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Abstract
The initially generated pure mode A, as a transitional stage, is investigated in
the three-dimensional wake transition of a circular cylinder. Direct numerical
simulations are carried out over a range of Reynolds numbers from 100 to 210.
According to the different dynamic behaviors of hydrodynamic parameters and
similar features in the spatiotemporal evolution of vorticity in the near wake,
two stages are identified. The first, investigated here, is the initial generation
of pure mode A at Reynolds numbers less than 195, while the second, already
reported, is the full development of pure mode A at Reynolds numbers greater
than 195. The relationship between the volume-RMS (root-mean-square) vor-
ticity and Reynolds number indicates two critical Reynolds numbers, 145 and
195 (at most). The first critical Reynolds number denotes the initial appearance
of three-dimensional instability. The second critical Reynolds number indic-
ates the transition of pure mode A from the initially generated state to the fully
developed state in the near wake. After the first critical Reynolds number, the
evolution of the vorticity in the near wake and on the rear surface of the cylinder
clearly shows that the appearance of pure mode A is a gradual process, rather
than a sudden process accompanied by a jump in vortex shedding frequency.
In particular, as the Reynolds number increases, the streamwise vorticity first
appears on and near the cylinder surface, then in the shear layers, and finally
in the shedding primary vortices, instead of appearing instantaneously in the
shedding vortices after the instability of primary vortex cores.
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1. Introduction

The flow past a circular cylinder is a classical topic of fluid mechanics. In particular, viscous
fluid surrounds a still body with large velocity gradients at the walls. Such velocity gradi-
ents cause large viscous forces acting on the body and vorticity generated at the walls. In
present fluid dynamics, the main controlling parameter is a dimensionless Reynolds number
Re, defined by the approaching stream velocity, cylinder diameter and fluid kinematic viscos-
ity. Over a relatively small range of Reynolds numbers, many physical phenomena occur with
different dynamic behaviors (Williamson 1996a). For example, oppositely signed vorticity is
first concentrated just behind the body at a Reynolds number less than approximately 50. The
flow is two-dimensional (2D) and steady without lift force. Then, the primary instability with
the development of unsteady Kármán vortices is observed until the Reynolds number reaches
140∼190.Meanwhile, fluid forces oscillate at a certain frequency associatedwith primary vor-
tex shedding. Subsequently, when the Reynolds number is beyond 190, two typical instability
modes, i.e. modes A and B, are triggered in a three-dimensional (3D) wake transition. In par-
ticular, large intermittent low-frequency wake velocity fluctuations are also observed due to
the presence of large-scale spot-like vortex dislocations accompanied by mode A, i.e. mode
A∗ (mode A+ vortex dislocations). Correspondingly, the time histories of fluid forces become
very complex.

Because of the above spectacular phenomena of vortices alternately shedding from a bluff
body, this area is also closely related to vortex dynamics. With the aim of understanding
and controlling the wake vortex dynamics, a great number of studies have been published
and reported in recent decades. Experimental measurements were carried out by Meiburg and
Lasheras (1988), Yokoi and Kamemoto (1992, 1993), Williamson (1996a, 1996b), Prasad and
Williamson (1997), Leweke and Williamson (1998), Luo et al (2003), for example. Thanks to
advances in computation technology, direct numerical simulations (DNSs), adopting the finite
volumemethod or spectral element method, have become increasingly common tools in recent
decades (Meiburg and Lasheras 1988, Karniadakis and Triantafyllou 1992,Wu and Ling 1993,
Persillon and Braza 1998, Darekar and Sherwin 2001, Posdziech and Grundmann 2001, Jiang
et al 2016, 2017, 2018, Agbaglah and Mavriplis 2017, 2019, Lin et al 2018, 2019a, Jiang and
Cheng 2019, Lin and Tan 2019b, 2022). Some theoretical methods, including linear and non-
linear stability analysis, typically for Floquet stability analysis, are sometimes adopted under
certain circumstances (Barkley and Henderson 1996, Henderson 1997, Ling and Chang 1999,
Barkley et al 2000, Posdziech and Grundmann 2001, Thompson et al 2001, Sheard et al 2003,
Rao et al 2013, Clainche et al 2018, Lin et al 2019c).

One of the central problems in most studies is to identify the critical Reynolds number Recr
and correlatively the most unstable wavelength λ in the 3D wake transition of a circular cyl-
inder. As reported in comprehensive reviews (Williamson 1996a, Posdziech and Grundmann
2001), the first discontinuity manifested by the variation in Strouhal number St as the Reyn-
olds number occurs near 180∼190 depending on experimental conditions at a wavelength
of approximately 3–4 diameters. This discontinuity is hysteretic. By means of stability ana-
lysis, Barkley andHenderson (1996) obtained the critical Reynolds numberRecr = 188.5± 1.0
and the most unstable wavelength λ= 3.96± 0.02. Subsequently, Recr = 190.2± 0.02 and
λ= 3.966± 0.002 were obtained by Posdziech and Grundmann (2001) by investigating the
flow around an infinitely long circular cylinder. Recently, such Recr was also predicted to be
190.5 and 194 through linear stability analysis (Rao et al 2013) and DNS (Jiang et al 2016),
respectively.
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Generally, the critical Reynolds number is closely related to a physical phenomenon. For
example, when Re⩾ Recr, there is a 3D wake transition (Williamson 1996a), the emergence
of wavy structures developed originally from 2D vortex tubes in the wake (Posdziech and
Grundmann 2001) and the appearance of mode A∗ wake instability (Jiang et al 2016). To
obtain the value of Recr, different methods have been adopted. In theoretical analyses, such as
Floquet instability analysis (Barkley and Henderson 1996, Posdziech and Grundmann 2001,
Rao et al 2013), the critical Reynolds number is determined by the temporal growth rate of 3D
perturbations induced in the flow field. However, in experimental and numerical observations
(Williamson 1996a, Jiang et al 2016), the appearance of a sudden drop in the Strouhal number
in the St–Re relationship is usually used to predict the critical Reynolds number.

Although the disparity in the above different Recr values is already small, there still exists a
puzzling unsolved problem. According to the present definitions of the critical Reynolds num-
ber stated above, it seems that these phenomena, such as 3D vortex tubes, 3D wake transition
and mode A∗, suddenly appear when Re⩾ Recr but completely vanish when Re< Recr. It is
very important to solve the puzzle because this problem closely relates to the three-dimensional
instability and the physical generation mechanism of streamwise vorticity in the near wake.
For now, the physical explanation commonly adopted in the occurrence of pure mode A is an
elliptic instability of the primary vortex cores coupled with Biot–Savart induction in the forma-
tion of streamwise vortex pairs (Williamson 1996a, Leweke and Williamson 1998, Thompson
et al 2001, Jiang et al 2016, 2018). This coupling mechanism just explains the 3D waviness
of primary vortices ‘suddenly appearing’ in the near wake and accompanied with the gener-
ated streamwise vortices. From the perspective of vorticity as the main variable to describe
the intensity of a vortex, it suggests that streamwise vorticity in these streamwise vortices is
also generated by this coupling mechanism. However, as indicated in previous work (Lin and
Tan 2019b), pure mode A could occur at a lower Reynolds number, although spanwise vor-
tices seem to be undisturbed. Such phenomena manifest an obvious paradox in the previous
coupling mechanism that the streamwise vorticity is already generated but the primary vortex
core is still stable with 2D features at a lower Reynolds number. Moreover, if these phenom-
ena gradually fade away in the near wake as the Reynolds number decreases, then the critical
Reynolds number could be lower than that previously reported, such as Recr = 188–194. On
the other hand, a certain physical variable, such as St, may not properly capture such gradual
variation in the disappearance of these phenomena. The physical reason is mainly attributed
to the disturbance caused by these phenomena strong enough on the sudden variation in St, or
similar physical variables or hydrodynamic parameters. Therefore, a certain kind of variable
should be proposed and applied for such transitional variation at low Reynolds numbers less
than the previous Recr.

Because of no sufficient research involving the possible emergence of pure mode A in the
near wake at lower Reynolds numbers less than 195 (Williamson 1996a, Jiang et al 2016, Lin
and Tan 2019b) or before St suddenly jumps and primary vortex cores become unstable, the
primary aim of the present study is to investigate such transitional phenomenon through DNS.
If such a transitional stage exists, the spatiotemporal evolution of vorticity and its sign rela-
tionships in the near wake and on cylinder surfaces and other features can be further analyzed
and compared with those in pure mode A at Re⩾ 195. To avoid the possible interference of
vortex dislocations in identifying this transitional stage, only one spanwise wavelength of four
diameters, near the most unstable wavelength, is considered.

The rest of this paper is organized as follows. The governing equations, boundary conditions
and numerical methods are first presented. Then, based on features in the time histories of
fluid forces, the characteristics of the spatiotemporal evolution of vorticity in the first stage,
i.e. the initially generated pure mode A, the determination of the critical Reynolds number and
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the physical origins of additional vorticities in the shear layers are mainly investigated and
discussed in detail. Finally, major conclusions are given.

2. Numerical simulations

2.1. Governing equations and boundary conditions

As shown in figure 1(a), the fluid flow past a fixed cylinder with a circular cross-section is
studied. The fluid is incompressible with constant density ρ and kinematic viscosity ν. All
body forces are conservative and then can be reduced to components of pressure.

The inertial Cartesian coordinate system, (x,y,z), is established as shown in figure 1(a).
Among the axes, the x-axis (streamwise direction) is aligned to the incoming free stream with
uniform velocity U∞. The z-axis (spanwise direction) is parallel to the cylinder span. The
y-axis (vertical direction) is transverse to both the free stream and the cylinder axis.

The incompressible continuity and Navier–Stokes equations in dimensionless forms are
written as:

∇· u= 0, (1)

∂u
∂t

+(u ·∇)u=−∇p+ 1
Re

∇2u, (2)

where∇ is the gradient operator, u is the velocity vector with three components (u,v,w) along
their own coordinates, t is the time scaled byD/U∞, and p is the pressure scaled by ρU2

∞. The
velocities are scaled by the free-steam velocity U∞ and the lengths by the cylinder diameter
D. Thus, all variables used in the following context are scaled by ρ, U∞ and D.

In the present study, some main variables and parameters are involved. The vorticity ω is
defined as the curl of velocity u, i.e. ω =∇× u, with three components (ωx,ωy,ωz) along the
coordinates. The vorticity equation in an inertial frame is written as:

∂ω

∂t
+(u ·∇)ω = (ω ·∇)u+

1
Re

∇2ω. (3)

As an important indicator in the present flow dynamics, variations in the drag and lift forces
acting on the body are taken into account and normalized as the drag and lift coefficients, CD

andCL, respectively. Then, themean drag coefficient,CD, and the root-mean-square (RMS) lift
coefficient, C ′

L, are used to determine the intensity of fluid forces. When spanwise vortices are
alternately shed in the near wake, the frequency of such vortex shedding, f, is obtained through
Fourier analysis of the time history of CL and scaled as the Strouhal number, St, defined by
St= fD/U∞.

For the initial condition, the flow is assumed to be motionless with u= 0 and p= 0 at t= 0,
except at the inlet.

For the boundary conditions, the 3D flow is first assumed to be spatially periodic across the
span. At the inlet, the uniform free stream is prescribed as u= U∞ and v= w= 0. At the outlet,
a simple outflow with ∂u/∂x= 0 is applied. At both lateral boundaries in the y-axis, free slip
with ∂u

∂y = v= ∂w
∂y = 0 is adopted. On cylinder surfaces, the no-slip boundary condition with

u= 0 is used. The reference pressure of p∞ = 0 is specified at the center of the inlet.

2.2. Computational domain and mesh

As shown in figure 1(a), the whole nondimensional computational domain for the present wake
flow is described by the inlet length LI = 20, the outlet length LO = 30, the vertical height
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Figure 1. (a) Schematics of a flow past a straight cylinder with a circular cross-section,
and computational domain in the (x, y) plane and mesh distributions in (b) the whole
flow region and (c) near the cylinder with a closer view.

LH = 20 and the computational spanwise length or cylinder span LZ = 4. The blockage ratio
β, defined by 1/(2LH), is therefore 2.5%.

The mesh distribution in the 2D computational domain is presented in figure 1(b). The
smallest grid size δ of 0.001 is the normal distance of the first layer of the mesh next to the
cylinder surface. A local mesh is mainly refined in the large circular region with a radial dia-
meter of approximately 4.24, as shown in figure 1(c). A coarse mesh is mainly distributed far
from the cylinder. The total element number of the present 2D standard mesh, Nxy, is 20 100.
As already analyzed and reported in previous works (Henderson 1997, Lin and Tan 2019b), a
uniform spanwise grid size, ∆z= 0.1, is adopted.

2.3. Numerical method

Numerical calculations are performed using FLUENTV6.3.26 software with the finite-volume
method. The pressure-implicit splitting of operators (PISO) algorithm as a pressure-velocity
coupling scheme is applied. For the discretization scheme, the second order is applied for
the pressure equation; the second-order upwind scheme is used in solving the momentum
equation; and the second-order implicit scheme is adopted in all unsteady formulations. In par-
ticular, gradient computation is solved by the Green–Gauss node-based method. Other com-
putational settings, such as under-relaxation factors and multi-grid method, are all default.

The nondimensional error of the mass conservative equation, equation (1), reaches the
order of magnitude of O(10−7), while the dimensionless errors of the three components of
the momentum equations, equation (2), are lower, on the order of O(10−9).

The dimensionless time step ∆t is 0.01. Here, the maximal cell Courant number, Co=
∆t|u|/∆l, is less than approximately 0.8, where∆l is the cell size in the direction of the local
velocity u through a cell.

2.4. Independence study

As for the independence study, some aspects are taken into account and presented as follows,
also reported in previous works (Lin and Tan 2019b, 2022).

In the first aspect, the independence of 2D computational domain in the (x,y) plane,
(LI +LO)× (LH +LH), is carried out atRe= 250with almost samemesh resolutions, as shown
in table 1 (SM, LSM and SSM). Among them, the computational domain in the 2D standard
mesh, denoted by ‘SM’, is (20+ 30)× (20+ 20) = 50× 40. While the large domain, denoted
by ‘LSM’, is (30+ 40)× (30+ 30) = 70× 60, and the small domain, denoted by ‘SSM’, is
(10+ 20)× (10+ 10) = 30× 20. The relative error of hydrodynamic parameters between SM
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and LSM is less than 1%, while that for SM and SSM is about 2%∼4%. It demonstrates that
the present computational domain, SM, is suitable for DNS.

As the second aspect, the mesh dependence is also studied at Re= 250 with different 2D
mesh resolutions, as shown in table 1 (SM,MS andMW). Among them, the cell number around
the cylinder surface is doubled as 260, and the total number of grids in such modified mesh on
surface, denoted by ‘MS’, is 35 400. Moreover, the grid number in the wake, x ∈ (2.12,30],
is also doubled as 100 with the cell expansion ratio reduced to 1.015. Consequently, the total
number of cells in this refined mesh in the wake, denoted by ‘MW’, is 25 600. It is found out
that the relative error is less than 1% among three different meshes of SM,MS andMW, which
indicates the present mesh SM with enough mesh resolution.

On the other hand, instant profiles of streamwise and vertical components of velocity along
the y-axis at different streamwise positions are compared among three meshes (SM, MS and
MW), as shown in figures 2 and 3, at two typical moments, t= T0 and T1, as shown in figure 4.
The present results have shown that different meshes have little effect on instant velocity pro-
files, particularly near the cylinder, which indicates that the physical investigation of vorticity
generation and sign relationships is independent of the mesh.

As for the third aspect, the independence of the smallest grid size on the cylinder surface,
δ, is investigated at Re= 250, as shown in table 1 (SM, SMG2 and SMG5). Among them,
the smallest grid size is 0.002 in the mesh, denoted by ‘SMG2’, and increased up to 0.005
in the mesh, denoted by ‘SMG5’, without change of total grid numbers Nxy and computa-
tional domain (LI +LO)× (LH +LH). As the smallest grid size increases, the fluid forces are
gradually increased, while the vortex-shedding frequency is reduced. Except CD and St, only
C ′
L is varied greatly and the relative error exceeds 1%. This indicates the present δ= 0.001 is

suitable for present DNS because the smallest grid size is very important in capturing main
characteristics of vorticity and its sign evolving near the cylinder surface.

Furthermore, in the last aspect, the St–Re relationship including 2D and following 3D com-
putations is presented and compared with previous results, as shown in figure 5. The present
2D simulations agree well with the experimental results (Williamson 1996a). In the 3D simula-
tions, results with LZ = 4 are consistent with previous simulations (Posdziech and Grundmann
2001) because of the approximate computational length LZ. Moreover, numerical computa-
tions with LZ = 12 are also carried out at Re= 190 and 195 in order to confirm the reliability
of present calculation results at LZ = 4. In figure 5, St at Re= 195 and LZ = 12 also agrees
well with that in numerical results (Jiang et al 2016). While at Re= 190, St with LZ = 12 is
precisely consistent with that with LZ = 4, which indicates that vortex dislocations have not
been excited and the spanwise computational length of LZ = 12 has no effect on St, as well as
CD and C ′

L as reported in following contexts. A simple comparison about the qualitative sign
of vorticity can refer to the following content.

In addition, as for 3D computations, the mesh independence of spanwise grid size
∆z= 0.05 was also validated at Re= 200 and 300 and already reported in previous works
(Lin and Tan 2019b, 2022). And the comparison of fluid forces in present 2D and 3D compu-
tations with previous works can also refer to the following content.

3. Results and discussion

3.1. Features of fluid forces

First, the time histories of fluid forces are investigated in a range of Reynolds numbers from
150 to 210. Typically, as shown in figures 6 at LZ = 4 and 7 at LZ = 12, there are two features.
When Re< 195, the oscillating amplitudes of fluid forces are almost constant over time, which
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Figure 2. At t= T0 (as shown in figure 4) and Re= 250, for comparisons among differ-
ent 2Dmeshes, SM (‘□’),MS (‘4’) andMW (‘5’), profiles of two velocity components
(u and v) varied along the vertical direction at (a) x= 0, (b) 1, (c) 2, (d) 3 and (e) 5. Note
that it is difficult to distinguish the difference among three meshes in all figures since
the difference is so small.
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Figure 3. At t= T1 (as shown in figure 4) and Re= 250, for comparisons among differ-
ent 2Dmeshes, SM (‘□’),MS (‘4’) andMW (‘5’), profiles of two velocity components
(u and v) varied along the vertical direction at (a) x= 0, (b) 1, (c) 2, (d) 3 and (e) 5. Note
that it is difficult to distinguish the difference among three meshes in all figures since
the difference is so small.
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Figure 4. In the initially generated pure mode A of a circular cylinder’s wake transition,
schematic of a whole period or cycle of the oscillating lift coefficient with typical times,
where T0 (or T4) and T2 denote the positive and negative extremum values of the lift
force, respectively, and both T1 and T3 are associated with CL = 0, and TXS, TXE, TYS
and TYE are related to the initial generation of streamwise and vertical vorticities in the
shear layers.

Figure 5. The St–Re relationship over 2D and 3D wake transition regimes.

10



Fluid Dyn. Res. 54 (2022) 035504 L M Lin

Figure 6. Time histories of fluid forces, CD and CL, at Reynolds numbers of (a) 185,
(b) 190, (c) 192, (d) 195, (e) 200 and (f) 210 with LZ = 4.

Figure 7. Time histories of fluid forces, CD and CL, at Reynolds numbers of (a) 190 and
(b) 195 with LZ = 12.

indicates that the wake flow is almost the same as the 2D flow state. At Re⩾ 195, oscillating
peak-to-peak amplitudes with LZ = 4 are initially at a high level and then at a low level. As for
fluid forces with LZ = 12, the irregular appearance of vortex dislocations leads to peak-to-peak
amplitudes oscillated violently. These features clearly indicate that the wake flow becomes
three-dimensional. In particular, at Re= 210 and LZ = 4, although the wake is fully developed
when t > 400, the oscillating peak-to-peak amplitudes still vary over time.

Then, hydrodynamic parameters, i.e. the mean drag coefficient, RMS lift coefficient and
Strouhal number, in the present 2D and 3D computations are presented and compared with
previous results, as shown in figures 5 and 8. At Re< 195, these parameters are all equivalent
to those in the 2D simulations. When Re⩾ 195, they all drop suddenly, corresponding to the
existence of pure mode A (LZ = 4) or mode A∗ (LZ = 12) in the near wake. In addition, the
present mean drag coefficient and RMS lift coefficient in the 2D and 3D calculations are all
in good agreement with the previous results as shown in figure 8, regardless of whether LZ is
4 or 12.

According to the following contexts about the spatiotemporal evolution of vorticity in the
near wake, to distinguish these different dynamic behaviors, two wake stages are identified.
The first stage with almost 2D wake flow and invariant fluid forces at Re< 195 is called the
initially generated pure mode A. However, when the Reynolds number is greater than 195,
obvious 3D wake flow and a sudden drop in fluid forces with LZ = 4 are referred to as the
fully developed pure mode A, as the second stage. The detailed investigation into the fully
developed stage of pure mode A can be referenced in a previous work (Lin and Tan 2019b).
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Figure 8. (a)MeanCD and (b) RMSCL varied along the Reynolds number in the present
2D and 3D computations.

Here, the main focus is put on the initially generated stage in a range of Reynolds numbers
from 150 to 195 with LZ = 4.

3.2. Evolution of the vorticity and its sign relationship

First, it should be noted that only additional vorticities, ωx and ωy, with magnitudes of at
least 0.001 are presented in order to avoid possible contamination or interference caused by
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Figure 9. At t= T0, isosurfaces of (a) ωx =±0.02, (b) ωy =±0.02 and (c) ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 190 with LZ = 4,
where red and blue colors denote positive and negative values, respectively, and green
color denotes |ω|< 0.001. Note that the cylinder is denoted by the grey translucent
surface in iso-surfaces.

Figure 10. At t= T1, isosurfaces of (a)ωx =±0.02, (b)ωy =±0.02 and (c)ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 190 with LZ = 4
(same descriptions as in figure 9).

Figure 11. At t= T2, isosurfaces of (a) ωx =±0.02, (b) ωy =±0.02 and (c) ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 190 with LZ = 4
(same descriptions as in figure 9).

computational errors. Then, for the sake of convenience, the sign of the nonzero vorticity ω is
defined by a sign function sgn(ω) as:

sgn(ω) =

{
1, if ω > 0,

−1, if ω < 0.
(4)

Finally, in the following content, dominant streamwise and vertical components of vorticity
in the shear layers and the near wake mean ωx and ωy and their specific signs consistent with
those ωx and ωy forming pure mode A in the fully developed stage at Re⩾ 195 (Lin and Tan
2019b). While subordinate streamwise and vertical vorticities, mainly distributed behind the
rear surface and in the recirculation, just denote ωx, ωy, sgn(ωx) and sgn(ωy) inconsistent with
those forming pure mode A.

When the wake is fully developed, typical spatiotemporal evolutions of three components
of vorticity in the near wake are first presented, typically at Re= 190, as shown in figures 9 at
T0, 10 at T1, 11 at T2 and 12 at T3. In particular, at t= T1, through the simple comparison of
vorticity isosurfaces and contours on cylinder surfaces with LZ = 4 to those with LZ = 12, as
shown in figures 10 and 13, the qualitative distributions of three vorticity signs are totally the
same. Moreover, although there is a disturbance vorticity with an intensity aboutO(10−2) near
both cylinder ends, typically as shown in figures 13(a) and (b), distributions of three vorticity
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Figure 12. At t= T3, isosurfaces of (a)ωx =±0.02, (b)ωy =±0.02 and (c)ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 190 with LZ = 4
(same descriptions as in figure 9).

Figure 13. At t= T1, isosurfaces of (a)ωx =±0.02, (b)ωy =±0.01 and (c)ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 190 with LZ = 12
(same descriptions as in figure 9).

signs in the middle of cylinder are completely unaffected and the same as those near both
cylinder ends with LZ = 12, as well as those with LZ = 4 demonstrated in figure 10. Therefore,
it clearly indicates that the 3D computations with LZ = 4 are independent of the periodical
boundary condition and the spanwise computational length LZ = 12 when Re is less than 195
without the interference of vortex dislocations.

Through comparison with the fully developed stage (Lin and Tan 2019b), the basic and
common characteristics of vorticity and its sign relationship in the present stage are summar-
ized as follows:

(a) Symmetry of dominant ωx and ωy in the near wake: at the same spanwise position, the
sign of dominant ωx in the upper shear layer and clockwise spanwise vortex (denoted by
y> 0) is always opposite to that in the lower shear layer and counterclockwise spanwise
vortex (denoted by y< 0). However, the signs of dominant ωy in both upper and lower
shear layers and both clockwise and counterclockwise spanwise vortices are the same.
It should be emphasized here that these additional vorticities, ωx and ωy, in a shedding
spanwise vortex are also stretched or twisted upstream and convected into an oppositely
signed spanwise vortex before shedding, similar to the formation of vortex braids. There-
fore, the analysis of the vorticity sign in spatial positions is theoretically ideal, regardless
of the above stretching effect of (ω ·∇)u and convective transport of (u ·∇)ω upstream
in equation (3), similar to previous works (Barkley and Henderson 1996, Robichaux et al
1999). In other words, in the following analysis, the sign of ωx or ωy in the upper or lower
shear layer would always be the same as that in the clockwise or counterclockwise span-
wise vortex, respectively.

(b) Sign relationship between dominant ωx and ωy: in the near wake, sgn(ωx) is the same
as sgn(ωy) at y> 0 but opposite to sgn(ωy) at y< 0, while on the front surface, we
have sgn(ωx) = +sgn(ωy) on the upper side and sgn(ωx) =−sgn(ωy) on the lower side.
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Figure 14. At t= T1, isosurfaces of (a)ωx =±0.02, (b)ωy =±0.02 and (c)ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 192 with LZ = 4
(same descriptions as in figure 9).

Figure 15. At t= T1, isosurfaces of (a)ωx =±0.02, (b)ωy =±0.02 and (c)ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 185 with LZ = 4
(same descriptions as in figure 9).

Figure 16. At t= T1, isosurfaces of (a)ωx =±0.02, (b)ωy =±0.01 and (c)ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 180 with LZ = 4
(same descriptions as in figure 9).

In short, such a sign relationship can be expressed by sgn(ωx ·ωy) = +1 at y> 0 and
sgn(ωx ·ωy) =−1 at y< 0.

(c) Sign relationship between additional vorticities on the rear surface and in the near wake:
additional vorticities in the upper or lower shear layer have the same or opposite sign of
those on the upper or lower side of rear surface only in a half period of vortex shedding,
respectively; for example, at t= T1 and T2,−|ωx| in the upper shear layer at z= LZ/4 has
the same sign as ωx on the rear and upper surface, while in the same period, −|ωy| in the
upper shear layer at z= LZ/4 has the opposite sign to ωy on the rear and upper surface.

(d) Sign relationship among dominant ωx and ωy and ωz: under the present circumstances,
−|ωz| or +|ωz| is mainly distributed on the upper or lower and front surface and in the
shedding clockwise or counterclockwise spanwise vortex, respectively; therefore, another
basic sign relationship, sgn(ωx ·ωy ·ωz) =−1, is summarized regardless of the vertical
position in the near wake, except for the rear surface and recirculation region.

Moreover, at other Reynolds numbers, these features still exist, typically as shown in
figures 14 at Re= 192, 15 at Re= 185 and 16 at Re= 180. Until the Reynolds number is less
than 160∼170, additional vorticities are so weak that they totally disappear in the shedding
Kármán vortices, as shown in figures 17 and 18. They mainly exist in the shear layers and on
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Figure 17. At t= T1, isosurfaces of (a) ωx =±0.02, (b) ωy =±0.01 and (c) ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 170 with LZ = 4
(same descriptions as in figure 9).

Figure 18. At t= T1, isosurfaces of (a)ωx =±0.02, (b)ωy =±0.01 and (c)ωz =±0.2,
and contours of (d) ωx, (e) ωy and (f) ωz on cylinder surfaces at Re= 160 with LZ = 4
(same descriptions as in figure 9).

Figure 19. On cylinder surfaces with LZ = 4 at t= T1, contours of (a) ωx and (b) ωy at
Re= 155, contours of (c) ωx and (d) ωy at Re= 150, and contours of (e) ωx and (f) ωy at
Re= 145, where red and blue colors denote positive and negative values, respectively,
and green color denotes |ω|< 0.001. The flow is from left to right.

cylinder surfaces. When the Reynolds number is as low as 150, as shown in figure 19, addi-
tional vorticities still exist on cylinder surfaces, indicating that three-dimensional instability
already appears at Reynolds numbers lower than 150, also indicated in previous works (Yokoi
and Kamemoto 1992, 1993). Nevertheless, two basic sign relationships for dominant ωx, ωy
and ωz are still satisfied in the shear layers at Re⩾ 160. Meanwhile, it is interestingly worth
noting that the characteristics of these additional vorticities with specific sign distribution on
the rear surface are always consistent in the Reynolds number range from 145 to 192. In sum-
mary, many similar features clearly illustrate that pure mode A is actually generated at early
times or lower Reynolds numbers, and the vorticity on the rear surface of the cylinder related
to pure mode A is already generated after three-dimensional instability appears.

However, there are few features different from those in the full development of pure mode
A at Re⩾ 195 (Lin and Tan 2019b), summarized as follows:

(a) Shedding spanwise vortices: primary vortex cores are almost undisturbed at present Reyn-
olds numbers (160–192), but a small distortion mainly exists in vortex braids at a cer-
tain Reynolds number of approximately 190–192, as shown in figures 10(c), 13(c) and
14(c). This phenomenon clearly shows that the vortex braids first become unstable before
primary vortex cores become unstable. The physical reason for undistorted vortex cores is
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mainly attributed to the greatly weakened additional vorticities with a magnitude of order
of approximately O(10−2), even less when the Reynolds number further decreases. Small
wavy vortex braids result from the vertical interaction (Lin et al 2018) and its superimpos-
ition effect due to the same signs of vertical vorticity in both upper and lower shear layers
at the same spanwise position.

(b) Surface vorticity: although symmetries of dominant ωx and ωy with the wavelength of 4 on
cylinder surfaces at Re= 190 are almost identical to those in the fully developed stage, as
shown in figure 9, disturbed additional vorticities with a small wavelength in both stages
appear just out of phase; for example, on the upper surface, disturbed ωx and ωy exist
at t= T0 in the initial generation stage but at t= T2 in the full development stage. On the
other hand, additional vorticities on a certain side of the surface, such as the upper or lower
surface, mainly exist for approximately three quarters of the vortex-shedding period.

In summary, the following characteristics or definitions of pure mode A (in the absence of
large-scale vortex dislocation interference) can be given for the initial generation stage and the
fully developed stage:

(a) The fully developed stage of pure mode A at Re⩾ 195: as reported in previous work
(Lin and Tan 2019b), in the near wake at the same spanwise position, there are (a)
additional vorticities with the magnitude of O(10−1) at the spanwise wavelength λA

and with the specific sign distributions, such as sgn(ωx)(y> 0) =−sgn(ωx)(y< 0), and
sgn(ωy)(y> 0) = +sgn(ωy)(y< 0), (b) the specific sign relationships between ωx and
ωy, such as sgn(ωx ·ωy)(y> 0) = +1 and sgn(ωx ·ωy)(y< 0) =−1, (c) the wavy primary
vortex cores and braids with the special instability wavelength λA, and (d) the sudden
drop of hydrodynamic parameters (St, CD and C ′

L); while on the rear surface at the same
spanwise position and t= T1 as an example, there are (e) sgn(ωx)(y> 0) same as that
in the upper shear layer but sgn(ωx)(y< 0) opposite to that in the lower shear layer,
(f) sgn(ωy)(y> 0) opposite to that in the upper shear layer but sgn(ωy)(y< 0) same as
that in the lower shear layer, and therefore (g) sgn(ωx)(y> 0) = +sgn(ωx)(y< 0) and
sgn(ωy)(y> 0) =−sgn(ωy)(y< 0);

(b) The initially generated stage of pure mode A at Re< 195: as presented above, in the near
wake at the same spanwise position when Re⩾ 160, there are (a) additional vorticities
with the obviously smaller magnitude of O(10−2) at the same spanwise wavelength λA

and also with the same sign distributions, such as sgn(ωx)(y> 0) =−sgn(ωx)(y< 0),
and sgn(ωy)(y> 0) = +sgn(ωy)(y< 0), (b) the totally same sign relationships between
ωx and ωy, such as sgn(ωx ·ωy)(y> 0) = +1 and sgn(ωx ·ωy)(y< 0) =−1, (c) only the
wavy primary vortex braids but with the same instability wavelength λA around Re∼ 190,
and (d) the hydrodynamic parameters completely equivalent to those in 2D flows; while
on the rear surface at the same spanwise position and t= T1 as an example, there are
also same sign relationships, such as, when Re⩾ 160, (e) sgn(ωx)(y> 0) same as that in
the upper shear layer but sgn(ωx)(y< 0) opposite to that in the lower shear layer, and
(f) sgn(ωy)(y> 0) opposite to that in the upper shear layer but sgn(ωy)(y< 0) same as
that in the lower shear layer, and when Re⩾ 145, (g) sgn(ωx)(y> 0) = +sgn(ωx)(y< 0)
and sgn(ωy)(y> 0) =−sgn(ωy)(y< 0). These additional vorticities with the sign rela-
tionships, exactly consistent with those in the fully developed stage, appear first on and
near the rear surface of the cylinder, then in the shear layers and finally in the shedding
spanwise vortices as the Reynolds number increases.
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3.3. Critical Reynolds number

The problem of the critical Reynolds number can be analyzed and discussed as follows. The
spatiotemporal evolution of additional vorticities in the near wake, as analyzed above, clearly
indicates that the critical Reynolds number with the appearance of mode A or 3D wake trans-
ition is never a value but an interval or a range, during which pure mode A is initially generated
and the wake already becomes three dimensional.

In this stage, the process can be described as follows:

(a) At first, as shown in figure 19, additional vorticities are initially generated on and near
cylinder surfaces at a certain lower Reynolds number; in the meantime, dominant ωx and
ωy almost disappear in the shear layers and shedding spanwise vortices. Therefore, it is
intrinsically the moment that three-dimensional instability first appears.

(b) Subsequently, as the Reynolds number increases, as shown in figures 18, 17 and 16, above
additional vorticities near cylinder surfaces increase and are convectively transported to the
shear layers until they are completely shed, thus entering the shedding primary vortices.

(c) Finally, when the Reynolds number further increases, the intensity of additional vorticit-
ies in the shear layers and shedding primary vortices reaches a certain large magnitude,
causing the shedding spanwise vortex braids and then cores to be undulating along the
span. Therefore, this last process or end moment means that the pure mode A in the initial
generation stage has totally evolved into the fully developed pure mode A.

Consequently, this whole process indicates that the spatiotemporal evolution of pure mode
A in the initial generation stage is a gradual evolutionary development process starting from
three-dimensional instability, instead of suddenly appearing in the near wake.

The Strouhal number, if obtained from the oscillating lift coefficient, cannot capture such
a phenomenon in a gradually evolving process, i.e. the initial generation of pure mode A,
at Re< 195. In fact, the lift coefficient is mainly determined by alternately shedding span-
wise vortices without any obvious disturbance of weak additional vorticities. Accordingly, it
is necessary to prescribe a different variable suitable for hunting the initially generated stage
of pure mode A at lower Reynolds numbers.

With the aid of the RMS lift coefficient over time, some definitions of vorticity intensities in
the present flow domain are proposed on the basis of volume integrals. The volume-averaged
streamwise and vertical vorticities, ωx and ωy, respectively, are first defined as:

ωx(t) =
1
V

ˆ
V
ωxdτ ≈ 0, (5a)

ωy(t) =
1
V

ˆ
V
ωydτ ≈ 0, (5b)

where V is the volume of the flow field of interest, i.e. the whole 3D computational domain,
and dτ is the volume element. Generally, due to the spanwise periodical flow, ωx and ωy are
almost (or theoretically) zero or can even be regarded as a kind of computational error from
an ideal flow in which ωx = ωy = 0. For example, at Re= 190, ωx(T0) =−5.8× 10−11 and
ωy(T0) =−1.2× 10−8, while ωx(T1) =−1.7× 10−11 and ωy(T1) =−6.6× 10−9. Therefore,
for the sake of computational convenience, it is assumed in the following results that ωx and
ωy are zero at any time. The volume-RMS streamwise vorticity, ω ′

x , the volume-RMS vertical
vorticity, ω ′

y , and the volume-RMS additional vorticity, ω ′
xy, are then defined as:
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ω ′
x(t) =

√
1
V

ˆ
V
(ωx−ωx)2dτ ≈

√
1
V

ˆ
V
ω2
xdτ , (6a)

ω ′
y(t) =

√
1
V

ˆ
V
(ωy−ωy)2dτ ≈

√
1
V

ˆ
V
ω2
ydτ , (6b)

ω ′
xy(t) =

√
1
V

ˆ
V
[(ωx−ωx)2 +(ωy−ωy)2]dτ =

√
ω ′2

x +ω ′2
y . (6c)

Relations of the above volume-RMS vorticities and their gradients along with the Reynolds
number are presented, as shown in figure 20, at two typical times: T0 (or T2) and T1 (or T3).
In the present range of Reynolds numbers from 100 to 210, the variation in the volume-RMS
vorticity ω ′ with the Reynolds number is qualitatively independent of both the vorticity com-
ponent and time moments. For such variation itself, three different subregions are identified
based on the intensity of ω ′ and its gradient dω ′/dRe:

(a) In the first subregion, the Reynolds number is less than 145; the intensity of ω ′ reaches
the magnitude of order O(10−5); and as the Reynolds number increases, ω ′ increases first
slowly and then quickly with a gradient of approximately O(10−7–10−5); meanwhile, the
wake pattern is 2D Kármán vortex streets alternately shedding.

(b) The third subregion corresponds to a Reynolds number greater than 195; the strength of
ω ′ is approximatelyO(10−2); similarly, ω ′ still increases slowly with increasing Reynolds
number; and the gradient is approximatelyO(10−4); in the meantime, the wake pattern just
corresponds with pure mode A in the fully developed stage.

(c) Between them, there is the second subregion in a range of Reynolds numbers from 145
to 195; as the Reynolds number increases, ω ′ first slowly increases and then accelerates
very quickly as the intensity increases from O(10−4) to O(10−2); and the largest gradient
reachesO(10−2) near Re= 192–195; at the same time, the wake pattern is in a mixed state,
i.e. the initially generated pure mode A, in which the shedding primary vortex cores are
still two dimensional while additional vorticities are initially generated due to the activated
three-dimensional instability and gradually evolved in the near wake.

According to the above analysis, two critical Reynolds numbers are identified. The first
critical Reynolds number Recr0 is (no more than) 145, which indicates the first appearance of
the three-dimensional instability on and near cylinder surfaces. The second critical Reynolds
number Recr1 is 195 (or less), corresponding to the transition of pure mode A from the initial
generation stage to the fully developed stage in the near wake.

In addition, it is necessary to discuss the possible effect of hysteresis on the initially gener-
ated pure mode A here. On the one hand, the Reynolds number ranges of the initial appearance
of weak additional vorticities in the shear layers and on the rear surface of the cylinder, i.e.
Re⩾ 160–170 and Re⩾ 145 in figures 17, 18 and 19, respectively, actually exceeds the Reyn-
olds number range of hysteresis in experiment (Williamson 1996a), i.e. Re= 180–190. This
indicates the initial appearance of additional vorticities at lower Reynolds numbers physically
irrelevant to the hysteresis. On the other hand, the determination of Recr in the hysteresis is
closely dependent on the initial condition. As stated in previous work (Williamson 1996a),
the exact Recr depends on whether the flow speed is increased or decreased. In present work,
the inflow speed is constant as the inlet boundary condition, same as that in previous work
(Jiang et al 2016). The influence of variable incoming velocity or Reynolds number, as the
initial condition, on the determination of Recr and the appearance of additional vorticities in
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Figure 20. (a) Volume-RMS vorticities in equation (6) and (b) the gradient of the xy
component (ω ′

xy) along with Re at two typical times, t= T0 (or T2) and T1 (or T3), with
LZ = 4.

the shear layers and on the rear surface of the cylinder would be investigated in the future
work.

3.4. Formation and shedding sequences of vorticity

First of all, some labels in figures are described as follows:

• VorXs-U and VorXs-D: subordinate (‘s’) ωx (‘VorX’) on the upper (‘U’) and down (‘D’) or
lower sides of the wake center plane y= 0, respectively;

• VorX0-U and VorX0-D: dominant ωx initially generated and/or increasing in the upper (‘U’)
and lower (‘D’) shear layers, respectively;

• VorX1-U and VorX1-D: dominant ωx concentrated and/or immediately shedding from the
upper (‘U’) and lower (‘D’) shear layers, respectively.

Similar meanings of labels, VorY0-U, VorY1-U, VorYs-U, VorY0-D, VorY1-D and
VorYs-D, are prescribed for the vertical vorticity (‘VorY’) behind the cylinder.

Typically at Re= 190, additional vorticities near the cylinder and in the shear layers
are investigated at z= LZ/4 (= 1) during a whole vortex-shedding period, as shown in
figures 21–26, with typical times illustrated in figure 4. Physical formations of dominant ωx
and ωy in the shear layers can be demonstrated in the temporal evolution.

For dominant ωx, as a typical example, in the lower shear layer, the formation process is
elaborated first:

(a) At t= T1, as shown in figure 23(a),+|ωx| in ‘VorX0-D’ with weak intensity is just initially
generated in the lower shear layer. The obvious feature is the opposite sign relationship
between ‘VorX0-D’ and −|ωx| on the rear and lower surfaces. It should be noticed that
the location of the initially appearing ‘VorX0-D’ is approximately (x= 0.6,y=−0.6),
while the location of the anticlockwise spanwise vortex core which is already formed in
the lower shear layer is near (x= 3,y= 0) downstream. This feature obviously disagrees
with previous viewpoints (Williamson 1996a, Leweke and Williamson 1998).
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Figure 21. Color contours of (a)ωx and (b)ωy at z= 1, t= T0 andRe= 190with LZ = 4,
where solid and dashed contours of ωz =±0.1 and ±0.5 denote positive and negative
values, respectively.

Figure 22. Color contours of (a) ωx and (b) ωy at z= 1, t ∈ (T0,T1) and Re= 190 with
LZ = 4 (same description as in figure 21).

Figure 23. Color contours of (a)ωx and (b)ωy at z= 1, t= T1 and Re= 190 with LZ = 4
(same description as in figure 21).
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Figure 24. Color contours of (a) ωx and (b) ωy at z= 1, t ∈ (T1,T2) and Re= 190 with
LZ = 4 (same description as in figure 21).

Figure 25. Color contours of (a)ωx and (b)ωy at z= 1, t= T2 and Re= 190 with LZ = 4
(same description as in figure 21).

Figure 26. Color contours of (a)ωx and (b)ωy at z= 1, t= T3 and Re= 190 with LZ = 4
(same description as in figure 21).
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(b) As time proceeds from T1 up to T2, +|ωx| in ‘VorX0-D’ gradually increases, as shown in
figures 24(a) and 25(a). Until this point, sgn(ω) in ‘VorX0-D’ and on the rear and lower
surfaces is the opposite.

(c) At time T3, as shown in figure 26(a), the original ‘VorX0-D’ becomes ‘VorX1-D’. The
obvious different feature is that sgn(ωx) in ‘VorX1-D’ and on the rear and lower surfaces
is exactly the same.

(d) At t= T4 or T0, as shown in figure 21(a), ‘VorX1-D’ is about to shed from the cylinder, as
well as increasing the counterclockwise spanwise vortex.

(e) When the time exceeds T0 but is less than T1, as shown in figure 22(a), ‘VorX1-D’, increas-
ing due to the stretching effect of (ω ·∇)u in equation (3), and the counterclockwise
Kármán vortex completely sheds from the cylinder.

Then, the formation process of dominant ωy in the upper shear layer, as an instance, can be
elaborated:

(a) At a certain time in a range from T0 to T1, ‘VorY0-U’ is initially generated in the upper
shear layer, as shown in figure 22(b). Its sign is completely the same as that of ωy on the
rear and lower surfaces.

(b) With the passage of time from T1 to T2, ‘VorY0-U’ gradually increases, as shown in
figures 23(b), 24(b) and 25(b). During this period, sgn(ωy) in ‘VorY0-U’ and on the rear
and lower surfaces is always the same.

(c) At t= T3 and subsequent T4 (or T0), as shown in figures 26(b) and 21(b), ‘VorY0-U’ has
already become ‘VorY1-U’ and sheds with a clockwise spanwise vortex.

Based on the above analysis, the formation and shedding sequences of the dominant ωx and
ωy in the shear layers can be summarized in table 2 over the whole vortex-shedding period
in figure 4. In particular, asynchronization in the initial generation of dominant ωx and ωy
in a certain shear layer is observed and should be taken into account, such as in the upper
shear layer shown in figures 22 and 26. The results clearly indicate that in the present initially
generated pure mode A, such as at Re= 190, dominant ωx and ωy on the same side of shear
layers are initially generated with time difference TXE −TYS (upper side) or TXS −TYE (lower
side), but shedding with phase difference TXE −TYE (upper side) or TXS −TYS (lower side) or
less. These values are different from those in the fully developed pure mode A (Lin and Tan
2019b).

3.5. Origins of dominant ωx and ωy in the shear layers

According to the above formation process of dominant ωx and ωy in the shear layers, the
physical origin of dominant ωx, as an example of ‘VorX0-D’ in the lower shear layer from T1

to T2, as shown in figures 23(a), 24(a) and 25(a), is first analyzed and discussed as follows:

(a) Because opposite sign relationships exist between ωx in ‘VorX0-D’ and on the rear and
lower surfaces, the mechanism of vorticity generation at walls is invalid.

(b) As shown in figure 27, the local velocity vector clearly indicates that ‘VorX0-D’ gradu-
ally increases relatively upstream of ‘VorX1-D’. This indicates that vorticity in ‘VorX0-D’
upstream cannot originate or be convected from that in ‘VorX1-D’ downstream. Otherwise,
‘VorX0-D’ should already be generated early at t< T1. In fact, this generation mechanism
never occurs, as shown in figure 22(a).

23



Fluid Dyn. Res. 54 (2022) 035504 L M Lin

Table 2. Summary of the formation and shedding process of streamwise and vertical
vorticities in the upper (y> 0) and lower (y< 0) shear layers in a whole cycle of the ini-
tially generated pure mode A (typically at Re= 190), associated with alternately shed-
ding spanwise vortices with vorticity±|ωz|, where labels, ‘Ap’, ‘In’, and ‘Sh’ in brack-
ets, denote the vorticity initially appearing, increasing and shedding, respectively, and
symbol 7→ indicates the transformed or evolved process.

t TYS TYS → TXS

y> 0 VorX0-U(In), VorX1-U(Sh) VorX0-U(In), VorX1-U(Sh)
VorY0-U(Ap) VorY0-U(In)
−|ωz|(In) −|ωz|(In)

y< 0 VorX1-D(In/Sh) VorX1-D(In/Sh)
VorY0-D 7→ VorY1-D VorY1-D(Sh)
+|ωz|(Sh) +|ωz|(Sh)

t TXS TXS → T1 → T2 → TYE

y> 0 VorX0-U 7→ VorX1-U VorX1-U(In)
VorY0-U(In) VorY0-U(In)
−|ωz|(In) −|ωz|(In)

y< 0 VorX0-D(Ap), VorX1-D(Sh) VorX0-D(In), VorX1-D(Sh)
VorY1-D(Sh) VorY1-D(Sh)
+|ωz|(Sh) +|ωz|(Sh)

t TYE TYE → TXE

y> 0 VorX1-U(In/Sh) VorX1-U(In/Sh)
VorY0-U 7→ VorY1-U VorY1-U(Sh)
−|ωz|(Sh) −|ωz|(Sh)

y< 0 VorX0-D(In), VorX1-D(Sh) VorX0-D(In), VorX1-D(Sh)
VorY0-D(Ap) VorY0-D(In)
+|ωz|(In) +|ωz|(In)

t TXE TXE → T3 → T4 → TYS

y> 0 VorX0-U(Ap), VorX1-U(Sh) VorX0-U(In), VorX1-U(Sh)
VorY1-U(Sh) VorY1-U(Sh)
−|ωz|(Sh) −|ωz|(Sh)

y< 0 VorX0-D 7→ VorX1-D VorX1-D(In)
VorY0-D(In) VorY0-D(In)
+|ωz|(In) +|ωz|(In)

(c) Moreover, as shown in figures 14, 10, 15, 16, 17 and 18 with decreasing Reynolds num-
ber, additional vorticities in the shedding spanwise vortices are gradually weakened and
even only exist in the shear layers at Re= 160. This suggests that streamwise vorticity
in shedding spanwise vortices is convectively transported from that in the shear layers,
rather than Biot–Savart induction from streamwise vorticity in the downstream spanwise
vortex to that in the upstream spanwise vortex successively under a self-sustained effect
(Williamson 1996a, Leweke andWilliamson 1998, Thompson et al 2001, Jiang et al 2016,
2018).

(d) Based on the theory of the vortex-induced vortex (VIVor) (Lin et al 2019a, 2019c), as
time proceeds from T0 to T2, as shown in figures 22(a), 27(a) and 27(b), there are two
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Figure 27. At z= 1 and Re= 190 with LZ = 4, color contours of ωx and local velo-
city vector denoted by arrows at (a) t= T1 and (b) t ∈ (T1,T2) (same descriptions as in
figure 21) with same legends in figures 23(a) and 24(a), respectively.
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key factors. The first factor is the gradually increasing −|ωy| on the rear and lower sur-
faces from y=−0.3 in figure 22(b) to y=−0.5 in figure 23(b). The second factor is the
increasing convective transport according to the local velocity vector in figure 27 near the
rear and lower surface and then in the lower shear layer. These two factors result in +|ωx|
in ‘VorX0-D’ being initially induced by −|ωy| on the rear and lower surfaces and then
evolving under the local inertial convective effect. On the other hand, the vertical posi-
tion of maximal vorticity in ‘VorX0-D’ also qualitatively agrees with the prediction of the
VIVor mechanism, i.e. the downstream position of vertical vorticity and away from the
surface.

(e) However, as time passes following T3 and T0, as shown in figures 26(a) and 21(a), +|ωx|
in ‘VorX1-D’ is apparently convected from the region enclosing the rear and lower sur-
faces, which is consistent with experimental observations about vorticity generated at walls
(Yokoi and Kamemoto 1992, 1993).

Thus, dominant streamwise vorticity in the shear layers is first induced by dominant vertical
vorticity on the rear surface under the VIVor mechanism coupled with the inertial convective
effect over a half period and then further increases through the nonlinear convective transport
of streamwise vorticity on the rear surface over the rest of the half period. This process in the
present initially generated stage is consistent with that in the fully developed stage (Lin and
Tan 2019b).

In summary, three evidences obtained in present study disagree with the point of view repor-
ted in previous works (Williamson 1996a, Leweke and Williamson 1998, Thompson et al
2001, Jiang et al 2016, 2018). The first evidence is the appearance of additional vorticities,
consistent with those in the fully developed pure mode A, in the near wake before the primary
vortex cores become unstable, reported in section 3.2. The second evidence is the initially
generated streamwise vorticity completely upstream of the already formed spanwise vortex
core, given in section 3.4. The third evidence is the streamwise vorticity in the shedding span-
wise vortex actually originated from that in the shear layer through the convective transport-
ation, provided in present subsection. Therefore, as Reynolds number increases, the physical
sequence actually is the initial appearance of streamwise vorticity in the shear layers before
primary vortex cores become unstable, then the unstable and wavy vortex braids and finally the
unstable primary vortex cores when additional vorticities in shedding vortices reach a certain
magnitude.

The origin of dominant ωy in the shear layers is relatively simple. The physical origin is
simply the basic vorticity generation at walls and coupled convective transport from vertical
vorticity on the opposite side of cylinder surfaces, as shown in figures 22(b) and 26(b). This is
also consistent with the case of the fully developed pure mode A (Lin and Tan 2019b).

4. Conclusions

In this paper, the initially generated pure mode A as the transitional stage in the 3D wake
transition of a circular cylinder is mainly investigated. Direct numerical simulations with com-
putational spanwise lengths of four diameters are mainly performed in a range of Reynolds
numbers from 100 to 210.

Through the analysis of the force histories and frequency, two wake stages with the occur-
rence of pure mode A are identified, i.e. the initial generation stage and the full development
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stage. In the initially generated stage, the hydrodynamic parameters are almost equivalent to
those in 2D wake flow at a Reynolds number less than 195. In the fully developed stage, these
hydrodynamic parameters all suddenly drop when Re⩾ 195.

From the viewpoint of the spatiotemporal evolution of vorticity and its sign, most of the
features appearing in the present initial generation of pure mode A are consistent with those
in the fully developed stage of pure mode A. For example, in the initially generated stage,
the spatial symmetry of additional vorticities in the near wake shows that streamwise vortices
at opposite signs on both sides of the wake center plane are alternately shed, while vertical
vortices with the same signs are parallel to each other. For special sign relationships between
streamwise and vertical vorticities, the sign of streamwise vorticity is always the same as that
of vertical vorticity in the upper shear layer but opposite to that of vertical vorticity in the lower
shear layer. Therefore, the present numerical simulations confirm that pure mode A actually
appears in the near wake at a low Reynolds number less than 195, even 160∼170, as well as
three-dimensional instability on cylinder surfaces. In summary, the pure mode A appearing
in the near wake is a gradual process, rather than a suddenly changing process accompanied
by a sudden drop in the vortex shedding frequency or the instability of primary vortex cores.
Moreover, with the increasing Reynolds number, additional vorticities in pure mode A first
appear on and near cylinder surfaces, then in the shear layers, and finally in the shedding
spanwise vortices, instead of appearing suddenly in the shedding primary vortices after the
primary vortex cores become unstable.

To capture such a transitional stage in pure mode A at low Reynolds numbers, volume-
RMS vorticities are proposed. As the vorticity varies with the Reynolds number, strengths
of additional vorticities in the wake gradually increase first slowly and then quickly when
Reynolds number gradually approaches 145, then increasingly gradually in a similar manner
in a range of Reynolds numbers from 145 to 195 and finally slowly again at Reynolds number
greater than 195. This clearly presents two critical Reynolds numbers in such a progress. The
first critical Reynolds number Recr0 is 145 (at most), indicating the initial appearance of three-
dimensional instability on and near cylinder surfaces. The second critical Reynolds number
Recr1 is 195 (at most), illustrating the transition of pure mode A from the initial generation
stage to the full development stage.

In the analysis of the formation and shedding sequences of additional vorticities in the shear
layers, there is little difference from those in the fully developed pure mode A because of the
asynchronization in the initial generation of dominant streamwise and vertical components of
vorticity on opposite sides of shear layers in the present initial generation stage.

Finally, according to formation and shedding sequences, the physical origins of domin-
ant additional vorticities in the present initially generated stage are consistent with those in
the fully developed pure mode A. For example, dominant streamwise vorticity in the shear
layers is first induced by the vertical vorticity on the rear surface under the vortex-induced
vortex mechanism and evolves under the inertial convective effect over one half period and
then increases owing to the convective transport of streamwise vorticity on the rear surface
over another half period.
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