vertical hydrodynamic coefficient
s determined by Eq. (32). Therefore, in the above example, the total
adiation velocity potential in the vicinity of cylinder 1 for the core
egion is reduced from Eq. (32) to
1
𝑅𝐷−𝐶 = −i𝜔𝜑1

𝑅3−𝐶 +
(

𝐀2
3
)𝑇

⋅ 𝐓21 ⋅
(

𝐁𝐶1
)𝑇

⋅ 𝝍𝐷−𝐶
1 , (40)

here 𝜑1
𝑅3−𝐶 represents the radiation potential radiated by cylinder

for the core region, see Appendix. In Eq. (40), the first term
epresents the radiation velocity potential in the core region of cylinder

without considering the interaction between cylinders. The second
erm represents the velocity potential in the core region of cylinder

caused by the diffraction of cylinder 2, which includes two parts:
ropagating mode velocity potential and evanescent mode velocity
otential. In Eq. (40), there is no radiation velocity potential of cylinder
because cylinder 2 is fixed and the oscillation amplitude is zero.

In this section, the total added mass (damping) coefficient (includ-
ng evanescent mode) of cylinder 1 determined by Eq. (40), the added
ass (damping) coefficient of isolated cylinder determined by the first

erm of Eq. (40), the added mass (damping) coefficient caused by
he diffraction of cylinder 2, the added mass (damping) coefficient
aused by propagating mode and evanescent mode of the diffraction of
ylinder 2, are studied. The geometric dimensions of the two-cylinders
odel are ℎ = 0.4𝐻 and 𝑅 = 2.4𝑎. Fig. 6(𝑎) shows the total added mass

f cylinder 1 due to the oscillation of cylinder 1 in heave mode with
rescribed unit amplitude. By contrast, Fig. 6(𝑎) also shows the added
ass in the case of cylinder 1 as an isolated cylinder. It can be seen that
ith the increase of dimensionless wavenumber, the curves gradually

end to a constant, corresponding to two asymptotes with values of
.1585 and 0.1565 respectively. Fig. 6(𝑏) shows the added mass of the
eave of cylinder 1 caused by the diffraction effect of cylinder 2, and
y the propagation (evanescent) diffraction effect of cylinder 2. It can
e seen that when the dimensionless wavenumber is small, both the
ropagation and evanescent diffraction effect have a great influence on
he heave added mass of cylinder 1.

With the increase of dimensionless wavenumber, the contribution
f the propagating mode to the added mass becomes zero. The heave
dded mass of cylinder 1 caused by the diffraction effect of cylinder 2
7

s completely determined by the evanescent mode components. It can m
e seen that with the increase of dimensionless wavenumber, the added
eave mass of cylinder 1 caused by the propagation diffraction effect
f cylinder 2 tends to an asymptote with a value of 0, while that caused
y the evanescent diffraction effect of cylinder 2 tends to an asymptote
ith the value of 0.00162. It can be seen from Fig. 6(𝑎) and (𝑏) that

he heave added mass of cylinder 1 is mainly caused by its own heave
otion, and the diffraction effect of cylinder 2 has little effect on this

alue. This is because there are only two cylinders. If the number of
ylinders increases, the added mass caused by diffraction effect will be
ore significant. Similarly, corresponding to Fig. 6(𝑎) and (𝑏), Fig. 6(𝑐)

nd (𝑑) are the cases of damping coefficient. It can be seen from
ig. 6(𝑐) that the total damping coefficient of cylinder 1 caused by the
scillation of cylinder 1 in heave mode with prescribed unit amplitude
s almost identical with the added mass coefficient of cylinder 1 as an
solated cylinder. With the increase of the dimensionless wavenumber,
he two curves rapidly decay and tend to zero. This means that the
amping coefficient is almost all caused by the radiation effect of an
solated cylinder, and the influence of the diffraction effect of other
ylinders on the damping coefficient is almost negligible. Fig. 6(𝑑)
onfirms this conclusion.

Based on the theoretical analysis of the simplified model and the
umerical experiments mentioned above, some preliminary conclusions
an be obtained. The radiation effect of the isolated cylinder is the main
actor for the added mass and damping coefficient. The added mass
s sensitive to the existence of evanescent mode between cylinders,
hile the damping coefficient is not affected by the evanescent mode.
he results show that the propagating mode has a significant effect on
ydrodynamic coefficients only when the dimensionless wavenumber
s small. With the increase of dimensionless wavenumber, the hydro-
ynamic coefficient caused by propagating mode tends to zero. The
amping coefficient is only affected by the propagating mode in the
adiation velocity potential, and is not sensitive to the evanescent mode
etween cylinders. The effect of evanescent mode on the added mass
s great and cannot be ignored. When the dimensionless wavenumber
s large, the added mass caused by the evanescent mode is constant,
hich is the basis of further analysis.

According to Eq. (29), the partial wave of the propagating mode
nd the partial wave of the evanescent mode are not independent, and
he existence of the evanescent mode between cylinders will affect the
dded mass caused by the propagating mode. Therefore, it is necessary
o study the influence of evanescent mode on propagating mode. Here,
̃2 denotes the heave added mass of cylinder 1 caused by the diffraction
artial wave of the evanescent mode of cylinder 2 when considering
he evanescent mode between cylinders. �̃�1 refers to the heave added
ass of the cylinder 1 caused by the diffraction partial wave of the
ropagating mode of cylinder 2 when the evanescent mode is ignored.
herefore, �̃�0 − �̃�1 means the influence of the existence of evanescent

33
ode on the propagating mode. �̄�11 is used to represent the heave
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Fig. 6. Comparisons of hydrodynamic coefficients caused by different effect when the geometric dimensions are ℎ = 0.4𝐻 and 𝑅 = 2.4𝑎. (𝑎) - (𝑏): Added mass. (𝑐) - (𝑑): Damping
coefficients.
o

Fig. 7. Effect of evanescent mode between cylinders on added mass caused by the
ropagating mode.

dded mass of cylinder 1 caused by the heave motion of cylinder 1
hen the evanescent mode between cylinders is ignored.

As shown in Fig. 7, when the dimensionless wavenumber is more
han 0.6, the curve of

(

�̃�0 − �̃�1
)

∕�̄�3311 × 100% is constant to zero, and
hen the dimensionless wavenumber is less than 0.6, the influence
rder of magnitude is very small. This means that the existence of
vanescent mode has little effect on the propagating mode. However,
urve �̃�2∕�̄�3311 × 100% is constant at 100% with the increase of dimen-
ionless wavenumber. Combined with the previous analysis, when the
avenumber is large, the effect of the evanescent mode between cylin-
ers on the added mass cannot be ignored. When the wavenumber is
mall, the added mass will be influenced by the propagating mode and
he propagating mode change caused by the evanescent mode between
he cylinders, but the influence will disappear when the wavenumber
s large.
8

In the above analysis, the second term (diffraction partial item)
in Eq. (32) is mainly discussed, excluding the amplitude term. The
radiation partial item with amplitude also satisfies the conclusion,
because they have the same form of propagating mode and evanescent
mode as the second term of Eq. (32).

3.3. A fast formula for calculating the heave added mass caused by evanes-
cent mode of two-cylinders

The results of the previous analysis and numerical experiments show
that the evanescent mode between cylinders have great influence on
the added mass, while the propagating mode between cylinders have
little effect on the added mass (the effect is obvious only in the range
of small wavenumber). Especially, for the heave motion mode, the
effect of the propagating mode on the added mass has disappeared
when the dimensionless wavenumber is greater than 0.4, and the added
mass caused by the evanescent mode between cylinders tends to be a
constant with the increase of the dimensionless wavenumber. Here, the
truncated two-cylinders model in Section 3.2 is still discussed. Based on
the theoretical analysis and the simplified numerical fitting method, a
fast formula for calculating the added mass of the oscillating cylinder
(cylinder 1) caused by evanescent mode between cylinders is given.

For the purpose of obtaining the variation law of �̃�2, a large number
f results of various parameters such as draft-depth ratio ℎ∕𝐻 , cylinder

spacing-radius ratio 𝑅∕𝑎, depth-radius ratio 𝐻∕𝑎 and dimensionless
wavenumber 𝑘0𝑎 are calculated. Some meaningful conclusions are ob-
tained. As a typical example, this section only gives the results of 𝐻∕𝑎 =
10, other results are similar. Note that �̃�2 is non-dimensionalized by
the heave added mass of the isolated cylinder with the same geometric
configuration.

Fig. 8(𝑎) shows the curve of the heave added mass (caused by the
evanescent mode between cylinders) of the oscillating cylinder (cylin-
der 1) versus as the geometric parameters are ℎ∕𝐻 = 0.4 and 𝐻∕𝑎 = 10.
It can be seen from Fig. 8(𝑎) that with the increase of dimensionless
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wavenumber, the added mass caused by evanescent mode between
cylinders gradually increases, but the increasing rate slows down, and
all the curves tend to coincide. This means that when the wavenumber
𝑘0𝑎 increases to a certain critical value 𝑘𝑐𝑟, the added mass generated
by the evanescent mode between cylinders will not increase with the
increase of wavenumber, but will be a constant value.

Fig. 8(𝑏) shows the curve of the heave added mass (caused by the
evanescent mode between cylinders) of the oscillating cylinder (cylin-
der 1) versus dimensionless wavenumber as the geometric parameters
are ℎ∕𝐻 = 0.4 and 𝐻∕𝑎 = 10. It can be seen from Fig. 8(𝑏) that the
larger the draft-depth ratio ℎ∕𝐻 , the smaller the critical wavenumber
𝑘𝑐𝑟. As can be seen from Fig. 8(𝑏), when ℎ∕𝐻 = 0.2, 0.4, 0.6, 0.8, the
value of 𝑘𝑐𝑟 are 1.1, 0.6, 0.48 and 0.3 respectively. This means that
the larger the draft, the larger the range of dimensionless wavenumber
with constant heave added mass. In addition, it can be seen from 8(𝑎)
that the added mass due to the evanescent mode between cylinders
rapidly decreases with the increase of cylinder spacing. Especially
for the curve with dimensionless wavenumber greater than critical
wavenumber, it has the form of exponential decay, which provides the
analysis direction for the analysis of attenuation mode.

According to Eq. (29), the diffraction coefficient obtained by sub-
stituting Eq. (39) into Eq. (29) is the diffraction coefficient that ig-
nores the evanescent mode between cylinders, and its elements are
represented by symbols �̄�𝑗𝑚𝑛𝑠. The diffraction coefficient obtained by
substituting Eq. (25) into Eq. (29) is the diffraction coefficient that
considers the evanescent mode between cylinders, and its elements are
represented by symbols 𝐴𝑗𝑚𝑛𝑠. According to Eq. (32), for the truncated
two-cylinders discussed in this section, when cylinder 1 oscillates in the
heave mode with unit amplitude, the velocity potential �̃�1

𝑅𝐷−𝐶 in the
ore region of cylinder 1 caused by the evanescent mode of cylinder 2
s expressed as

̃1
𝑅𝐷−𝐶 =

∞
∑

𝑚=−∞

∞
∑

𝑛=0

∞
∑

𝑙=−∞

(

𝐴2
𝑙03 − �̄�

2
𝑙03

)

𝐻 (1)
𝑙−𝑚

(

𝑘0𝑅
)

𝐵𝐶2 (𝑛, 0, 𝑚)𝜓𝐷−𝐶
2 (𝑛, 𝑚)

+
∞
∑

𝑝=1

∞
∑

𝑚=−∞

∞
∑

𝑛=0

∞
∑

𝑙=−∞
𝐴2
𝑙𝑝3𝐾𝑙−𝑚

(

𝑘𝑝𝑅
)

𝐵𝐶2 (𝑛, 𝑝, 𝑚)𝜓𝐷−𝐶
2 (𝑛, 𝑚)

.

(41)

Here, 𝑅 is the cylinder spacing. The first term in Eq. (41) represents
the effect of the existence of evanescent mode between cylinders on the
propagating mode. It is a component of the velocity potential described
in Section 3.2, which is a small quantity and can be ignored. Therefore,
Eq. (41) can be further simplified as

�̃�1
𝑅𝐷−𝐶 ≈

∞
∑

𝑝=1

∞
∑

𝑚=−∞

∞
∑

𝑛=0

∞
∑

𝑙=−∞
𝐴2
𝑙𝑝3𝐾𝑙−𝑚

(

𝑘𝑝𝑅
)

𝐵𝐶2 (𝑛, 𝑝, 𝑚)𝜓𝐷−𝐶
2 (𝑛, 𝑚). (42)

The unknown coefficient 𝐴2
𝑙𝑝3 is the solution of the system of linear

qs. (29). The diagonal elements of the coefficient matrix of the system
9

t

of linear Eqs. (29) are 1. The elements of the off-diagonal and the right
column vector are both small quantities. Assuming that the elements of
the off-diagonal and the right column vector in the coefficient matrix
are first-order small quantities, Eq. (29) is expanded by applying cram’s
rule, and the second-order small quantities are retained:

𝐴2
𝑙𝑝3 =

−i𝜔𝐵𝐶2 (𝑝, 0, 𝑙)𝐻−𝑙
(

𝑘0𝑅
)

𝑅2
3 (0, 0)

1 −
∑∞
𝑙=−∞

∑∞
𝑚=−∞ 𝐵𝐶1 (0, 0, 𝑙)𝐻𝑚−𝑙

(

𝑘0𝑅
)

𝐵𝐶2 (0, 0, 𝑚)𝐻𝑙−𝑚
(

𝑘0𝑅
)

+ 𝑂
(

𝜀3
)

, (43)

here 𝑅2
3 (0, 0) is the radiation characteristic coefficient determined

y Eq. (20). By substituting Eq. (43) into Eq. (42), and substituting
he asymptotic expression of the first kind of Hankel function and the
econd kind of modified Bessel function into Eq. (42) when 𝑘0𝑅 → ∞,
t can be found that the two functions 𝑒−𝑘𝑛𝑅 and 1∕𝑅 related to the
ylinder spacing have the same form as the velocity potential �̃�1

𝑅𝐷−𝐶 .
herefore, the heave added mass of cylinder 1 generated by the velocity
otential should have the following form:

�̃�2
𝜇

= 1

𝑐 (ℎ∕𝐻,𝐻∕𝑎) ⋅
(

𝑅
𝑎

)𝑚(ℎ∕𝐻,𝐻∕𝑎)

∞
∑

𝑛=1
𝑒−𝑘𝑛𝑅, (44)

here 𝑚 and 𝑐 are the functions of draft-depth ratio ℎ∕𝐻 and depth-
adius ratio 𝐻∕𝑎, respectively. Function 𝑚 controls the change rate of
�̃�2 with cylinder spacing, and function 𝑐 controls the amplitude of �̃�2.

hrough a large number of numerical experimental data, the function
is fitted by a bivariate quartic polynomial. The fitting expression of

he function is as follows:

(ℎ∕𝐻,𝐻∕𝑎) = 9.14 − 0.249𝐻
𝑎

− 28.08 ℎ
𝐻

+ 0.12
(𝐻
𝑎

)( ℎ
𝐻

)

+6.77 × 10−3
(𝐻
𝑎

)2

+56.0
( ℎ
𝐻

)2
− 1.59 × 10−4

(𝐻
𝑎

)3
+ 5.35 × 10−3

(𝐻
𝑎

)2 ( ℎ
𝐻

)

+0.143
(𝐻
𝑎

)( ℎ
𝐻

)2

−59.9
( ℎ
𝐻

)3
+ 1.85 × 10−6

(𝐻
𝑎

)4
− 0.297

(𝐻
𝑎

)( ℎ
𝐻

)3

+1.67 × 10−3
(𝐻
𝑎

)2( ℎ
𝐻

)2

−1.22 × 10−4
(𝐻
𝑎

)3 ( ℎ
𝐻

)

+ 26.6
( ℎ
𝐻

)4

. (45)

Once the expression of function 𝑚 is obtained, the value of function
𝑐 can be obtained. The fitting accuracy of function 𝑐 depends on
unction 𝑚, the query table of function 𝑐 under various conditions is
hown in the Appendix.

Fig. 9 shows the comparison between the theoretical value of the
eave added mass �̃�2∕𝜇 of cylinder 1 caused by the diffraction par-
ial wave of the evanescent mode of cylinder 2 and the calculation
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Fig. 9. Comparisons of the theoretical value of the heave added mass �̃�2∕𝜇 and calculation value of Eq. (44).
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value of the fast calculation formula of Eq. (44) when considering the
evanescent mode. The abscissa of the curve is the cylinder spacing-
radius ratio 𝑅∕𝑎, the curve in the figure is the theoretical calculation
value, and the scatter point is the calculation value of formula (44).
Fig. 9(𝑎) shows the case of depth-radius ratio 𝐻∕𝑎 = 6 and draft-depth
ratio ℎ∕𝐻 = 0.2, 0.4, 0.6, 0.8; Fig. 9(𝑏) shows the case of depth-radius
ratio 𝐻∕𝑎 = 12 and draft-depth ratio ℎ∕𝐻 = 0.1, 0.3, 0.5, 0.7. It can
be seen that Eq. (44) can accurately predict the added mass of the
oscillating cylinder caused by the evanescent mode of the truncated
two-cylinders model mentioned above, which provides a basis for pre-
dicting the hydrodynamic coefficients of the array with a large number
of cylinders.

4. Approximate calculation formula of the hydrodynamic coeffi-
cients of the array with a large number of cylinders

The added mass of the oscillating cylinder (cylinder 1) caused by the
evanescent mode in the two-cylinders model is given in Section 3.3,
which can be used to simplify the calculation of the hydrodynamic
coefficients of the array with a large number of cylinders. However,
the support cylinder array of the offshore structure is mainly arranged
in a single row, two rows, 2 × 2, rectangle, and so on. In this section,
the fast calculation formula of the truncated two-cylinders model has
modified appropriately and applied to an rectangular array with a large
number of truncated cylinders. In order to illustrate the problem, this
section takes the depth-radius ratio 𝐻∕𝑎 = 10 as an example and gives
a fast formula for calculating the added mass caused by the evanescent
mode between cylinders when a cylinder oscillates. The arrangement
of the rectangular array is shown in Fig. 10(𝑎).

According to the different positions of the oscillating cylinder,
rectangular arrays are divided into three types. Case 𝐴: the oscillating
cylinder is located inside the rectangular array, as shown in Fig. 10(𝑏).
The black cylinder in Fig. 10(𝑎) is such an oscillating cylinder. Case
𝐵: the oscillating cylinder is located on the edge of the rectangular
array, as shown in Fig. 10(𝑐). The white cylinder in Fig. 10(𝑎) is such
an oscillating cylinder. Case 𝐶: the oscillating column is located at
the four corners of the rectangular array, as shown in Fig. 10(𝑑). The
gray cylinder in Fig. 10(𝑎) is such an oscillating cylinder. It should be
noted that the black cylinder in Fig. 10(𝑏, 𝑐, 𝑑) represents the oscillating
cylinder, and the form of Fig. 10(𝑏, 𝑐, 𝑑) is the three most simplified
forms of the rectangular array, similar to the ‘‘cell’’ of the rectangular
array.

If we take the depth-radius ratio 𝐻∕𝑎 = 10 as an example, then 𝑚
and 𝑐 in formula (45) can be simplified as follows:
{

𝑚 = 1.31 + 5.66 × 0.019ℎ∕𝑑

𝑐 = 4.73 − 48.93 ℎ + 264.0
(

ℎ
)2

− 215.0
(

ℎ
)3 . (46)
10

𝑑 𝑑 𝑑
Fig. 10. Sketch of a rectangular array of truncated cylinders.

4.1. Effect of evanescent mode between cylinders on the added mass of the
oscillating cylinder in the array of case 𝐴

Fig. 11 shows the heave added mass of oscillating cylinder caused by
evanescent mode between cylinders in array of case 𝐴. The oscillating
cylinder is located in the center of the array, and it heaves with unit
amplitude. The geometric parameters of the model are 𝑅 = 2.4𝑎 and
ℎ∕𝐻 = 0.4. The array arrangement is as follow: 3 × 3, 5 × 5, 7 × 7, 9 × 9.

In Fig. 11, the vertical coordinate is the percentage of the additional
ass difference of the central oscillation cylinder to the result of the

solated single oscillation cylinder when considering and ignoring the
vanescent mode between cylinders modes. With the increase of the
umber of cylinders surrounding the oscillating cylinder, the added
ass caused by the evanescent mode between cylinders increases grad-
ally, but the increase range is smaller and smaller. In particular, the
alculated results of 7 × 7 and 9 × 9 arrangement almost coincide.

Therefore, for the array of case 𝐴, only the inner three-layers cylinder
surrounding the oscillating cylinders has an effect on the added mass of
the oscillating cylinder, and the influence of other peripheral cylinders
can be ignored.

The influence of the evanescent mode between cylinders in the
array of case 𝐴 mainly comes from the innermost cylinder. Therefore,
this section focus on the simplest 3 × 3 rectangular array model. The
distance between the innermost cylinder and the central oscillating

√

2𝑅. In these two cases, the effect of evanescent mode
cylinder is 𝑅 or
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Fig. 11. Effect of evanescent mode between cylinders on added mass of oscillating
cylinder with different array arrangement: 3 × 3, 5 × 5, 7 × 7, 9 × 9.

n the added mass of the central oscillating cylinder can be compared
ith the truncated two-cylinders model in Section 3. The added mass of

he central oscillating cylinder caused by the evanescent mode between
ylinders of the whole array can be expressed as follows:

�̃�2
𝜇

= 4

⎛

⎜

⎜

⎜

⎝

𝐶1

𝑐 (ℎ∕𝑑) ⋅
(

𝑅
𝑎

)𝑚(ℎ∕𝑑)

∞
∑

𝑛=1
e−𝑘𝑛𝑅

+
𝐶2

𝑐 (ℎ∕𝑑) ⋅
(

√

2𝑅
𝑎

)𝑚(ℎ∕𝑑)

∞
∑

𝑛=1
e−𝑘𝑛

√

2𝑅

⎞

⎟

⎟

⎟

⎟

⎠

+ 𝐶3. (47)

Here, function 𝑚 and 𝑐 refer to formula (46). 𝐶1 and 𝐶2 are the
correction coefficient for the cylinder whose distance from the central
oscillating cylinder are 𝑅 and

√

2𝑅, respectively. They reflect the
nfluence of array arrangement. 𝐶3 reflects the influence of the outer

cylinder, which is small.
A large number of numerical tests give the spectra of 𝐶1, 𝐶2 and 𝐶3,

s shown in Fig. 12. In practical engineering calculation, the value of
orrelation coefficient can be obtained through this graph. Fig. 11(𝑎, 𝑏)
hows the correction coefficient map of the simplest 3 × 3 rectangular
rray. Since only the innermost cylinder exists, 𝐶3 is zero. Fig. 11(𝑐, 𝑑, 𝑒)
nd Fig. 11(𝑓, 𝑔, ℎ) show the correction coefficient map of 5 × 5 and
× 7 rectangular array, respectively. When the row number 𝑀 and

olumn number 𝑁 are greater than 7 (such as 8 × 8, 9 × 9, etc.), the
orrection coefficient of 7 × 7 arrangement can be directly adopted.

.2. Effect of evanescent mode between cylinders on the added mass of
scillating cylinder in the array of case 𝐵

The simplified model of case 𝐵 is 2 × 3 rectangular array, as
hown in Fig. 10(𝑐). Similar to the method in Section 4.1, based on the
ost simplified 2 × 3 rectangular array, the fast calculation formula

s given. The influence of other cylinders is reflected in the correction
oefficient.

As shown in Fig. 10(𝑐), the black oscillating cylinder is in heave
otion of unit amplitude, and the other cylinders are fixed. The added
ass �̃�2 of the oscillating cylinder caused by the evanescent mode

etween cylinders in the array of case 𝐵 can be expressed as follows:

�̃�2
𝜇

= 2

⎛

⎜

⎜

⎜

𝐷1

𝑐 (ℎ∕𝑑) ⋅
(

𝑅
)𝑚(ℎ∕𝑑)

∞
∑

𝑛=1
e−𝑘𝑛𝑅
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⎝ 𝑎 c
+
𝐷2

𝑐 (ℎ∕𝑑) ⋅
(

√

2𝑅
𝑎

)𝑚(ℎ∕𝑑)

∞
∑

𝑛=1
e−𝑘𝑛

√

2𝑅

⎞

⎟

⎟

⎟

⎟

⎠

+
𝐷3

𝑐 (ℎ∕𝑑) ⋅
(

𝑅
𝑎

)𝑚(ℎ∕𝑑)

∞
∑

𝑛=1
e−𝑘𝑛𝑅 +𝐷4. (48)

Here, function 𝑚 and 𝑐 refer to formula (46). 𝐷1, 𝐷2 and 𝐷3
reflect the influence of array arrangement. 𝐷4 reflects the effect of
all cylinders except the innermost layer, which is small. 𝐷1 is the
correction coefficient corresponding to the left and right cylinders of
the oscillating column in Fig. 10(𝑐). 𝐷2 is the correction coefficient
for the cylinder whose distance from the central oscillating cylinder
is

√

2𝑅. 𝐷3 is the correction coefficient corresponding to the cylinder
above the oscillating cylinder in Fig. 10(𝑐).

A large number of numerical tests give the spectra of 𝐷1, 𝐷2, 𝐷3
and 𝐷4, as shown in Fig. 13. In practical engineering calculation, the
value of correlation coefficient can be obtained through this graph.
Fig. 13(𝑎, 𝑏, 𝑐) shows the correction coefficient map of the simplest 2 × 3
rectangular array. Since only the innermost cylinder exists, 𝐷3 is zero.
Fig. 13(𝑑, 𝑒, 𝑓 , 𝑔) and Fig. 13(ℎ, 𝑙, 𝑗, 𝑘) show the correction coefficient

ap of 3 × 5 and 4 × 7 rectangular array, respectively. When the size
f the rectangular array is greater than 4 × 7 (such as 5 × 8, 6 × 9,

etc.), the correction coefficient of 4 × 7 arrangement can be directly
adopted.

4.3. Effect of evanescent mode between cylinders on the added mass of
oscillating cylinder in the array of case 𝐶

The simplified model of case 𝐶 is 2 × 1 rectangular array, as shown
in Fig. 10(𝑑). Similar to the method in Sections 4.1 and 4.2, based on
the most simplified 2 × 2 rectangular array, the fast calculation formula
is given. The influence of other cylinders is reflected in the correction
coefficient.

As shown in Fig. 10(𝑑), the oscillating cylinder at the corner of the
ectangular array is in heave motion of unit amplitude, and the other
ylinders are fixed. The added mass �̃�2 of the oscillating cylinder caused

by the evanescent mode between cylinders in the array of case 𝐶 can
be expressed as follows:

�̃�2
𝜇

=
2𝐹1

𝑐 (ℎ∕𝑑) ⋅
(

𝑅
𝑎

)𝑚(ℎ∕𝑑)

∞
∑

𝑛=1
e−𝑘𝑛𝑅

+
𝐹2

𝑐 (ℎ∕𝑑) ⋅
(

√

2𝑅
𝑎

)𝑚(ℎ∕𝑑)

∞
∑

𝑛=1
e−𝑘𝑛

√

2𝑅 + 𝐹3. (49)

Here, function 𝑚 and 𝑐 refer to formula (46). 𝐹1 and 𝐹2 reflect the
influence of array arrangement. 𝐹3 reflects the effect of all cylinders
except the innermost layer, which is small. 𝐹1 and 𝐹2 are the correction
oefficient for the cylinder whose distance from the central oscillating
olumn are 𝑅 and

√

2𝑅, respectively.
A large number of numerical tests give the spectra of 𝐹1, 𝐹2 and 𝐹3,

s shown in Fig. 14. In practical engineering calculation, the value of
orrelation coefficient can be obtained through this graph. Fig. 14(𝑎, 𝑏)
hows the correction coefficient map of the simplest 2 × 2 rectangular
rray. Since only the innermost cylinder exists, 𝐹3 is zero. Fig. 14(𝑐, 𝑑, 𝑒)
nd Fig. 14(𝑓, 𝑔, ℎ, ) show the correction coefficient map of 3 × 3 and
× 4 rectangular array, respectively. When the row number 𝑀 and

olumn number 𝑁 are greater than 4 (such as 5 × 5, 6 × 6, etc.), the
orrection coefficient of 4 × 4 arrangement can be directly adopted.
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.4. A fast hydrodynamic calculation method of the rectangular array with
large number of cylinders

Based on the truncated two-cylinders model, the rectangular array
ith a large number of cylinders are divided into three types (case
, 𝐵, 𝐶). A fast formula for calculating the added mass of an oscillating
ylinder of the array caused by evanescent mode between cylinders is
iven. But this is only part of the result we need. So, how to get the
ydrodynamic coefficients of the rectangular array with a large number
f cylinders according to this fast calculation formula? The case of
nly one cylinder oscillating in an array is first considered. According
o the previous discussion, the results of the damping coefficient are
ot affected by the evanescent mode between cylinders. Therefore,
he influence of evanescent mode between cylinders on the damping
oefficient can be ignored. In this way, the storage can be reduced to
∕𝑁 and the calculation time is greatly reduced, too. The added mass
s significantly affected by the evanescent mode between cylinders,
o it cannot be ignored. In this paper, the effect of evanescent mode
etween cylinders on the added mass of an oscillating cylinder is
nvestigated. Based on the above discussion, the analysis of this paper
s also applicable to non-oscillating cylinders, whose total added mass
s only missing the part of the added mass of an isolated cylinder
12

d

nder the same amplitude motion compared to oscillating columns.
or the oscillating cylinder, the added mass caused by the radiation
otion of a isolated cylinder is calculated first, and then the added
ass caused by the components of evanescent mode is calculated by
sing the fast calculation formulas such as Eqs. (47), (48) and (49).
he algebraic sum of the two is the total added mass of the cylinder.
he above is a fast method for solving the added mass of a single
scillating cylinder in a rectangular arrangement under a single mode.
or an array of cylinders with multi-modal radiation motion, the linear
uperposition principle can be used to decompose into multiple single
ylinder oscillation models to solve the problem, and the final result
an be obtained by linear superposition.

The above approximate solution method may not be significant (or
ven cumbersome) for the hydrodynamic calculation of an array with a
ozen or even dozens of truncated cylinders. The method avoids solving
arge-scale linear equations, so it is of great significance for the rapid
alculation of an array with a large number of cylinders.

. Conclusions

In this paper, based on the linear water wave theory, the hy-
rodynamic solution of truncated cylinder array with relative motion
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Fig. 13. Spectra of 𝐷1, 𝐷2, 𝐷3 and 𝐷4.
c
h

etween cylinders is presented. The analytical expressions of veloc-
ty potential, hydrodynamic force and moment are given. The influ-
nce of the evanescent mode between cylinders on the hydrodynamic
13

c

haracteristics of the array of cylinders is studied. The conventional
ydrodynamic solution of an array with a large number of truncated
ylinders takes up a lot of computational memory and takes a long
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Fig. 14. Spectra of 𝐹1, 𝐹2 and 𝐹3.
c

time. In order to overcome this obstacle, the following work has been
done:

(𝑎) Taking the simplest truncated two-cylinders model as an exam-
ple, the influence of evanescent mode on hydrodynamic coefficient is
studied, and the fast calculation formula of hydrodynamic coefficient
of the truncated two-cylinders model is given.

(𝑏) An array with a large number of truncated cylinders are divided
into three types (case 𝐴,𝐵, 𝐶). A fast formula for calculating the added
mass of an oscillating cylinder in the three types array caused by the
evanescent mode is given.

(𝑐) The fast calculation method of an array with a large number
of cylinders is summarized. The research provides guidance for the
approximate evaluation of hydrodynamic characteristics of a large
number of cylinders in engineering and also has guiding significance
for the development of hydrodynamic calculation method of truncated
cylindrical array with relative motion between cylinders in the presence
of incident waves.
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Table 1
Query table of function 𝑐.
𝑑∕𝑎 ℎ∕𝑑 = 0.1 ℎ∕𝑑 = 0.2 ℎ∕𝑑 = 0.3 ℎ∕𝑑 = 0.4 ℎ∕𝑑 = 0.5 ℎ∕𝑑 = 0.6 ℎ∕𝑑 = 0.7 ℎ∕𝑑 = 0.8 ℎ∕𝑑 = 0.9

6 1.26 2.33 3.99 5.61 6.97 8.06 8.57 7.78 5.57
8 1.78 3.50 6.24 9.14 11.83 14.21 15.63 14.43 9.98
10 2.39 4.89 9.01 13.51 17.81 21.85 24.73 23.48 16.08
12 3.13 6.62 12.41 18.67 24.54 30.22 34.81 34.05 23.51
14 4.04 8.77 16.51 24.49 31.59 38.49 44.67 44.93 31.68
16 5.17 11.44 21.35 30.82 38.57 46.02 53.36 54.98 39.94
18 6.55 14.72 26.97 37.53 45.20 52.43 60.34 63.44 47.76
20 8.24 18.71 33.40 44.50 51.30 57.61 65.50 70.04 54.82
22 10.31 23.54 40.66 51.66 56.84 61.63 69.04 74.87 61.09
24 12.81 29.30 48.79 58.98 61.88 64.72 71.32 78.29 66.72
26 15.78 36.07 57.80 66.46 66.50 67.13 72.77 80.79 71.99
28 19.25 43.91 67.66 74.05 70.80 69.08 73.75 82.81 77.29
32 27.44 62.34 89.27 89.29 78.66 72.40 75.51 87.21 89.73
36 35.90 81.94 110.69 103.10 85.35 75.44 78.12 93.98 107.97
40 41.46 96.01 125.31 111.75 89.29 77.76 81.82 104.66 136.87
Appendix

The elements of the isolated cylinder diffraction transfer matrix 𝐁𝐸𝑗
can be expressed as follows:

𝐵𝐸𝑗 (𝑚) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

− 𝐽 ′𝑚(𝑘0𝑎)
𝐻 ′𝑚(𝑘0𝑎)

+ 𝐷𝑚0𝑠⋅cosh(𝑘0𝐻)

𝑁1∕2
0 ⋅𝐻

′(1)
𝑚 (𝑘0𝑎)⋅𝑒i𝑚(𝜋∕2−𝛽)

, 𝑞 = 0, 𝑛 = 0

𝐷𝑚𝑞𝑠
𝑁1∕2
𝑞 ⋅𝐾′𝑚

(

𝑘𝑞𝑎
)

⋅𝑒i𝑚⋅(𝜋∕2−𝛽)
, 𝑞 ⩾ 1, 𝑛 = 0

𝐷𝑒𝑚0𝑛𝑠⋅cosh(𝑘0𝐻)

𝐻
′(1)
𝑚 (𝑘0𝑎)⋅𝑁1∕2

0

, 𝑞 = 0, 𝑛 ⩾ 1

𝐷𝑒𝑚𝑞𝑛𝑠
𝑁1∕2
𝑞 ⋅𝐾′𝑚

(

𝑘𝑞𝑎
)

, 𝑞 ⩾ 1, 𝑛 ⩾ 1, 𝑞 ≠ 𝑛

− 𝐼 ′𝑚(𝑘𝑛𝑎)
𝐾′𝑚(𝑘𝑛𝑎)

+
𝐵𝑒𝑚𝑞𝑝

𝑁1∕2
𝑞 ⋅𝐾′𝑚

(

𝑘𝑞𝑎
)
, 𝑞 ⩾ 1, 𝑛 ⩾ 1, 𝑞 = 𝑛

(A.1)

and similarity, the elements of the diffraction transfer matrix 𝐁𝐶𝑗 in the
core region can be expressed as follows:

𝐵𝐶𝑗 (𝑚) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝐶𝑚0𝑠
2𝑎|𝑚|⋅𝑒i𝑚⋅(𝜋∕2−𝛽)

, 𝑛 = 0, 𝑝 = 0
𝐶𝑚𝑛𝑠

𝐼𝑚
(

𝑛𝜋𝑎
𝐻−ℎ

)

⋅𝑒i𝑚⋅(𝜋∕2−𝛽)
⋅ cos 𝑛𝜋(𝑧+𝐻)

𝐻−ℎ , 𝑛 ⩾ 1, 𝑝 = 0

𝐶𝑒𝑚0𝑝𝑠
2𝑎|𝑚| , 𝑛 = 0, 𝑝 ⩾ 1
𝐶𝑒𝑚𝑛𝑝𝑠

𝐼𝑚
(

𝑛𝜋𝑎
𝐻−ℎ

) ⋅ cos 𝑛𝜋(𝑧+𝐻)
𝐻−ℎ , 𝑛 ⩾ 1, 𝑝 ⩾ 1

. (A.2)

where 𝐶𝑚𝑛𝑠 and 𝐷𝑚𝑞𝑠 are unknown diffraction coefficients of truncated
isolated cylinder in propagating mode, see Zeng and Tang (2013) and
Zeng et al. (2016) for more details. 𝐶𝑒𝑚𝑛𝑝𝑠 and 𝐷𝑒

𝑚𝑞𝑛𝑠 are unknown
diffraction coefficients of truncated isolated cylinder in the evanescent
mode, which can be found in Yilmaz et al. (2001).

The expression of the radiation velocity potential of cylinder 𝑗 in
the core region is

𝜑𝑗𝑅𝑠−𝐶
(

𝑟𝑗 , 𝜃𝑗 , 𝑧
)

=
∞
∑

𝑚=−∞

(

1
2
𝐶𝑚0𝑠

( 𝑟𝑗
𝑎

)

|𝑚|

+
∞
∑

𝑛=1
𝐶𝑚𝑛𝑠 ⋅

𝐼𝑚
( 𝑛𝜋𝑟𝑗
𝐻−ℎ

)

𝐼𝑚
(

𝑛𝜋𝑎
𝐻−ℎ

) ⋅ cos
𝑛𝜋 (𝑧 +𝐻)
𝐻 − ℎ

+ 𝛬𝑚𝑠
(

𝑟𝑗 , 𝑧
)

⎞

⎟

⎟

⎟

⎠

⋅ ei𝑚𝜃 . (A.3)

At last, the query table of function 𝑐 is shown in Table 1.
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