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Abstract
A continuum membrane model is presented to describe the pull-in instability and eigenfrequency variations of a gra-
phene resonator under an electrostatic loading. The pull-in instability leads to the device failure and the eigenfrequency
variation determines its frequency tuning range, which are among the most important aspects in a micro/nanomechanical
resonator design. The von Kármán kinematic assumptions are used for the membrane large deflection. The geometric
nonlinearity resulting from a large deflection and the physical nonlinearity resulting from an electrostatic loading are the
two competing mechanisms: the geometric nonlinearity stiffens the membrane structure and the physical nonlinearity
softens it. The effects of these two competing mechanisms together with the initial tensile strain on the pull-in instability
and eigenfrequency variations are vividly demonstrated. With the aim of achieving a higher accuracy, a multimodal com-
putation method together with its convergence study and error analysis is also presented.
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1. Introduction

Because of its exceptional mechanical strength [1,2] and capability to sustain large electrical current [3],
graphene is an excellent material for the nanoelectromechanical systems (NEMSs) [4,5]. Graphene is also
with large Young’s modulus, small mass density, high thermal conductivity, material robustness and

Corresponding author:

Ya-pu Zhao, State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuanxi Road,

Beijing 100190, China.

Email: yzhao@imech.ac.cn

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.dox.org/10.1177/10812865221101120
journals.sagepub.com/home/mms
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10812865221101120&domain=pdf&date_stamp=2022-06-07


stability, and so on, which thus makes it an ideal material for a mechanical resonator [1,4]. The (high)
natural frequency/eigenfrequency and quality factor are the two key parameters to evaluate the perfor-
mance of a mechanical resonator [6–8]. The (first) eigenfrequency of a graphene-based mechanical reso-
nator can be extremely high due to its excellent material properties and size effect. For example, the first
eigenfrequency of a circular graphene resonator with a diameter of 500 nm easily exceeds one Giga-
Hertz (GHz, 109Hz) [4]. Many practical applications of the micro/nanomechanical resonators, such as
mass sensing [8–10], have been demonstrated. Furthermore, micro/nanomechanical resonators are with
very high eigenfrequencies due to their small dimensions, which makes them the few ‘‘macroscopic’’ sys-
tems capable of demonstrating the quantum effect [11], which plays a more and more important role in
the fundamental research. The graphene-based mechanical resonator is an important and ideal device in
the quantum-electromechanical systems (QEMSs) [4]. Because of its high mechanical strength, a
graphene-based mechanical resonator can take a very large tensile stress, which enhances both the eigen-
frequency and quality factor [7,8,12].

Although graphene physically is the discrete system of a single layer carbon atoms tied together by
the covalent C–C bonds [3], the validity and effectiveness of the continuum elasticity modeling for gra-
phene have been demonstrated [13–15]. The doubly clamped rectangular graphene resonator [1] usually
suffers the inhomogeneous strains and ill-defined mode shapes [5], which presents significant challenges
in the resonator applications [16]. Furthermore, because of the strong interactions between the edges of
a rectangular graphene resonator and the supporting substrate [17], the energy dissipation is very signifi-
cant, which thus results in a low quality factor [18]. A circular graphene-based resonator can be easily
formed by simply depositing a graphene on a substrate with a circular hole [13,14]. The edge and corner-
free circular graphene resonator can alleviate the above inhomogeneity and energy dissipation problems
[19]. Here, the continuum model of a circular membrane is applied to the graphene-based resonator
under a large built-in stress. Since a suspended structure and an actuating electrode form a parallel capa-
citor, the electrostatic force provides a convenient, efficient and fast-response actuation mechanism in
many NEMS devices [20–23]. The electrostatic force is physically nonlinear as it is inversely proportional
to the gap distance between the structure and electrode. Because of its softening effect, the electrostatic
force finally leads to an instability called pull-in [20] at which a structure snaps to contact with the elec-
trode. On the other side, when the maximum center displacement of a suspended plate/membrane
exceeds its thickness, the linear theory becomes inaccurate and nonlinear theory must be adopted [24–
26]. The nonlinear theory here is based on the von Kármán kinematic assumptions, which in essence
introduce more items into strains to account for the large deflections of a structure [24–26]. The geo-
metric nonlinearity arises from the large deflection, which stiffens a structure through the (nonlinear)
effects of the mid-plane stretching and/or curvature. As the membrane deflection varies with the electro-
static loading, the physical and geometric nonlinearities also change. The competition between the physi-
cal and geometric nonlinearities results in the eigenfrequency variation, or say, the frequency tuning [14],
which is very important in a resonator application.

Around the pull-in instability points at which the structure effective stiffness becomes zero, a tiny var-
iation of loading induces an enormous change of deflection [20]. Therefore, it imposes a significant chal-
lenge of accurately computing the structure deflection and eigenfrequency around those pull-in points
[27]. The membrane model incorporating the nonlinearities of both the electrostatic loading and large
deflection is presented together with a multimodal computation method. The computation consists of
two major parts: the computations of equilibrium and eigenfrequency. The eigenfrequencies are com-
puted after the Taylor series expansion on the electrostatic force and the linearization around the corre-
sponding equilibria. In this study, two different eigenfrequency variation patterns are found: the first
eigenfrequency experiences the monotonic decrease and all other higher eigenfrequencies are the
decrease–increase pattern as the electrostatic force increases. The aforementioned two nonlinearities are
the major mechanisms responsible for the eigenfrequency variation patterns. To ensure the computa-
tional accuracy, the convergence study and truncation error analysis on the mode and the Taylor series
expansion numbers are presented. There are many studies which simplify a continuum resonator as the
1-degree-of-freedom (1-DOF) model of the Duffing equation [28]. The resonator vibration described by
the Duffing equation can indeed yield good results in certain scenarios [28]. However, the 1-DOF
Duffing equation, which is often obtained by the one mode approximation [20], contains only the cubic
nonlinearity. For this particular scenario of a membrane with large deflection and electrostatic loading,
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our multimodal computation method shows that the minimum of four modes and the terms up to the
sextic nonlinearity must be maintained to reach the convergence and satisfying accuracy. Our computa-
tion shows that there are many modes participating in the membrane deflection and the modal ampli-
tudes varying with the electrostatic loading. This modal amplitude variation also means the shape
change of the membrane deflection. The fixed deflection shape of a membrane at different loadings [14],
which significantly simplifies the computation, can thus introduce an error more or less [25]. Besides a
straightforward method for the eigenfrequency computation, our multimodal computation method also
provides a systematic way of evaluating the computational accuracy.

2. Model development

For the large deflection of a circular plate/membrane, the von Kármán kinematic assumptions in the
polar coordinate system of (r, u) are the following [24,25]:

er =
Nr � nNt

Eh
=

∂u

∂r
+

1

2

∂w

∂r

� �2

+ eo, et =
Nt � nNr

Eh
=

u

r
+ eo, ð1Þ

where er and et are the radial and circumferential strains, respectively; Nr and Nt are the radial and cir-
cumferential tensions per arc length, respectively; u and w are the in-plane and out-of-plane displace-
ments, respectively; E and n are Young’s modulus and Poisson’s ratio, respectively; eo is the initial
tensile strain and eo = (1� n)No=(Eh) (No is the initial tension per arc length). In the above equation, u
and w are implicitly assumed axisymmetric, i.e., u and w are independent of the azimuth angle (u). In
the plate/membrane vibration, the nonaxisymmetric u�dependent modes are the degenerate ones [29].
In the degenerate modes, one eigenfrequency/resonant frequency corresponds to infinite eigenvectors/
mode shapes [29], which makes their identification in the spectrum analysis extremely challenging [30]
and thus enormous difficulty in the membrane resonator sensor applications [16]. In the applications of
the mass resonator sensor, the quintessential problem is to solve the inverse problem of determining the
adsorbate mass by the shifts of eigenfrequencies [8–10], which becomes extremely difficult if not impos-
sible with the presence of the degenerate modes [16]. Therefore, systematic measures have been carried
out to ensure no occurrence of the degenerate modes in a membrane resonator sensor [30–32]. Two
effective ones are in the fabrication process: to eliminate/lessen the surface contamination [30] and
peeling-off at the membrane clamped end [32]. Both measures in essence are to ensure the axisymmetry
of a membrane structure. The above axisymmetric assumptions of u and w are to exclude the degenerate
modes.

Figure 1(a) is the schematic diagram of a graphene deposited on a substrate with a circular hole and
the related dimensions are shown in Figure 1(b). The kinetic energy of the graphene membrane is as fol-
lows [33]:
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where a is the radius of the suspended circular graphene, and m is the mass per unit area and m = rh (r is
the density and h is the membrane thickness). The membrane stretching energy of Vs is given as follows
[24,25]:

Vs = 2p

ða
0

Nrer

2
+

Ntet

2

� �
rdr =

pEh

1� n2

ða
0

e2
r + e2

t + 2neret

� �
rdr: ð3Þ

The graphene sheet is with some bending stiffness and thus bending energy [2]. While the graphene
sheet is often under remarkably high in-plane tension due to either the residual stress [2,12] or the inten-
tional enhancement to improve the resonator performance [5,12]. The in-plane tension is so high and
even higher than the fracture strength of most materials [2,12]. The tension inside a micro/
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nanomechanical resonator enhances both the eigenfrequencies and quality factor, which are the
much sought-after properties in the applications of a resonator [6,7]. In this study, the initial tensile
strain eo ranges from 10–3 to 10–2. With such large in-plane tension, the stretching energy is several
orders of magnitude larger than the bending energy [16]. Therefore, a graphene sheet is modeled as a
membrane rather a plate by ignoring the bending energy [5,12,14].

The external work done by the electrostatic force (We) is the following [20]:

We = 2p

ða
0

qwrdr = p

ða
0

eV 2w

d � wð Þ2
rdr, ð4Þ

where q is the (transverse) electrostatic force per unit area and q = eV 2=2(d � w)2 (e is the dielectric con-
stant, V is the applied voltage, and d is the gap distance between the graphene and electrode). As seen in
Figure 1(b), the applied voltage V are in two parts as follows: V = VDC + VAC. Here, VDC and VAC are
the direct current (DC) and the alternating current (AC) voltages, respectively. In the applications of
the devices driven by an electrostatic force, VDC is used to (statically) deform the device structure to a
certain equilibrium and VAC is then to drive the device to vibrate around that equilibrium [34].

The governing equation of the graphene membrane vibration is derived by the Hamilton principle,
i.e., d

Ð t2
t1

(T � Vs + We)dt = 0. During the derivation, the substitution of er and et in equation (1) into the
Vs expression of equation (3) is quite lengthy and messy, which is omitted here. The governing equations
are directly given as follows:

2a

VDC

VAC

w(r)

d

r

(a)

(b)

Figure 1. (a) Schematic diagram of a graphene layer deposited on a substrate with a circular hole. (b) The dimensions of the
graphene and electrode.
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During the derivations, the relation of eo = (1� n)No=(Eh) is used. Besides the coupling between w
and u, there are two characteristics of the above governing equations. First, there are both the quadratic
and cubic nonlinearities in equation (5). The quadratic terms are:
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In comparison, there is only quadratic nonlinearity in equation (6), which is:
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:

Those nonlinearities are all geometric ones due to the membrane large deflection, which stiffens a
structure, or say, increases its eigenfrequencies. Second, the nonlinear electrostatic force (eV 2=2(d � w)2)
only shows in equation (5). The effect of electrostatic force on the in-plane displacement u is indirect
through the quadratic terms of w in equation (6). The nonlinearity of electrostatic force is a physical
one. As a structure deflects, the gap distance (d � w) between the electrode and structure shrinks.
Therefore, the electrostatic force increases and then eventually leads to an instability called pull-in
Dorfmann and Ogden [35]. At a critical pull-in point, the graphene will suddenly collide with the elec-
trode, which is similar to the scenario of the bifurcation of the spherical shape of a dieletric balloon
under electric actuation into a pear shape [36]. The competition between the geometric and physical non-
linearities causes some interesting variation patterns of the membrane eigenfrequencies as shown later in
details. The above two membrane governing equations in essence are the von Kármán plate model with-
out the bending stiffness [25]. As discussed above, the plate/membrane geometric nonlinearity arises
from the large deflection, which is dependent on the magnitude of externally applied load. This nonli-
nearity dependence on the external loads rather than the plate/membrane intrinsic properties, such as
plate dimensions and material properties, leads to a problem called as ‘‘a hierarchy of two-dimensional
models’’ [37]. This hierarchy problem is overcome by the uniformly valid asymptotic plate theory devel-
oped by Dai and his collaborators [38,39]. The expression of ‘‘uniformly valid’’ means that the asympto-
tic plate theory is independent on the external loads [38,39]. Furthermore, an (implicit) assumption in
the von Kármán plate model is the linear elasticity as indicated by equation (1). A more general model
called the consistent finite-strain plate theory based on the nonlinear elasticity and three-dimensional
modeling was developed by Dai and Song [40].

The Hamilton principle also gives the following four boundary conditions:

∂w

∂r
0ð Þ= 0, w að Þ= 0, u 0ð Þ= 0, u að Þ= 0: ð7Þ
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The following quantities are introduced to nondimensionalize the governing equations:
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Now equations (5) and (6) are nondimensionalized as the following:
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Here, the dimensionless parameters of ais (i=1–5) are defined as follows:
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here a1 indicates the (dimensionless) initial strain/stress; a4 is the (dimensionless) electrostatic loading;
a2, a3, and a5 characterize the membrane geometry. To compute the eigenfrequencies of the membrane,
we divide W and U separately into two parts as the following:

U t, jð Þ= Uo jð Þ+ U1 t, jð Þ, W t, jð Þ= Wo jð Þ+ W1 t, jð Þ, ð12Þ

where Uo(j) and Wo(j) are the equilibria (under different DC electrostatic loadings); U1(t, j) and
W1(t, j) are the small oscillations around the equilibria due to the AC loading. The following governing
equations for Uo(j) and Wo(j) are derived from equations (9) and (10) by eliminating the time-related
terms:
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The eigenfrequency is the concept for a linear system; we need to linearize equations (9) and (10).
First, the electrostatic force in equation (9) is linearized via the Taylor series expansion as the following:
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o
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where M is the number of the Taylor series expansions. In conjunction with equations (12)–(15), the lin-
earizations of equations (9) and (10) around the equilibria of Uo and Wo are carried out. After some re-
arrangements, equation (9) is now linearized as the following:
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Similarly, equation (10) is now linearized to become the following:
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Due to the coupling between the in-plane and out-of-plane displacements, solving equations (13) and
(14) is ‘‘notoriously difficult’’ [41], which presents a two-point boundary value problem [25].
Furthermore, the eigenvalue problems of equations (16) and (17) also become very complex and diffi-
cult because of the coupling. Here, we de-couple the governing equations to simplify the problem. For
sure, the de-coupling sacrifices some accuracy. While, as shown in Appendix 1, the first eigenfrequency
of the in-plane displacement (U1) is even larger than the tenth of the out-of-plane displacement (W1).
This huge eigenfrequency difference can also be inferred from equation (17): the linear stiffness terms
are associated with a5, which is defined in equation (11) and is a very large number especially for a gra-
phene structure. Dynamically, when the lower out-of-plane modes are excited, which is also the applica-
tion scenario of a graphene resonator [14], there is almost no in-plane displacement excited because of
this huge eigenfrequency difference. This huge eigenfrequency difference leads to a rather weak cou-
pling, or say, the in-plane displacements can be treated ‘‘adiabatically’’ [14], which is the physical
mechanism to de-couple the governing equation without too much accuracy to be sacrificed [33].

For the governing equation of the out-of-plane displacement (W1), the decoupled equilibrium equa-
tion of equation (13) is as follows:
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The linearized equation of motion of equation (16) now becomes the following:
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The membrane equilibrium of Wo as given in equation (18) needs to be obtained first. With the substi-
tution of the Wo solution into equation (19), the eigenfrequencies can then be found. Here, the Galerkin
method is used for the numerical computation, which assumes the following expression for Wo and W1:

Wo jð Þ=
XN

j = 1

AjJo hjj
	 


, W1 j, tð Þ=
XN

j = 1

aj tð ÞJo hjj
	 


, ð20Þ

where Jo is the first kind of the Bessel function of order 0 [42]; hjs are the zero points of Jo and their val-
ues are given in Appendix 1. Here, Jo(hjj) is the axisymmetric mode of a circular membrane [29], which
is independent of the azimuth angle. Ajs are the constants, which is the static modal amplitude to be
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determined for different electrostatic loadings of a4; aj(t) is the dynamic modal amplitudes; N is the
mode number. By timing jJo(hij) and integrating from 0 to 1, equation (18) becomes the following:
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By the substitution of Wo into equation (20) and application of the orthogonality property of Jo[29],
equation (21) becomes a nonlinear algebraic equation set of Ajs, which is solved by the Newton–
Raphson method [43]. It is noticed that in equation (18) or equation (21), there is neither any lineariza-
tion process nor the Taylor series expansion involved. To expand the nonlinear electrostatic force term
into the Taylor series is a ‘‘quick and dirty’’ solution as commented by Gutschmidt [27], which may
cause the poor accuracy even large number of modes used in the computation. The nonlinear form of
equation (18) or equation (21) is to ensure the computation accuracy of the equilibrium. In contrast,
eigenfrequency is the concept in a linear system, the linearization and the Taylor series expansion must
be used to obtain the linear equation of equation (19).

Once the equilibrium Wo is solved via equation (21), or say, the values of Ajs are obtained, we substi-
tute the Wo solution into equation (19) and apply the Galerkin method again, which gives the following
equation:

M€~a+K~a= 0, ð22Þ

where~a= (a1, a2, . . . , aN )T is the modal amplitude vector of W1; M is the mass matrix, which is diagonal
due to the orthogonality property of the Bessel function [29]. The elements of M are with the following
expressions:

M ij =

Ð 1

0
jJ2

o hijð Þd j, i = j

0, i 6¼ j,

�
ð23Þ

The expression for stiffness K is rather complex, which is broken into three parts as
K=KI +KII +KIII . Here, KI is the linear stiffness terms associated with a1, which is also diagonal due
to the orthogonality property as given as follows:

KI
ij = � a1

ð1
0

jJo hijð Þ 1

j

dJo hjj
	 

dj

+
d2Jo hjj

	 

dj2

2
4

3
5d j =

a1h2
i

Ð1
0

jJ2
o hijð Þd j, i = j

0, i 6¼ j :

8<
: ð24Þ

Compared with the mass matrix, KI
ij = a1h2

i Mij. During the derivation, the following Bessel function
properties are used [42]:

dJo hjj
	 

dj

= � hjJ1 hjj
	 


, j
d2Jo hjj

	 

dj2

= hjJ1 hjj
	 


� h2
j Jo hjj
	 


: ð25Þ

where J1 is the first kind of the Bessel function of order 1 [42]. KII is the nonlinear stiffness terms associ-
ated with a3. In conjunction with equations (19) and (23), KII is given as follows:
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KII
ij = a3hj
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Mathematically, KII is positive and nondiagonal due to the coupling effect. Physically, KII is due to
the membrane large deformation, which is the geometric nonlinearity and stiffens a structure.

Here, KIII is the physical nonlinear terms associated with a4 of electrostatic force and its elements are
with the following expression:

KIII
ij = � a4

ð1

0

jJo hijð ÞJo hjj
	 


1 +
XM
k = 1

k + 1ð ÞkW k�1
o

" #
d j: ð27Þ

In comparison with the positive KII , KIII is negative and nondiagonal. Physically, KIII is associated
with the electrostatic loading, which softens a structure by reducing its stiffness [20]. As defined in equa-
tion (11), a4}(VDC + VAC)2, a4 in general is a time-varying parameter because of VAC. Therefore, the stiff-
ness changes with time and the system vibration is a parametric one [44]. While, the linearizations of the
electrostatic force and the governing equations of equations (9) and (10) around the equilibria are based
on that jVDCj � jVACj, which also means jW1j � jWoj. Therefore, equation (22) is a linear vibration with
the constant stiffness. When VAC is relatively large as compared with VDC, instead of linearization, the
parametric vibration [44] or the direct numerical computation approach [45] must be adopted.

3. Results and discussion

For the graphene membrane in this study, the following parameters are taken: radius a = 2:5× 10�6 m,
thickness h = 3:4× 10�10 m, Poisson’s ratio n = 0:165, the gap distance between the membrane and elec-
trode d = 2× 10�7 m. The above parameters are the typical ones used in the scenario of a graphene layer
deposited on a substrate [15]. With these parameters and according to equation (11), the following three
dimensionless parameters in this study are fixed as: a2 = 588:2853, a3 = 47:0588, and a5 = 7352:9412.

Before examining the results, we would like to address the bending stiffness/energy issue. As men-
tioned above, the graphene sheet is modeled as a membrane by ignoring its bending stiffness/energy.
Due to its small thickness, the graphene bending stiffness is extremely small, e.g., the bending stiffness of
a monolayer graphene varies in the range of 1;20 eV (or 1:6× 10�19;3:2× 10�18 Nm) [46,47]. Besides
the bending stiffness, the Gaussian stiffness, which measures the (structural) resistance to form a non-
null Gaussian curvature and is with the same magnitude of the bending stiffness [46], also plays a crucial
role in determining the graphene bending. The bending or say, the rippling of a graphene is the very rea-
son for its existence as a two-dimensional material. However, the bending of a graphene changes the sys-
tem initial configuration and thus the overall stiffness [15], which may vary differently for different
devices and fabrication processes. Therefore, it requires the calibration/measurement for each device and
this imposes significant challenges in a practical application. As mentioned before, exerting the in-plane
tension is an effective method of overcoming the above issue [5,12], whose benefits are two-fold: one is
to increase the eigenfrequencies of a graphene, which can improve both the resonator sensitivity and res-
olution [7]; the other is to flatten the graphene, which makes the impact of initial configuration much
less. With the increase in the in-plane tension, the bending contribution to both the system energy and
deflection becomes less and less. The key question here is: how large the in-plane tension should be when
we can ignore the bending and thus model the graphene sheet as a membrane? Sheplak and Dugundji
[48] defined a dimensionless parameter to address this issue for a circular plate, which is given as follows:
k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Noa2=D

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12(1 + n)eo

p
(a=h). Here, No, eo, and n as defined in equation (1) are the initial tension

per arc length, initial tensile strain, and Poisson’s ratio, respectively. D = Eh3=12(1� n2) is the plate
bending stiffness (E is Young’s modulus). This dimensionless number k demarcates the structure defor-
mation behavior as follows [48]: the plate behavior dominates for k\1; the membrane behavior domi-
nates for k . 20 and 1\k\20 is the transition zone. For a given plate structure, a, h, and n are fixed;
only eo can vary by exerting tension. To reach k = 20, the corresponding strain is eo = 5:292× 10�7 with
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the above graphene parameters of a = 2:5× 10�6 m, h = 3:4× 10�10 m, and n = 0:165. This tensile strain
of eo = 5:292× 10�7 is rather small, which physically means that a very small tension here can transform
the graphene deformation behavior from a plate to a membrane. The mathematical reason is that the
ratio of a/h is huge. In our computation, two strain values of eo = 5× 10�3 and eo = 1× 10�2 are used,
which correspond to k = 1944 and k = 2749, respectively. These huge k values ensure the dominance of
the membrane behavior and negligible contribution of bending.

Figure 2 examines the convergence of Wo(0) on the mode number N. Here, Wo(0) is the membrane
center displacement, which is also the maximum one. The initial strain is set as eo = 5× 10�3, which cor-
responds to a1 = 42:8309. The membrane equation of equilibrium is equation (21) and the membrane
displacement of W (j) is expanded by the mode shapes as given in equation (20). In general, more mode
shapes can more accurately describe the membrane deflection with the price of (much) more computa-
tion. In Figure 2, the mode number N is taken as N=1–5. The (dimensionless) electrostatic force a4 is
increased to the critical point of the pull-in instability. The pull-in instability is the saddle-node type of
instability, at which the structure effective stiffness becomes zero and the structure suddenly collapses to
collide with an electrode [20], which usually leads to the device failure. Here, the physical picture of the
pull-in instability can be described as follows: larger voltage means both larger electrostatic force and
deflection, which leads to a larger elastic restoring force. Within the certain loading range, an equili-
brium is reached because of the balance of the electrostatic and elastic restoring forces; however, the elec-
trostatic force increases more rapidly with the increase in voltage and the pull-in instability is the critical
point at which the elastic restoring force can no longer balance the electrostatic one. With the increase in
voltage, the pull-in instability is ensured to occur and the collision between a structure and an electrode
follows subsequently [20]. One outstanding characteristics of Figure 2 is that around the pull-in point,
the displacements computed by different mode numbers all fluctuate. The inset provides a closer look at
the fluctuations. Physically, the increase of the electrostatic load decreases the effective stiffness of the
system, which becomes zero at the pull-in point [20]. Mathematically, this causes the Jacobian matrix
used in the Newton–Raphson method to be ill-conditioned [43], which is responsible for the fluctuations.
There is a way of lessening the numerical fluctuation by selecting only the odd symmetric modes in the
computation [20]. In most practical applications, the applied voltage should be (far) below the pull-in
one, and furthermore, the applied voltage is a control parameter. In contrast to the displacement fluctua-
tion, there is little change of the critical pull-in voltage (a4) and the control parameter is thus accurately
computed. The a4 value monotonically decreases from 41.625 to 40.975 as N changes from 1 to 5. The
plots of N=4 and N=5 (almost) overlap except a tiny area around the pull-in point. The conclusion
drawn from Figure 2 is that N ø 4 is the least mode number required to ensure the computation conver-
gence and the mechanism are explained in Figure 3.

In Figure 3, the modal amplitudes of Ajs as the functions of the electrostatic force a4 are presented.
Here, to further illustrate the convergence mechanism, six modes of N=6 is used. Clearly,
jA1j. jA2j. jA3j. jA4j. jA5j. jA6j is seen in Figure 3, which is also the mechanism that ensures the
convergence as shown in Figure 2. The dominance of A1 is also obvious and the inset provides a closer
examinations on other modal amplitudes. The amplitudes of and A3 and are one order and two orders
of magnitudes smaller than that of A1. In comparison, the amplitudes of A4, A5, and A6 are three orders
of magnitudes smaller, and moreover, A5 and A6 (almost) overlap. In other words, when N=4 further
increasing mode can only lead to very little modification of the membrane deflection, which is the very
mechanism to mathematically ensure the convergence. All our following computations are with N=6.
In Figure 3, the variations of the modal amplitudes as the functions of electrostatic load a4 indicate that
the membrane deflection shape changes under different load. One major mechanism causing the (large)
error in the computation of the plate/membrane large deflections results from the deviation of the
assumed deflection shape from a real one [25]. For example, the membrane deflection shape is often
assumed as Wo(j) = Wo(0)(1� j2) [14,25], which can only capture the real deflection accurately in cer-
tain loading range. Furthermore, this assumed shape of Wo(j) = Wo(0)(1� j2) is more suitable for the
membrane deflection under a uniform pressure load not for a nonuniform electrostatic load [25]. The
participation of the higher order modes in the membrane deflection reflects this nonuniform property.
Because the axisymmetry of the circular membrane is assumed in equation (20), the membrane deflec-
tion is still axisymmetric with the participation of the higher order modes. The axisymmetry of a circu-
lar graphene membrane can be broken by the grain boundaries [14], and furthermore, it is not unusual
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for a nonlinear system that an asymmetric deflection occurs in a symmetric structure under a symmetric
load. The (axi)symmetry-breaking deflection can further distort the deflection shape, which makes the
assumed shape less accurate.

Figure 4 shows the five plots of the membrane deflections with the different initial stretching strains
ranging from eo = 10�3to10�2. In Figure 4, the membrane deflections are plotted as the functions of a4

Figure 2. The convergence study of the pull-in instability on the mode number (N). Here, the initial strain eo = 5× 10�3; Wo(0) is
the membrane center displacement and a4 is the dimensionless voltage. The inset is a closer look at the membrane center
deflection around the critical pull-in point.

Figure 3. Modal amplitudes as the function of a4 with the initial strain of eo = 5× 10�3 and mode number of N = 6.
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and the pull-in instabilities are marked as the circles. One trend is clearly seen: larger initial strain eo

corresponds to a larger pull-in voltage of a4. The pull-in voltages of a4 are 15.125, 27.65, 40.975, 54.4,
and 74.3 for eo = 10�3, 3× 10�3, 5× 10�3, 7× 10�3, and 10–2, respectively. Physically, the stiffness of a
membrane results from its initial tension/strain. Therefore, with a larger eo, the membrane stiffness is
larger and thus withholds a larger pull-in voltage, which in essence provides a larger tuning range. The
other trend observed is that the slopes of the membrane deflection becomes larger with the increase in
a4, which physically indicates the decrease of the membrane effective stiffness. At the pull-in points, the
slopes approach infinity and such an infinite slope is the hallmark of the structure effective stiffness
becoming zero [20]. It is emphasized here that the pull-in points are the static ones, which give the upper
limits [44]. In a real application, even when the electrical voltage is increased very slowly, there is still
the initial effect which makes the pull-in to occur at a lower electrostatic loading of a4 [21].

Once Wo(j) is solved from equation (21) and substituted into equation (22), the eigenfrequencies are
obtained. In equation (21), the electrostatic force keeps the nonlinear form of a4=(1�Wo)2 in order to
achieve a higher accuracy in the equilibrium computation. While, the electrostatic force has to be linear-
ized in equation (22) to obtain the eigenfrequency and this linearization process is given in equation
(15). The accuracy of equation (15) depends on the expansion number M of the Taylor series. The con-
vergence study of the membrane first eigenfrequency (v1) on the expansion number (M) ranging from
M=3 to 7 is presented in Figure 5. Here, the membrane is with the same initial strain of eo = 5× 10�3

as those in Figures 2 and 3. The computation differences are mainly around the pull-in point, i.e., a4

around 40. The reason is that the value of Wo is large around the pull-in point and larger M, or say,
more expansion terms are required to guarantee the accuracy of the Taylor series. Actually, M=3 is
the case that the Taylor series is only expanded to the cubic term, which is often used to (qualitatively)
demonstrate the mechanism of the pull-in instability [20]. Clearly, due to the large deflection of Wo here,
the M=3 expansion is not accurate enough when a4 . 35. It is observed that in Figure 5, a larger M
leads to a smaller v1. As mentioned above, the electrostatic force softens a structure and a larger M
means the less truncation error of the electrostatic force, which enhances the softening effect and thus
smaller eigenfrequencies. In contrast to the monotonically increasing slope of the membrane deflection
in Figures 2 and 4, v1 here decreases monotonically with the increase in a4, which is another way of
indicating the reduction of the structural effective stiffness. Similarly, v1 approaching zero at the pull-in
point indicates the zero effective stiffness, which is also often used in structural mechanics to tell the
occurrence of an instability. As also seen in Figure 5, the plots of M=6 and 7 overlap and a conver-
gence is reached, or say, the effect of the higher order terms is ignorable when M ø 6. From now on, all
our eigenfrequency computations are based on M=7 and N=6.

Figure 4. The pull-in instabilities of the membrane with difference initial strains (eos). The circles indicate the critical pull-in points.
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The first six eigenfrequencies are plotted in Figures 6 and 7 for the membrane with the two different
initial strains of eo = 5× 10�3 and eo = 10�2, respectively. These two different initial strain scenarios
share the same pattern on the eigenfrequency variation: the first eigenfrequency (v1) decreases monoto-
nically with the increase in a4 and all the other higher eigenfrequencies (from v2 to v6) decrease first and
then increase. Their differences are in the variation magnitudes: v1 with eo = 5× 10�3 decreases from
v1 = 15:738 to zero as a4 increases from 0 to the pull-in point of 40.975; v1 with eo = 10�2 decreases
from v1 = 22:257 to zero as a4 increases from 0 to the pull-in point of 74.3. It is noticed that both v1s
experience an abrupt decrease as a4s approach their critical pull-in points. For the second eigenfre-
quency, v2 with eo = 5× 10�3 decreases first from v2 = 36:126 at a4 = 0 to the minimum of v2 = 35:73 at
a4 = 15:225 and then increases to v2 = 37:981 at the pull-in point of a4 = 40:975; in comparison, v2 with

Figure 5. The convergence study of the first resonant frequency (v1) on the expansion number of the Taylor series (M). Here, the
mode number is six (N = 6).

Figure 6. The first six eigenfrequencies as the functions of a4 with eo = 5× 10�3 and N = M = 6.
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eo = 10�2 decreases first from v2 = 51:091 at a4 = 0 to the minimum of v2 = 50:188 at a4 = 57:35 and
then increases to v2 = 50:316 at the pull-in point of a4 = 74:3. For the case of eo = 5× 10�3, the second
eigenfrequency is larger at the pull-in point as compared with that at the zero voltage; in comparison,
the second eigenfrequency of the eo = 10�2 case is smaller at the pull-in point.

Here, an analysis on the pattern of the above eigenfrequency variations is presented. As mentioned
above, there are two competing mechanisms on the system stiffness/eigenfrequency: the electrostatic
force and large deflection. In equation (19), the electrostatic force is a physical nonlinearity. Those terms
associated with a4 are due to this physical nonlinearity, which softens the structure and thus causes the
smaller eigenfrequencies and pull-in instability. As seen in Figure 1, around the pull-in point, the slopes
of the deflection curves increase dramatically toward infinity. This slope increase indicates the reduction
of the system (effective) stiffness. At the pull-in point, the mechanical restoring force can no longer bal-
ance the electrostatic force and the slope becomes infinity, which indicates the zero effective stiffness. As
the effective stiffness decreases with the increase in the electrostatic force, v1 as seen in Figures 6 and 7
decreases. The large deflection is the geometric nonlinearity. Those terms associated with a3 in equation
(19) are due to this geometric nonlinearity, which gives an additional stiffness. The geometric nonlinear-
ity of the structural large deflection can be divided into two categories: the mid-plane stretching and cur-
vature nonlinearities. Both of these two geometric nonlinearities stiffen a structure. The competition
between the physical and geometric nonlinearities leads to the monotonic decrease of v1 because the
physical nonlinearity of the electrostatic force is a dominant one for the large initial strain case [14].
However, the geometric nonlinearity stands out in the higher modes, which leads to the increase of v2 to
v6 around the pull-in points. This competition results in the monotonic decrease of the first eigenfre-
quency and the decrease-increase of the other higher eigenfrequencies. This competition between the
physical and geometric nonlinearities is also frequently encountered in structural mechanics. Besides the
competition between the two nonlinearities, the weak mode coupling also has some (indirect) contribu-
tion. When two eigenfrequencies are very close, they can either cross or diverge abruptly without a
crossing (called veering). The closeness of two eigenfrequencies signals the strong mode coupling, which
can lead to the mode localization and internal resonance [22,23]. The mode localization is due to the lin-
ear mode coupling [22], which is also closely related with the veering phenomenon. When a veering
occurs, the two modes experience the dramatic shape changes. The internal resonance results from the
nonlinear mode coupling [23], which determines the energy transfer between the modes. However, as
seen in Figures 6 and 7, all the eigenfrequencies presented are well-separated, which indicates the mode
coupling is very weak. This weak mode coupling is also reflected in Figure 3, in which the first modal
amplitude of A1 is always dominant. The weak mode coupling in essence reduces the modal interactions,

Figure 7. The first six eigenfrequencies as the functions of a4 with eo = 1× 10�2 and N = M = 6.
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which lessens the system nonlinearities and makes the above two nonlinearities the dominant ones. It
should be kept in mind that the mode coupling of a structure under an electrostatic loading can be sig-
nificantly enhanced by its initial deflection [22,23].

Finally, we need to address the issue of the monotonic decrease of the first eigenfrequency v1 as pre-
sented in Figures 6 and 7. Besides the two strain scenarios of eo = 5× 10�3 and eo = 10�2, the v1s with
other eos are also computed and they all show the monotonic decrease of v1 with the increase in the vol-
tage a4. Because the competition of two different nonlinearities, it is possible for the first eigenfrequency
of v1 to increase at certain voltage range and then decrease to zero at the pull-in point in a different
structural configuration. For example, the first eigenfrequency of a slacked carbon nanotube (CNT)
resonator under electrostatic loading is found to increase first and then decrease to zero at the pull-in
point [34]. While, this increase–decrease pattern of the first eigenfrequency is due to the CNT initial
deflection, i.e., the slackness. With the presence of slackness, the CNT is modeled as an arch rather than
a beam [34]. The initial deflection provides an addition geometric nonlinearity, which has significant
impact on the structural dynamic properties [21–23]. The initial deflection is the major mechanism
responsible for the increase–decrease pattern of the first eigenfrequency as observed by Ouakad and
Younis [34]. Similarly, the frequency response of an initially curved microplate under an electrostatic
loading shows the hardening behavior [49]. In comparison, the softening effects of a straight beam under
an electrostatic loading are shown in its frequency response with the various combinations of the DC
and AC voltages [45]. An initial deflection can induce another instability called snap-through, at which
the structure flips over but without a collision with the electrode [21]. In our model, there is no such ini-
tial deflection of the graphene membrane, i.e., the membrane is taken to be flat, due to the large initial
tensile strain. However, some graphenes deposited on a substrate are wrinkled [15] and wrinkling is the
initial deflection. More generally, that a stress-free graphene can exist is due to the fact that it contains
wrinklings [4]. Physically, the wrinkling or corrugation form of a two-dimensional structure is multifar-
ious, which can be rather complicate and thus lead to other variation patterns of the first eigenfrequency
than the monotonically decreasing one. Besides the initial strains, other parameters such as the mem-
brane radius, thickness, and gap distance as indicated in equation (11) can also have an impact on the
first eigenfrequency variation pattern of a flat membrane by introducing strong mode coupling.

4. Conclusion

A continuum membrane model is applied due to the initial large tensile strain, which simplifies the gra-
phene resonator problem by ignoring the bending stiffness. The nonlinear governing equations are
decoupled based on the huge eigenfrequency difference between the out-of-plane and in-plane displace-
ments. The nonlinear governing equation of the out-of-plane displacement is further linearized around
its equilibrium, which is reached by a (static) DC voltage. The linearization is based on that the driving
AC voltage is much smaller than the DC one. For a membrane resonator with the given material,
dimensions, and initial tensile strain, its linear stiffness is fixed. However, the membrane nonlinear stiff-
ness varies with its equilibrium position, or say, deflection. The softening physical nonlinearity resulting
from the electrostatic loading and stiffening geometric nonlinearity resulting from the membrane large
deflection are the two competing mechanisms determining the variation patterns of the eigenfrequencies.
For a two-dimensional circular membrane, the existence of degenerate modes makes the mass sensing
application of a resonator extremely difficult. Besides some special measures taken in the fabrication
process, the degenerate modes can also be avoided or significantly lessened by tuning the AC driving fre-
quency away from their eigenfrequencies. Because the degenerate modes are nonaxisymmetric, the axi-
symmetric assumption used in this study excludes their presence. With a large electrostatic voltage, the
mode coupling between the degenerate and nondegenerate modes can be enhanced, which may signifi-
cantly change the dynamic properties of a resonator such as the eigenfrequency crossover, veering, mode
localization and internal resonance. A more comprehensive study which includes the effects of the
degenerate modes is in our future plan.
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Appendix 1

When there is no electrostatic loading (a4 = 0), the linear parts of equations (16) and (17) are the
following:

∂2W1

∂t2
� a1

1

j

∂W1

∂j
+

∂2W1

∂j2

� �
= 0, ð28Þ

∂2U1

∂t2
� a5

∂2U1

∂j2
+

1

j

∂U1

∂j
� U1

j2

� �
= 0: ð29Þ

The two displacements are assumed to have the following forms:

W1 j, tð Þ= f jð Þeivt, U1 j, tð Þ= c jð Þei-t, ð30Þ
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here v and - are the (dimensionless) eigenfrequencies of the out-of-plane and in-plane displacements,
respectively. Substituting equation (28) into equations (26) and (27), we have:

d2f

dj2
+

1

j

df

dj
+ h2f = 0, ð31Þ

d2c

dj2
+

1

j

dc

dj
+ b2 � 1

j2

� �
c = 0, ð32Þ

here h and b are defined as the following:

h =
vffiffiffiffiffi
a1
p , b =

-ffiffiffiffiffi
a5
p : ð33Þ

Equations (29) and (30) are the Bessel equations of order 0 and 1, respectively. Their solutions are the
following [42]:

f jð Þ= AJo hjð Þ+ BYo hjð Þ, c jð Þ= CJ1 bjð Þ+ DY1 bjð Þ, ð34Þ

here Jo and Yo are the first and second kinds of the Bessel functions of order 0, respectively; J1 and Y1

are the first and second kinds of the Bessel functions of order 1, respectively. Because Yo(‘) = ‘ and
Y1(‘) = ‘, B = D = 0 must be taken in order to have finite displacements. Equation (32) now becomes
the following:

f jð Þ=
X‘

i = 1

AiJo hijð Þ, c jð Þ=
X‘

i = 1

CiJ1 bijð Þ: ð35Þ

It is not hard to verify that with the solution forms of equation (33), the boundary conditions of equa-
tion (7) are automatically satisfied due to our axisymmetric assumptions on the membrane deforma-
tions. Here, hi is the ith zero point of Jo(hi) = 0 and bi is the ith zero point of J1(bi) = 0. The values of
the first ten his and bis are given in Table 1 [42].

From equation (31), we can have a comparison on the eigenfrequencies of U1 and W1, which yields
the following equation in conjunction with equation (11):

-i

vj

=

ffiffiffiffiffi
a5

a1

r
bi

hj

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1 + nð Þeo

s
bi

hj

: ð36Þ

For graphene, n = 0:165 and the initial strain is set as a very large value of eo = 1%. From equation
(34) and Table 1, we have -1=v10 = 1:15588 by taking i = 1 and j = 10. Physically this means that the
first eigenfrequency of the in-plane displacement (-1) is larger than the tenth of the out-of-plane displa-
cement (v10). Furthermore, eo = 1% is extremely large strain and a smaller eo leads to a larger ratio of
v1=-10 as seen in equation (34). In a real application, the excitation frequency is much smaller than the
first in-plane eigenfrequency of -1. Mainly, a few transverse modes (less than 10) are excited and the in-
plane modes are hardly excited. This is the physical mechanism to de-couple the in-plane and out-of-
plane vibrations.

Table 1. The values of the first ten his and bis [42].

i 1 2 3 4 5 6 7 8 9 10

hi 2.4048 5.5201 8.6537 11.7915 14.9309 18.0711 21.2116 24.3525 27.4935 30.6346
bi 3.8317 7.0156 10.1735 13.3237 16.4706 19.6159 22.7601 25.9037 29.0468 32.1897
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