
J. Fluid Mech. (2022), vol. 944, A21, doi:10.1017/jfm.2022.489

On the large-Weissenberg-number scaling laws in
viscoelastic pipe flows

Dongdong Wan1,†, Ming Dong2 and Mengqi Zhang1

1Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1,
117575, Singapore
2State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences,
Beijing 100190, PR China

(Received 14 December 2021; revised 19 May 2022; accepted 30 May 2022)

This work explains a scaling law of the first Landau coefficient of the derived
Ginzburg–Landau equation in the weakly nonlinear analysis of axisymmetric viscoelastic
pipe flows in the large-Weissenberg-number (Wi) limit, recently reported in Wan et al.
(J. Fluid Mech., vol. 929, 2021, A16). Using an asymptotic method, we derive a reduced
system, which captures the characteristics of the linear centre-mode instability near the
critical condition in the large-Wi limit. Based on the reduced system we then conduct a
weakly nonlinear analysis using a multiple-scale expansion method, which readily explains
the aforementioned scaling law of the Landau coefficient and some other scaling laws.
Particularly, the equilibrium amplitude of disturbance near linear critical conditions is
found to scale as Wi−1/2, which may be of interest to experimentalists. The current analysis
reduces the numbers of parameters and unknowns and exemplifies an approach to studying
the viscoelastic flow at large Wi, which could shed new light on the understanding of its
nonlinear dynamics.
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1. Introduction

Significant skin drag reduction occurs when a few parts per million of polymers are added
to turbulent Newtonian flows (Toms 1949; Virk 1975). This drag-reduction mechanism has
been successfully applied in the Trans-Alaska pipeline project (Burger, Chorn & Perkins
1980). Drag reduction via polymer ejection around the marine vehicle hull has also been
reported: the marine vehicle’s speed can increase by up to 15 % due to the drag-reducing
effect of polymers (National Research Council 1997). Because of its tremendous economic
potential, continuous research effort has been devoted to studying this phenomenon (White
& Mungal 2008; Graham 2014; Datta et al. 2021; Steinberg 2021; Sánchez et al. 2022).
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In this subject, one of the most important but unsolved problems concerns how a
viscoelastic flow transitions from a laminar state to turbulence. From a general perspective,
a Newtonian pipe flow is linearly stable even at a large Reynolds number (Re) according to
numerical evidence (Davey & Drazin 1969; Meseguer & Trefethen 2003), but it transitions
to turbulence at a low Re (Avila et al. 2011), suggestive of a nonlinear subcritical transition
route at play. Polymer additives enrich the dynamics of the Newtonian flow and provide
new possibilities for flow transition. In particular, polymers render the flow elastic. In the
current literature on viscoelastic flows, two transition routes are actively researched in
a large portion of Reynolds number–Weissenberg number (Re–Wi) space. One of them is
the elastically modified wall mode mediating the classical Newtonian subcritical transition
route when flow elasticity is relatively weak (Shekar et al. 2019, 2021) and the other is a
centre-mode instability causing a supercritical transition to elasto-inertial turbulence (EIT)
when the elastic effect is strong (Garg et al. 2018). The present work studies scaling laws
related to the centre mode in viscoelastic pipe flows.

Garg et al. (2018) first reported the centre-mode instability in viscoelastic pipe flows.
The unstable mode was found based on an Oldroyd-B constitutive model with a phase
speed close to the maximum velocity of the laminar flow. It is believed that this
centre-mode instability can lead the flow to EIT, which is plausibly related to the maximum
drag reduction (Samanta et al. 2013). At the onset of this instability, Re is significantly
smaller than the typical nonlinear critical Re for Newtonian turbulence in a pipe and
Wi is larger than order 1. Scaling laws of the linear critical Reynolds number Rec and
the linear critical wavenumber αc have been derived in Garg et al. (2018), namely
Rec ∼ [E(1 − β)]−3/2 and αc ∼ [E(1 − β)]−1/2 for E(1 − β) � 1 (see also Chaudhary
et al. (2021); here E ≡ Wi/Re is the elasticity number and β the solvent-to-solution
viscosity ratio). The authors explained these scaling laws using a regular perturbation
technique. Instead, by means of an asymptotic technique, Dong & Zhang (2022) analysed
the same flow in the large-Re limit to explain these scaling laws. The authors found a
three-layered structure of the centre-mode instability in both a long-wavelength regime
and a short-wavelength regime. These are linear results. Later, Page, Dubief & Kerswell
(2020) calculated the exact travelling wave solutions in two-dimensional viscoelastic
channel flows using arclength continuation starting from the unstable centre mode (see
also Khalid et al. 2021a). They established the subcriticality of the flow transitioning
to EIT, in addition to the supercritical route. More recently, Buza et al. (2022a), Buza,
Page & Kerswell (2022b) and Morozov (2022) have further calculated the finite-amplitude
travelling wave solutions in the inertialess limit, extending the linear instability found
by Khalid, Shankar & Subramanian (2021b). These solutions are believed to be the
underlying mechanism for the transition to elastic turbulence observed in experiments
(Jha & Steinberg 2020). These nonlinear travelling wave solutions, being saddle points
in a certain state space, can act as the building blocks of the spatially and temporally
chaotic turbulent flow (see reviews by Kerswell 2005; Eckhardt et al. 2006; Graham &
Floryan 2021).

The previous works thus implied possibilities of both subcritical and supercritical
transitions in viscoelastic flows. These two bifurcation routes have also been observed
in experiments. Samanta et al. (2013) first studied experimentally the EIT phenomenon
in a viscoelastic pipe flow. When the polymer concentration is low, they found a clear
hysteresis loop when changing Re, indicating the existence of a subcritical transition
mechanism, whereas, when the polymer concentration is high, a non-hysteresis behaviour
was observed, implying a supercritical transition route, even though the authors warned
that the polymeric flows may be sensitive to disturbances. Chandra, Shankar & Das (2020)
experimentally studied the polymeric flow in microtubes and found a cross-over of the
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transition route from subcritical to supercritical as the polymeric effect strengthens. Recent
experiments by Choueiri et al. (2021) on the transition to EIT in viscoelastic pipe flows also
confirmed the chevron shaped streaks consistent with the linear stability theory (centre
mode) and revealed a secondary instability related to a wall mode at subcritical Re.

As background disturbance inherently exists in experiments, determining the bifurcation
type of a sensitive flow is always difficult. On the other hand, it is enlightening to
systematically study the bifurcation type in viscoelastic pipe flows from the governing
equations (of course, model defects are also inevitable, dealing with which is, however,
beyond the scope of this work; here, we employ the Oldroyd-B model, which has been
used previously in Garg et al. (2018), Chaudhary et al. (2021), etc.). Weakly nonlinear
stability analyses have been traditionally applied to study the flow bifurcation. The theory
was originally proposed by Landau (1944) and developed later by many researchers in the
hydrodynamic stability community (Stuart 1960; Reynolds & Potter 1967; Herbert 1983;
Fujimura 1989). In the context of viscoelastic flows, Morozov & van Saarloos and their
co-workers have applied a weakly nonlinear stability analysis to both pipe and channel
Poiseuille flows of Oldroyd-B fluids and upper convected Maxwell fluids in the inertialess
limit (Meulenbroek et al. 2003, 2004; Morozov & van Saarloos 2019), demonstrating a
generic nonlinear subcritical instability in these flows. Regarding the bifurcation in EIT,
two recent studies, Wan, Sun & Zhang (2021) and Buza et al. (2022b), have performed
weakly nonlinear stability analyses of viscoelastic finite-Re pipe and channel flows,
respectively. Using a multiple-scale expansion method, Buza et al. (2022b) explored the
subcriticality of viscoelastic channel flows to lower Wi required by the linear instability
to reveal the purely elastic nature of the instability (see also Khalid et al. 2021b). Wan
et al. (2021) adopted the same method to determine the bifurcation type of viscoelastic
pipe flows in a large parameter space. They derived a Ginzburg–Landau equation (GLE)
from the Navier–Stokes equations and the polymer constitutive equations around linear
critical conditions. Their theoretical results indicate that, when the viscosity ratio β is
large, the viscoelastic pipe flow experiences a subcritical transition, whereas, when it is
small, the flow will transition supercritically from the laminar state, consistent with the
experimental observations summarised above. Besides, they found a scaling law of the
third-order Landau coefficient a3 in GLE with Wi: the value of a3 scales with 1/Wi at a
fixed β when Wi is sufficiently large (see a3 in (2.22) to follow).

Research on scaling laws has deepened our understanding of the flow transition.
Studies exist on the scaling law of the disturbance amplitude threshold (beyond which
a transition initiates in the subcritical regime) in Newtonian flows. An asymptotic analysis
of the Newtonian channel flow by Chapman (2002) showed that the transitional threshold
amplitude scales with Re−3/2, which was later experimentally verified by Philip, Svizher
& Cohen (2007) (with Re−1.53 for 1000 < Re < 2000). For 2000 < Re < 5000, Lemoult,
Aider & Wesfreid (2012) found the scaling to be Re−1, consistent with the theoretical
prediction by Waleffe & Wang (2005). Similarly, in experiments on Newtonian pipe
flows Hof, Juel & Mullin (2003) uncovered a scaling of Re−1, which also agrees with
theoretical results. In viscoelastic flows, Jovanović & Kumar (2010) derived scaling laws
of the non-modal transient growth in inertialess plane Couette and Poiseuille flows. This
non-modal mechanism is believed to underlie the elastic instability in perturbed channel
flows (e.g. Shnapp & Steinberg 2021). Morozov & van Saarloos (2007) derived a scaling
of Wi−2 for the amplitude threshold in the flow transition at low Re. The derivation was
based on a nonlinear flow instability criterion proposed in Pakdel & McKinley (1996)
for elastic instabilities. Inspired by these works, in this paper we study and explain the
scaling laws in the nonlinear regime of viscoelastic pipe flows (first found by Wan et al.
2021).
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In the following, we will derive a reduced nonlinear system from the original governing
equations at asymptotically large Wi (thus, the reduced system does not depend on Wi
explicitly) using an asymptotic method (§ 2), extending the scaling analysis in Garg et al.
(2018) and Chaudhary et al. (2021). We show that the numerical results of Wan et al.
(2021) indeed converge asymptotically to those of the reduced system when Wi increases
(§ 3). Then, a multiple-scale expansion of the reduced system is conducted to bring out the
scaling law of a3 with Wi−1 after Wi is re-introduced back to the system (and some other
laws, see (3.4)); in particular, a scaling law of the equilibrium amplitude of disturbance is
derived from the GLE. Section 4 concludes the paper with some discussions.

2. Problem formulation

2.1. Governing equations and parameters
We investigate the hydrodynamic stability of incompressible pipe Poiseuille flows based
on the Oldroyd-B fluid model (Bird et al. 1987). The cylindrical coordinate system is
used, with r, θ and z denoting the radial, azimuthal and axial directions, respectively. The
pipe radius R and the centreline velocity Uc are chosen to be the characteristic length and
velocity scales to normalise the system. The non-dimensional perturbation equations are
(Wan et al. 2021)

∇ · u = 0, ∂tu + u · ∇U + U · ∇u + Nu = −∇p + β

Re
∇2u + 1 − β

ReWi
∇ · c, (2.1a)

∂tc + u · ∇C − c · ∇U − (∇u)T · C + U · ∇c − C · ∇u − (∇U)T · c + Nc = − c
Wi

,

(2.1b)

where u = (ur, uθ , uz)
T is the perturbation velocity vector, c = (crr, crθ , crz, cθθ , cθz, czz)

T

the conformation tensor and p the pressure. U = (0, 0, Uz) and C = (1, 0, WiU′
z, 1, 0, 1 +

2Wi2U′2
z ) are the corresponding laminar base states, where Uz = 1 − r2 and prime ′

denotes differentiation with respect to r. The nonlinear terms are Nu = u · ∇u and Nc =
u · ∇c − c · ∇u − (∇u)T · c. The controlling parameters include the viscosity ratio β =
νs/(νs + νp) (where νs is solvent viscosity and νp polymer viscosity), the Reynolds number
Re = UcR/(νs + νp) and the Weissenberg number Wi = λUc/R (λ: polymer relaxation
time). We define the elasticity number as E ≡ Wi/Re = λ(νs + νp)/R2, characterising the
elastic effects of polymers. The no-slip boundary condition u(r = 1) = 0 is applied at
the pipe wall. Note that, for the conformation tensor, it is not necessary to specify its
boundary condition, because the linear operator in (2.1b) does not contain r-derivative
terms (like ∂/∂r) of c (although such terms do exist in the nonlinear term Nc, which,
in a weakly nonlinear framework, is constructed from the linear eigenvectors, as shown
below in (A3)). Following previous works (Garg et al. 2018; Chaudhary et al. 2021; Zhang
2021), we are interested in the axisymmetric disturbance because only this mode is found
to be linearly unstable. Therefore, the symmetric conditions are imposed at the pipe centre,
ur(r = 0) = u′

z(r = 0) = 0.
The equation system (2.1) will hereafter be referred to as the original equation system

and we use subscript ‘F’ to mark it. Introducing γ F =(urF, uzF, pF, crrF, crzF, cθθF, czzF)T ,
the equation system can be recast to a compact form of

(MF∂t − LF)γ F = NF, (2.2)
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where the weight matrix MF, the linear operator LF and the nonlinear operator NF can
readily be derived from (2.1). The linear mode is governed by the homogeneous system

(MF∂t − LF)γ F = 0, (2.3)

which admits the normal mode wave-like solution

γ F = γ̃ F(r) eiα(z−ct) + c.c.. (2.4)

Here, γ̃ F is the linear eigenfunction, i is the imaginary unit, α is the axial wavenumber,
c = cr + ici is the complex phase speed (ω = αc is the complex frequency) with αci (or
ωi) representing the linear growth rate and c.c. represents the complex conjugate of its
preceding term. By substituting (2.4) into (2.3), one obtains the following linear eigenvalue
problem for the flow:

(cM̃F − L̃F)γ̃ F = 0, (2.5)

where M̃F and L̃F can be derived from MF and LF, respectively, by replacing ∂z with iα.

2.2. Asymptotic analysis
Now, we conduct an asymptotic analysis of the centre-mode instability by assuming Wi �
1 and E = O(1) (Re � 1). The polymer concentration is taken to be of an intermediate
level, i.e. the viscosity ratio (β, 1 − β) = O(1). Solving the linear eigenvalue problem
(2.5), we can obtain the neutral curves in the α–Re plane. Figure 1 shows an example for
β = 0.65, which is adapted from figure 3(c) of Wan et al. (2021). For a given Wi, the
enclosed region by the solid line represents the unstable zone, and its onset at the lowest
Re, marked by the red star, represents the linear critical condition. Increase of Wi leads to a
higher critical Reynolds number Rec and a lower critical wavenumber αc, as shown by the
red arrow. The control parameters of our interest pertain to these linear critical conditions.
From the figure, one can understand that the disturbances to be studied (especially for
high Wi) are of small α, indicating a long-wavelength nature. Moreover, under these linear
critical conditions, the elasticity number E is of O(1), as illustrated in figure 11(e) of
Wan et al. (2021). In the figure, we also show the neutral curves for fixed E where the
linear critical conditions at low E, as traced by Chaudhary et al. (2021), are related to the
short-wavelength regime and will not be considered here.

In our asymptotic analysis, we assume Wi−1 � α, which is consistent with the linear
critical conditions in figure 1. Thus, a small parameter, σ = (αWi)−1 � 1, can be
introduced. The complex phase speed is then expanded as

c = 1 + σc1 + · · · , (2.6)

where c1 is the phase speed correction to be solved for. From the balance of the
leading-order terms in the linear system (2.5), we obtain that, in the bulk region where r =
O(1), (ũrF, p̃F, c̃rrF, c̃rzF, c̃zzF) ∼ (α, 1, σ−1, α−1σ−2, α−2σ−2)ũzF. For example, from
the continuity equation, we know that ũ′

rF ∼ iαũzF; thus, we have ũrF ∼ αũzF. The
leading-order perturbation field can then be rescaled as

(urF, uzF, pF, crrF, crzF, czzF) = (αur, uz, p, σ−1crr, α
−1σ−2crz, α

−2σ−2czz) + · · · .

(2.7)

The long-wavelength nature of the instability determines that the radial momentum
equation, to the leading order, reduces to 0 = −p′

F; so cθθF does not appear in the
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Figure 1. Neutral curves in the α–Re plane at viscosity ratio β = 0.65 for viscoelastic pipe flows based on the
Oldroyd-B fluid model. The solid curves are computed for fixed Wi, with the linear critical conditions (Rec and
αc) marked by the red stars; following the red arrow direction αc decreases and is smaller than one, implying
the long-wavelength nature of the centre mode. The dot-dashed curves are obtained for fixed E (as shown in
figure 18 of Chaudhary et al. (2021)). Adapted from figure 3(c) in Wan et al. (2021).

leading-order equation system. Because c is close to unity, we introduce the relation

∂t = −∂z + σ∂τ , (2.8)

where τ is a time scale related to c1, recalling the expansion of c in (2.6). Noting that in
the long-wavelength limit, both t, τ and z are of O(α−1), we introduce

(t̄, τ̄, z̄) = α(t, τ, z) = O(1). (2.9)

With the above assumptions, applying (2.7) in (2.2) and neglecting the O(Wi−1) terms,
we obtain the following asymptotic equations (referred to as the reduced system):

0 = u′
r + ur/r + ∂z̄uz, 0 = −p′, (2.10a,b)

σ∂τ̄ uz = 2rur + r2∂z̄uz + σβE(u′′
z + u′

z/r) − ∂z̄p + (1 − β)E(c′
rz + crz/r + ∂z̄czz) − Nuz,

(2.10c)

σ∂τ̄ crr = 2σu′
r − 4r∂z̄ur + r2∂z̄crr − σcrr − Ncrr , (2.10d)

σ∂τ̄ crz = 2σur − 2σ ru′
r + 8r2∂z̄ur + σ 2u′

z − 2σ r∂z̄uz − 2σ rcrr + r2∂z̄crz − σcrz − Ncrz,

(2.10e)

σ∂τ̄ czz = −16rur − 4σ ru′
z + 16r2∂z̄uz − 4rcrz + r2∂z̄czz − σczz − Nczz, (2.10f )

where the nonlinear terms are

Nuz = uru′
z + uz∂z̄uz, Ncrz = urc′

rz + uz∂z̄crz − σcrru′
z − crz∂z̄uz − crzu′

r − czz∂z̄ur,
(2.11a)

Ncrr = urc′
rr + uz∂z̄crr−2crru′

r − 2σ−1crz∂z̄ur, Nczz =urc′
zz + uz∂z̄czz −2crzu′

z − 2czz∂z̄uz,
(2.11b)

with no-slip boundary conditions applied at the pipe wall r = 1 and symmetric conditions
enforced at the pipe axis r = 0, i.e. ur(1) = uz(1) = 0 and ur(0) = u′

z(0) = 0. In (2.10) and
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(2.11), the O(σ ) and O(σ 2) terms are retained. If they are neglected in the bulk region, then
we would obtain a solution which is singular at both r = 1 and r = 0. Thus, a wall layer
and a central layer must be taken into account, being similar to the asymptotic structure in
Dong & Zhang (2022). Such an unstable mode is found to be possible only when E ∼ σ−1,
corresponding to the long-wavelength centre mode for Re � Rec in Dong & Zhang (2022).
However, when Re is close to Rec, the three layers merge together, and so the O(σ ) and
O(σ 2) terms are kept. It should be noted that, now, we only have β, E and σ as control
parameters in (2.10), compared with β, Wi, Re, α in the original system (2.5). Introducing
γ = (ur, uz, p, crr, crz, czz)

T , the compact form of the asymptotic system (2.10) now reads

(M∂τ̄ − L)γ = N . (2.12)

Here, M , L and N can be easily deduced by matching (2.12) with (2.10) and thus are not
shown here.

2.3. Weakly nonlinear analysis of the asymptotic equation system
Following Wan et al. (2021), we perform a standard multiple-scale expansion of the
reduced equation system (2.12). To this end, the following expansions are applied as a
series of a small quantity δ:

∂τ̄ = ∂τ̄0 + δ∂τ̄1 + δ2∂τ̄2 + O(δ3), ∂z̄ = ∂z̄0 + δ∂z̄1 + O(δ2), (2.13a,b)

γ = δγ 1 + δ2γ 2 + δ3γ 3 + O(δ4), E = Ec − Ecδ
2 + O(δ4), (2.13c,d)

where Ec = Wi/Rec is the linear critical elasticity number. We use the notation δ to
differentiate the present expansion from that in Wan et al. (2021), where the small
expansion parameter is ε for the original equation system. The corresponding variables
in that paper will be added with a subscript ‘origi’ in the following discussion. Their
(2.10) is copied below:

∂t = ∂t0,origi + ε∂t1,origi + ε2∂t2,origi + O(ε3), ∂z = ∂z0,origi + ε∂z1,origi + O(ε2), (2.14a,b)

γ = εγ 1,origi + ε2γ 2,origi + ε3γ 3,origi + O(ε4), Re = Rec + ε2 + O(ε4). (2.14c,d)

The relation between these two expansion methods is briefly explained as follows. From
(2.14d), we can get equivalently 1/Re = 1/Rec − (1/Re2

c)ε
2 + O(ε4). Multiplying this

expansion with Wi leads to

Wi
Re

= Wi
Rec

− Wi
Re2

c
ε2 + O(ε4), i.e. E = Ec − Ec

1
Rec

ε2 + O(ε4). (2.15)

Comparing the expansion (2.15) with the present expansion (2.13d) shows that these two
parameter expansion methods are related by

δ2 = Re−1
c ε2. (2.16)

The operators in (2.12), which depend on τ̄ and z̄, are expanded as L = L0 + δL1 +
δ2L2 + O(δ3), N = δ2N2 + δ3N3 + O(δ4). Plugging these expansions along with those
in (2.13) into (2.12), and collecting terms of the same order, a series of equations can be
obtained:

(M∂τ̄0 − L0)γ 1 = 0 at order δ, (2.17a)
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(M∂τ̄0 − L0)γ 2 = (L1 − M∂τ̄1)γ 1 + N2 at order δ2, (2.17b)

(M∂τ̄0 − L0)γ 3 = (L2 − M∂τ̄2)γ 1 + (L1 − M∂τ̄1)γ 2 + N3 at order δ3. (2.17c)

Their solutions are assumed to take the wake-like form:

γ 1 = A1γ̃ 1Ew + c.c., γ 2 = |A1|2γ̃ 20 + (∂z̄1A1γ̃ 21Ew + c.c.) + (A2
1γ̃ 22E2

w + c.c.),
(2.18a)

γ 3 = (A1γ̃ 31,1 + ∂z̄1 z̄1A1γ̃ 31,2 + |A1|2A1γ̃ 31,3)Ew + c.c. + · · · , (2.18b)

where Ew = exp(iz̄0 − ic1τ̄0), γ̃ with subscripts are the eigenfunctions, and A1 =
A1(z̄1, τ̄1, τ̄2) is the complex amplitude of the leading-order wave γ 1. We use A to denote
the amplitude of the total disturbance γ . Then, from the expansion (2.13c), we know that
(to the leading order)

A ≈ δA1. (2.19)

Similarly, from (2.14c) one obtains A ≈ εA1,origi.
Using (2.18) in (2.17) leads to a set of equations (and their complex conjugates which

are omitted here) to be solved in the spectral space:

(−ic1M̃ − L̃(1)
0 )γ̃ 1 = 0, (2.20a)

∂z̄1A1(−ic1M̃ − L̃(1)
0 )γ̃ 21 = (L̃◦

1∂z̄1 − M̃∂τ̄1)A1γ̃ 1, (2.20b)

[(−ic1 + ic∗
1)M̃ − L̃(0)

0 ]γ̃ 20 = Ñ20, (−2ic1M̃ − L̃(2)
0 )γ̃ 22 = Ñ22, (2.20c)

(−ic1M̃ − L̃(1)
0 )(A1γ̃ 31,1 + ∂z̄1 z̄1A1γ̃ 31,2 + |A1|2A1γ̃ 31,3)

= (L̃2E − M̃∂τ̄2)A1γ̃ 1 + (L̃◦
1∂z̄1 − M̃∂τ̄1)∂z̄1A1γ̃ 21 + |A1|2A1Ñ31,

(2.20d)

where the superscript ∗ denotes the complex conjugate, and the explicit expressions of the
various operators are given in Appendix A.

Equation (2.20a) with homogeneous boundary conditions forms an eigenvalue problem.
Equation (2.20c) with non-singular linear operators is readily solvable. In order to ensure
solutions for (2.20b) and (2.20d), the solvability conditions must be enforced to eliminate
the secular terms on their right-hand sides. To do this, the adjoint of the linear problem
(2.20a) is introduced as (based on the inner product defined in Wan et al. (2021) via
integration by parts Luchini & Bottaro 2014)

(ic∗
1M̃† − L̃(1)†

0 )γ̃
†
1 = 0, (2.21)

with M̃† and L̃(1)†
0 described in Appendix A. Then, the solvability condition applied to

(2.20d) leads to
∂τ̄2A1 = a1A1 + a2∂z̄1 z̄1A1 + a3|A1|2A1, (2.22)

where the coefficients are

a1 = 〈L̃2Eγ̃ 1, γ̃
†
1〉s

〈M̃ γ̃ 1, γ̃
†
1〉s

, a2 = 〈(L̃◦
1 + cgM̃)γ̃ 21, γ̃

†
1〉s

〈M̃ γ̃ 1, γ̃
†
1〉s

,

cg = −〈L̃◦
1γ̃ 1, γ̃

†
1〉s

〈M̃ γ̃ 1, γ̃
†
1〉s

, a3 = 〈Ñ31, γ̃
†
1〉s

〈M̃ γ̃ 1, γ̃
†
1〉s

.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.23a–d)
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The operation 〈 f̃ , g̃〉s = ∫ 1
0 f̃ · g̃∗r dr is an inner product defined in the spectral space.

The derived equation (2.22) is the third-order GLE for the asymptotic reduced equations
in the large-Wi limit, to be compared with the GLE for the original equations derived
in Wan et al. (2021). Of particular interest is the first Landau coefficient a3 = a3r + ia3i
whose real part a3r indicates the primary bifurcation of the laminar flow around its linear
critical conditions; its sign being positive (negative) denotes a subcritical (supercritical)
bifurcation. To facilitate the comparison and discussion regarding the GLE, we re-write
the GLE for the original equations from (2.24) of Wan et al. (2021) (note that A in Wan
et al. (2021) is denoted as A1,origi here):

∂t2,origiA1,origi = a1,origiA1,origi + a2,origi∂z1,origiz1,origiA1,origi + a3,origi|A1,origi|2A1,origi,

(2.24)

where the time scale t2,origi and space scale z1,origi have been given in (2.14a,b).
This equation can also be expressed in time scale t, space scale z with amplitude
A by inserting the transformation ∂t ≈ ε2∂t2,origi , ∂zz ≈ ε2∂z1,origiz1,origi and that for the
disturbance amplitude A ≈ εA1,origi into (2.24) as

∂tA = ε2a1,origiA + a2,origi∂zzA + a3,origi|A|2A. (2.25)

An important issue regarding the evaluation of a3 in (2.22) is its uniqueness, i.e. γ̃ 1
should be normalised to make a3 uniquely determined (Herbert 1980). We follow the
normalisation method in Wan et al. (2021), where the linear eigenfunction is normalised
so that the square root of the total disturbance energy (kinetic energy plus elastic energy)
equals one (see Appendix B). Therefore, the disturbance amplitude |A| (or equivalently
δ|A1| as in (2.19)) in our expansion has the physical meaning of square root of the total
disturbance energy. We hope that this consideration may facilitate comparisons of our
results with experiments in the future.

At the end of this section, we would like to discuss the limit of the Oldroyd-B model
adopted in this work. The Oldroyd-B model allows for an infinite extension of polymers
and does not account for the shear-thinning effects which can be significant at high
Wi. The more realistic FENE-P model (finitely extensible nonlinear elastic model with
Peterlin closure) overcomes these drawbacks. In the FENE-P model, a new parameter Lmax
characterising the maximum statistical finite extensibility of polymers is introduced; the
model reduces to the Oldroyd-B model when Lmax → ∞. In viscoelastic pipe flows, the
centre-mode instability may disappear when Lmax is sufficiently small, as illustrated in
table 1 of Zhang (2021). Without a linear critical condition, the multiple-scale expansion
method ceases to work. An alternative is the amplitude expansion method enabling a
weakly nonlinear expansion of the disturbance around a weakly damped mode (instead
of a neutral mode for the multiple-scale expansion) as in Meulenbroek et al. (2003) (such
a scenario is also coined bifurcation from infinity). It would be interesting to see whether
scaling laws to be presented exist in the results of the amplitude expansion method.

3. Numerical method and results

3.1. Numerical method and code validation
The reduced equations including (2.20a) and its adjoint, (2.20b) and (2.20c) are solved
using a spectral collocation method. We avoid placing a grid point at r = 0 following
Mohseni & Colonius (2000) and construct the differentiation matrices using the even–odd
properties of the variables (Trefethen 2000), i.e. ur and crz are odd and uz, p, crr and czz
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Figure 2. (a) Comparison of σc1i as a function of σ at different E and β = 0.5. Results from the original
equations are obtained at a large Wi = 650 and then converted according to σc1 = ω/α − 1. (b) Contours of
the imaginary part of c1 (i.e. c1i) in a (σ, E) plane at β = 0.5 with the black line being the neutral curve and
the red star marking the linear critical condition. (c) Linear critical conditions Ec and σc as functions of β.
Note that, in panel (c), Rec and αc are first obtained from the original equations at a large Wi = 650 and then
converted to Ec = Wi/Rec and σc = 1/(αcWi) for the comparison with the asymptotic results.

even for the axisymmetric mode. Validation in solving the original equations (in linear
and weakly nonlinear phases) can be found in Wan et al. (2021). Computations of the
reduced asymptotic equations have been verified by comparing the results with those from
the original equations as supplemented in Appendix C.

3.2. Determining the linear critical conditions
The multiple-scale expansion is commonly performed around linear critical conditions,
which guarantees the convergence of the expansion (Fujimura 1989). Next, we show
how to determine these conditions. Figure 2(a) presents the linear growth rate of the
most dangerous mode in the linear asymptotic system (2.20a) for a wide range of σ at
β = 0.5. As we can see, a good agreement of the results from the two equation systems
is achieved. Moreover, each curve shows a local peak and the peak corresponds to the
linear critical condition when E = 0.16547 (this critical condition is marked by the red
star in panel (b)). Figure 2(b) shows the contours of c1i in the σ–E plane for β = 0.5,
with the black curve being the neutral curve. The red star at the right end of the loop
marks the linear critical condition (with Ec = 0.16547 and σc = 0.04060), which agrees
well with Wi/Rec = 0.16543 and 1/(αcWi) = 0.04058 for the original equation system at
β = 0.5, Wi = 650, Rec = 3929.166947 and αc = 0.037909. Because E = Wi/Re and that
in the original equations increasing Re brings out instability, in the asymptotic equations
decreasing E renders the flow more unstable from the red star.

One of the advantages of the reduced system is that the number of governing parameters
is reduced. Reflected in determining the critical conditions, we see that, at a given β, in the
original equations the critical condition needs to be determined at each Wi, whereas there
is only one critical condition in the σ–E plane in the asymptotic equations. The variations
of Ec and σc with β are plotted in figure 2(c), where results obtained from the original
equations at Wi = 650 are converted accordingly and then superposed to illustrate the
good agreement. We can also see that with increasing β, the critical Ec increases whereas
the critical σc decreases.

3.3. Bifurcations and the scaling laws at large Wi

3.3.1. Explaining the scaling law of the first Landau coefficient
The GLE (2.22) governs the evolution of disturbance amplitudes around the linear critical
conditions. Based on the original equations, Wan et al. (2021) found that both subcritical
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Figure 3. Scalings for GLE coefficients in the original equations and in the asymptotic equations. (a) Raw data
of a3r,origi; (b) scaled data a3r,origiWi and results of a3r,asymp (larger β needs higher Wi to accurately present the
scaling); (c) scaled data a1r,origiWi2 and results of a1r,asympEc. The imaginary parts of these coefficients also
follow these scalings (not shown). In panels (a) and (b) data points above the horizontal dashed line correspond
to subcritical bifurcations (a3r > 0) and those below indicate supercritical bifurcations (a3r < 0).

and supercritical bifurcations exist in axisymmetric viscoelastic pipe flows of Oldroyd-B
fluids in a large parameter space, and it is mainly the viscosity ratio β (related to polymer
concentration) that determines the bifurcation type. They reported a large-Wi scaling law
for a3 (see their figure 13), which cannot be explained by a simple scaling analysis (as
adopted by Chaudhary et al. (2021) to explain some linear scalings in their study). In the
following, we use the derived reduced system to illustrate the scaling law.

Figure 3(a) shows the raw data of a3r of the original equations (symbols). After being
multiplied by Wi (symbols in panel (b)), a3r either exactly collapse on or gradually
approach the a3r of the asymptotic equations (black curve in panel (b)) when Wi increases,
for all the β investigated. The advantage of the reduced system is more manifest when β is
larger, which requires an even larger Wi to present the scaling (see the red dot at β = 0.9).
In the large-Wi limit, the flow bifurcation type is subcritical at large viscosity ratios β

(small polymer concentration) and changes to be supercritical when β is small (large
polymer concentration). The bifurcation boundary is βcrit ≈ 0.785, which is approximately
the same as that in Wan et al. (2021) for large Wi = 650. The link between a3 obtained
from the asymptotic equations and that from the original equations can be more clearly
seen in the multiple-scale expansion of these two sets of equations, as follows.

Noting that the GLE in (2.22) is in time scale τ̄2 and space scale z̄1, our first step to
build the link is to convert these scales to time scale t2 and space scale z1. To this end, we
introduce the following expansions:

∂τ = ∂τ0 + δ∂τ1 + δ2∂τ2 + O(δ3), ∂z = ∂z0 + δ∂z1 + O(δ2), (3.1a,b)

∂t̄ = ∂t̄0 + δ∂t̄1 + δ2∂t̄2 + O(δ3), ∂t = ∂t0 + δ∂t1 + δ2∂t2 + O(δ3). (3.1c,d)

Then, from t̄ = αt in (2.9), we obtain α∂t̄ = ∂t. By comparing the terms of O(δ2) in
the expansions of ∂t̄ in (3.1c) and ∂t in (3.1d), we have α∂t̄2 = ∂t2 . From the relations
in (2.8) and (2.9), we know that ∂t̄ = −∂z̄ + σ∂τ̄ ; considering the expansions of these
partial derivatives in (3.1c) and (2.13a,b), we obtain ∂t̄2 = σ∂τ̄2 at O(δ2). Therefore,
∂τ̄2 = σ−1∂t̄2 = σ−1α−1∂t2 = (αWi)α−1∂t2 = Wi∂t2 . Using this relation in (2.22) results
in (note that for the spatial derivative ∂z̄1 z̄1 = α−2∂z1z1 is used)

Wi∂t2A1 = a1A1 + α−2a2∂z1z1A1 + a3|A1|2A1. (3.2)
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The second step is to further transform (3.2) into a GLE in time scale t and space scale
z with amplitude A. Inserting the transformation ∂t ≈ δ2∂t2 , ∂zz ≈ δ2∂z1z1 and that for the
disturbance amplitude A ≈ δA1 into (3.2) leads to

∂tA = Wi−1δ2a1A + Wi−1α−2a2∂zzA + Wi−1a3|A|2A. (3.3)

This equation is to be compared with (2.25). Comparing (3.3) with (2.25) term by term
results in (recall the relation in (2.16))

a1,origi = Wi−1Re−1
c a1,asymp = Wi−2Eca1,asymp, (3.4a)

a2,origi = Wi−1α−2a2,asymp, a3,origi = Wi−1a3,asymp, (3.4b,c)

where the subscript ‘asymp’ is additionally added to denote the coefficients in the
asymptotic GLE (2.22), (3.2) and (3.3).

Since a3,asymp for a given β is fixed at the critical state (σc, Ec), the relation (3.4c)
implies a3,origi is proportional to Wi−1, in agreement with the scaling law observed
numerically in Wan et al. (2021) at large Wi. Thanks to the asymptotic equation system,
we are able to easily identify more scaling results in the weakly nonlinear phase (see
(3.4a, b)). For example, figure 3(c) shows the scaling law for the coefficient a1 in GLE.
We plot a1r,origiWi2 and a1r,asympEc for comparison. They are found to agree well when
Wi is sufficiently large, confirming the relation (3.4a) since Rec = E−1

c Wi by definition,
i.e. a1,origi is proportional to Wi−2.

3.3.2. Scaling law of the equilibrium amplitude Ae
According to the third-order GLE (Eq. (2.22) in the present asymptotic analysis and
(2.24) in the original equations), finite-amplitude disturbances are required to trigger the
subcritical transition, meaning that the flow is linearly stable but could be nonlinearly
unstable. In this case, we can use the equilibrium solution of the GLE to quantify the
amplitude threshold beyond which the transition occurs. For supercritical bifurcations,
infinitesimal disturbances can cause the flow transition and the third-order nonlinearity
stabilises the flow, leading to a saturated state whose amplitude could also be characterised
by the equilibrium solution of the GLE. Based on the above scaling laws of the coefficients
in the GLE, a scaling of the corresponding equilibrium amplitude of disturbance can be
derived in the neighbourhood of linear critical conditions either from the original GLE (not
shown here) or from the asymptotic GLE. We illustrate the derivation from the asymptotic
GLE as follows.

Starting from the asymptotic third-order GLE (3.3), if the diffusion term of the
disturbance amplitude is ignored, the equilibrium amplitude Ae (i.e. the modulus of A)
can be obtained by setting ∂tA = 0 as (note that to calculate Ae only the real parts of the
coefficients are used; recall the parameter expansion E = Ec − Ecδ

2 + O(δ4) in (2.13d))

0 = δ2a1r|A| + a3r|A|3 → Ae = |A| =
√

−δ2 a1r

a3r
=

√
a1r

a3r

E − Ec

Ec
=

√
a1r

a3r

Rec − Re
Re

.

(3.5)

Here, for supercritical bifurcations Re > Rec, a1r > 0 and a3r < 0; for subcritical
bifurcations Re < Rec, a1r > 0 and a3r > 0. Therefore, Ae is always a real number. This
corresponds to the finite-amplitude equilibrium solution (near linear criticality) in the
axisymmetric viscoelastic pipe flows calculated using GLE. Under the assumptions that
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Wi � 1 and E = O(1) (thus Re � 1) and that the above analysis is restricted to the vicinity
of the linear critical conditions (|Rec − Re| � Rec), there is the following scaling law of
the equilibrium amplitude Ae in terms of Wi:

Ae =
√

a1r

a3r

Rec − Re
Re

≈
√

a1r

a3r

Rec − Re
Rec

=
√

a1rEc(Rec − Re)
a3rWi

∝ Wi−1/2. (3.6)

As mentioned in the introduction, in both Newtonian channel and pipe flows, scaling
laws of the amplitude threshold have been reported in subcritical regimes and favourable
agreements between theoretical predictions (Chapman 2002; Waleffe & Wang 2005) and
experimental observations (Hof et al. 2003; Philip et al. 2007; Lemoult et al. 2012)
have been achieved. Scaling laws in viscoelastic flows have also been reported in the
literature such as Jovanović & Kumar (2010) and Morozov & van Saarloos (2007),
both concerning elastic instabilities at vanishing Re. The scaling law of the equilibrium
amplitude Ae ∝ Wi−1/2 derived in this work pertains to the EIT transition (in the parameter
range that Wi � 1, E = O(1)). This result can be extended to other flow quantities such as
the mean-flow distortion (δ2|A1|2γ̃ 20 ≈ |A|2γ̃ 20 = A2

e γ̃ 20 ∝ Wi−1 at equilibrium states),
which may be of interest to experimentalists who can measure the disturbance amplitude
in either the flow field or the conformation tensor field.

4. Discussion and conclusions

This work derived an asymptotic nonlinear system for the centre mode (Garg et al. 2018) at
large Wi in axisymmetric viscoelastic pipe flows. After applying the asymptotic analysis,
we reduce the number of parameters from 4 (β, Wi, Re and α in the original system)
to 3 (β, E and σ in the reduced system) and the number of unknowns from 7 to 6
(as the component cθθ is decoupled). Detailed comparisons between these two systems
show that the asymptotic equations can well capture the linear and weakly nonlinear
characteristics of the flow near linear critical conditions when Wi is large enough. More
importantly, the scaling law a3 ∝ Wi−1 when Wi is large, which is numerically found
using the original equations by Wan et al. (2021), can be successfully explained via the
multiple-scale expansion of the reduced system, circumventing much numerical difficulty
in resolving large-Wi flows and revealing the inherent relations of the Landau coefficients
in the two systems. The reduced system also enables us to easily discover and explain
more scaling results for a1, a2 and Ae. In particular, because the equilibrium amplitude Ae

of the disturbance around the linear critical conditions scales with Wi−1/2, the amplitude
of the mean-flow distortion follows A2

e ∝ Wi−1. Future works can consider confirming the
scaling laws we identified and searching for nonlinear equilibrium solutions to the reduced
asymptotic equations for large-Wi flows.

The current asymptotic analysis exemplifies an approach to studying the large-Wi and
large-Re viscoelastic flow (which is often a terrible struggle for conventional methods).
In the Wi–Re schematic showing various transition routes to EIT (see e.g. Graham 2014;
Datta et al. 2021; Sánchez et al. 2022), our work represents a rare probe into the top-right
corner of the parameter space, differentiating itself from most of the existing works.
The limitation of this work lies in the assumptions such as the elasticity number E
being of order 1, the usage of the simple Oldroyd-B fluid model and the restrictions
confined to the neighbourhood of the linear critical conditions. However, to some degree,
it is such assumptions that facilitate the observation of the scaling laws. In a broader
perspective, searching for scaling laws in a fluid system has always been an adventurous
and rewarding endeavour for fluid dynamicists. The scaling laws can neatly provide
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the trend of parametric effects in the experimentally/numerically unavailable regime.
Our results extend the linear scaling laws first observed by Garg et al. (2018) in viscoelastic
pipe flows to the nonlinear regime, utilising the theoretical tools developed in Wan et al.
(2021) and Dong & Zhang (2022). We hope that our results will evoke more future work
along this direction and contribute to the general understanding of the nonlinear dynamics
in viscoelastic flows.
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Appendix A. Operators in spectral space for the multiple-scale expansion

The various operators appearing in (2.20) are described as follows. The weight matrix
M̃ = diag[0, σ, 0, σ, σ, σ ], and L̃(l)

0 with l = (0, 1, 2) can be deduced from the linearised
equations of (2.10) by replacing ∂z̄ there with li. The non-zero elements of L̃◦

1 are

L̃◦
1,22 = r2, L̃◦

1,23 = −1, L̃◦
1,26 = (1 − β)Ec, L̃◦

1,32 = 1,

L̃◦
1,41 = −4r, L̃◦

1,44 = r2, L̃◦
1,51 = 8r2, L̃◦

1,52 = −2σ r,
L̃◦

1,55 = r2, L̃◦
1,62 = 16r2, L̃◦

1,66 = r2,

⎫⎪⎬
⎪⎭ (A1)

where the two-digit subscript after the comma indexes row and column, respectively. The
non-zero elements of L̃2E are

L̃2E,22 = −σβEc(∂rr + r−1∂r), L̃2E,25 = −(1 − β)Ec(∂r + r−1),

L̃2E,26 = −i(1 − β)Ec.

}
(A2)

The nonlinear operators Ñ20, Ñ22 and Ñ31 in (2.20) are given as

Ñ20 = Ñ f (γ̃ 1, γ̃
∗
1, −1) + Ñ f (γ̃

∗
1, γ̃ 1, 1), Ñ22 = Ñ f (γ̃ 1, γ̃ 1, 1),

Ñ31 = Ñ f (γ̃ 1, γ̃ 20, 0) + Ñ f (γ̃ 20, γ̃ 1, 1) + Ñ f (γ̃
∗
1, γ̃ 22, 2) + Ñ f (γ̃ 22, γ̃

∗
1, −1).

}

(A3)

The function Ñ f is defined as Ñ f ( f̃ 1, f̃ 2, q) = −(0, ñuz, 0, ñcrr , ñcrz, ñczz)
T with its

elements (corresponding to the nonlinear terms in (2.11) in spectral space) being

ñuz(f̃ 1, f̃ 2, q) = f̃1,ur f̃
′
2,uz

+ iqf̃1,uz f̃2,uz,

ñcrr(f̃ 1, f̃ 2, q) = f̃1,ur f̃
′
2,crr

+ iqf̃1,uz f̃2,crr − 2f̃1,crr f̃
′
2,ur

− 2σ−1iqf̃1,crz f̃2,ur ,

ñcrz(f̃ 1, f̃ 2, q) = f̃1,ur f̃
′
2,crz

+ iqf̃1,uz f̃2,crz

− σ f̃1,crr f̃
′
2,uz

− iqf̃1,crz f̃2,uz − f̃1,crz f̃
′
2,ur

− iqf̃1,czz f̃2,ur ,

ñczz(f̃ 1, f̃ 2, q) = f̃1,ur f̃
′
2,czz

+ iqf̃1,uz f̃2,czz − 2f̃1,crz f̃
′
2,uz

− 2iqf̃1,czz f̃2,uz .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A4)

The second subscripts in f̃1,· and f̃2,· mark the corresponding components in the column
vectors f̃ 1 and f̃ 2.
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On the large-Wi scaling laws in viscoelastic pipe flows

In the adjoint problem (2.21), M̃† = M̃ (self-adjoint), and the non-zero elements in
L̃(1)†

0 include

L̃(1)†
0,12 = 2r, L̃(1)†

0,13 = −∂r, L̃(1)†
0,14 = −2σ∂r − 2σ r−1 + 4ir,

L̃(1)†
0,15 = 6σ − 8ir2 + 2σ r∂r, L̃(1)†

0,16 = −16r, L̃(1)†
0,22 = −ir2 + σβEc(∂rr + r−1∂r),

L̃(1)†
0,23 = −i, L̃(1)†

0,25 = 2iσ r − σ 2∂r − σ 2r−1, L̃(1)†
0,26 = −16ir2 + 4σ r∂r + 8σ,

L̃(1)†
0,31 = ∂r + r−1, L̃(1)†

0,32 = i, L̃(1)†
0,44 = −ir2 − σ, L̃(1)†

0,45 = −2σ r, L̃(1)†
0,52 = −(1 − β)Ec∂r,

L̃(1)†
0,55 = −ir2 − σ, L̃(1)†

0,56 = −4r, L̃(1)†
0,62 = −i(1 − β)Ec, L̃(1)†

0,66 = −ir2 − σ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A5)

Appendix B. Normalisation of the linear eigenfunction γ̃ 1

The linear eigenvalue problem in (2.20a) can be arbitrarily scaled. To make the third-order
Landau coefficient a3 in (2.22) uniquely determined, γ̃ 1 should be normalised (Herbert
1980). The normalisation condition used in Wan et al. (2021) is (their (2.26))√

1
2

∫ 1

0

((|ũrF1|2+|ũzF1|2
)+ 1 − β

ReWi
(|g̃rrF1|2+2|g̃rzF1|2+|g̃θθF1|2 + |g̃zzF1|2)

)
r dr = 1.

(B1)

We here follow their normalisation condition in that a different normalisation will result
in values of a3 that cannot be quantitatively compared with the results there, although the
sign of a3r remains unchanged.

It should be noted that in (B1) the parameters β, Re and Wi are used, while we
have parameters β, σ and E in the reduced equation system (2.10). In order to make a
comparison, we choose a sufficiently large Wi = 5000 as our study focuses on Wi � 1.
With Wi given, at a linear critical condition (Ec, σc) for a certain β, the linear critical
Re and wavenumber can be obtained as Rec = Wi/Ec and αc = 1/(σcWi). Then the
linear eigenfunction γ̃ 1 = (ũr1, ũz1, p̃1, c̃rr1, c̃rz1, c̃zz1)

T in the present analysis can be
normalised as√

1
2

∫ 1

0

(
(|αcũr1|2 + |ũz1|2) + 1 − β

RecWi
(|g̃rr1|2 + 2|g̃rz1|2 + |g̃zz1|2)

)
r dr = 1. (B2)

Here, the usage of the polymer deformation tensor components g̃rr1, g̃rz1 and g̃zz1 follows
the geometric decomposition of the conformation tensor c proposed by Hameduddin et al.
(2018) and further developed in Hameduddin, Gayme & Zaki (2019) and Hameduddin &
Zaki (2019). With this geometric decomposition, the elastic energy can be unambiguously
defined. These polymer deformation tensor components are calculated according to the
relation ⎛

⎜⎝
g̃rr1

g̃rz1

g̃zz1

⎞
⎟⎠ =

⎛
⎜⎝

Crr 0 0
Crz S 0

C2
rz/Crr 2SCrz/Crr S2/Crr

⎞
⎟⎠

−1 ⎛
⎜⎝

σ−1
c c̃rr1

α−1
c σ−2

c c̃rz1

α−2
c σ−2

c c̃zz1

⎞
⎟⎠ , (B3)

where S =
√

CrrCzz − C2
rz; Crr = 1, Crz = WiU′

z and Czz = 1 + 2Wi2U′2
z . The additional

coefficients αc and σc in (B2) and (B3) are due to the rescaling process described in (2.7).
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(a) (b)

Figure 4. (a) Comparison of the eigenspectra obtained from the linear asymptotic equations (2.20a) (at β =
0.5, σ = 0.04 and E = 0.16) and the linear original equation (2.5) (at β = 0.5, Wi = 800, Re = 5000 and α =
0.03125). The eigenvalue c1 in the asymptotic equations is converted to the complex frequency ω = α(1 + σc1)

for the comparison. (b) The eigenfunction ũz1 (pertaining to the unstable mode) of the linearised original
equations approaches that of the linear asymptotic equations with increasing Wi at β = 0.5.

For a comparison with results from the original equation system, rescaling back is needed.
Note that in the above normalisation condition, the conformation tensor component c̃θθ1
(and so g̃θθ1) does not appear any longer.

Appendix C. Numerical validation by comparing with the original system

The present calculation is validated by comparing with the results obtained from the
original equation system as follows. Figure 4(a) shows a favourable agreement between the
eigenspectrum obtained from the linear asymptotic equations (2.20a) for the viscoelastic
pipe flow at β = 0.5, σ = 0.04, E = 0.16 and that obtained from the linear original
equation (2.5) with β = 0.5 and a large Wi = 800 (so Re = Wi/E = 5000 and α =
1/(σWi) = 0.03125); the inset highlights the unstable mode. The eigenfunction ũz1
(corresponding to the unstable mode) at β = 0.5, σ = 0.04 and E = 0.16 is plotted
in figure 4(b). The eigenfunction in the original equations approaches that of the
linear asymptotic solutions as Wi increases, confirming the accuracy of the asymptotic
prediction.
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