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Using ANN to study VIV of flexible cylinders in uniform and shear flows 
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A B S T R A C T   

The ANN model trained on experimental datasets is developed, especially based on the characteristics of flexible 
cylinder’s VIV, the Bayesian regularization back propagation algorithm is employed to train the presented neural 
network. Nine intuitive physical parameters are selected according to the governing equations of cylinder dy-
namics. The results show that the neural network trained with intuitive physical quantity can acceptable pre-
dictions predict VIV, and the linear regression value is 0.940. In addition, the range of model parameters is 
limited in the trained neural network, with around 20% error.   

1. Introduction 

The Vortex-Induced Vibrations (VIV) of cylinders are a widely 
occurring complex fluid-structure coupling phenomenon and can cause 
rapid fatigue failure. The flexible cylinder VIV in ocean currents is multi- 
mode characterized by broad-band random vibration since flexible 
cylinders have lower-frequency and higher-density natural modes. 
Moreover, the extended cylinder vibration patterns are standing waves 
or traveling waves. In the past few decades, semi-empirical wake 
oscillation method, modal superposition method, and the numerical 
simulation CFD method have been used to predict VIV. However, the 
semi-empirical method is that the parameters are based on the cylin-
drical forced vibration experiment, while the computational efficiency 
of numerical simulation CFD is low, and large Reynolds numbers (106) 
cannot be calculated. 

To reveal the mechanism of the VIV phenomenon, researchers have 
done many experiments (Sarpkaya, 2004; C.H.K. Williamson and 
Govardhan, 2004; C. H. K. Williamson and Govardhan, 2008). They got 
some parameters that affect the VIV phenomenon, such as Reynolds 
number, mass ratio, Strouhal number, and reduction speed (J. K. Van-
diver, 1993). However, these parameters cannot be satisfied simulta-
neously in experiments, such as the Reynolds number Re and Froude 
number Fr. According to the research content, the researchers choose 
basic parameters based on a priori experience while ignoring other pa-
rameters (Erling Huse, 1996; E. Huse, Kleiven and Nielsen, 1998). 

However, there is a complicated nonlinear relationship between the 
parameters. In some cases, the neglected parameters have a 
non-negligible impact on the VIV phenomenon (Ren et al., 2011). 
Therefore, the choice of parameters is a challenge. 

As we know, the prediction methods of flexible cylinder VIV include 
semi-empirical wake oscillator, modal superposition (frequency domain 
or time domain) method and numerical simulation CFD method. How-
ever, in the numerical simulation CFD, the Reynolds number Re reaches 
106, the calculation accuracy decreases and the calculation cost is large. 
The semi-empirical methods are based on mostly the forced vibration 
experiment of rigid cylinder and use priori and even posteriori param-
eters to predict cylinder VIV, e.g., the mode advantage factor κcf. To 
solve the problems of computational efficiency, posterior parameter, 
and parameters selection, we will use ANN to predict flexible cylinder 
VIV. Actually, ANN has been applied to solve VIV problems due to its 
better ability of dealing with highly nonlinear traits of VIV (Liu et al., 
2021; Wong et al., 2018; Xiros and Aktosun, 2022), as well as other 
fluid-structure interaction problems (Chen et al., 2008; Jain and Deo, 
2006; Saeed et al., 2013; Song et al., 2018; Zhang et al., 2020). Wong 
and Kim (2018) proposed a simplified approach to predict VIV fatigue 
damage of top tensioned riser (TTR) based on ANN. The VIV fatigue 
damage was calculated from a total of 21,532 riser models by SHEAR7. 
The results showed that the final ANN model can predict fatigue damage 
well using shorter computational time, compared with the conventional 
semi-empirical methods. Liu et al. (2021) developed an optimal design 
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method based on the data-driven model and genetic algorithm (GA), and 
then, to design the fairing to suppress cylinder VIV. The method can be 
efficiently performed by 2D-CFD calculations, and the amplitude of 
cylinder VIV can be significantly reduced. However, the datasets 
essentially came from numerical calculations, instead of the experi-
mental VIV datasets, that might be the reason why there were somewhat 
errors between the predicted values and the actual situations. Ma, 
Resvanis, and Vandiver (2020) proposed a weighted sparse-input neural 
network (WSPINN) where the prior physical knowledge about VIV was 
principally employed to constrain neural network optimization. They 
identified five important physical features, i.e. Reynolds number, 
damping parameter, shear parameter, mode advantage factor and 
in-line response amplitude, that most significantly affect flexible cylin-
ders’ cross-flow vibration amplitude, among seventeen dimensionless 
physical features. Because some features, such as the damping param-
eter and mode advantage factor, are unknown before VIV experiment, 
which might not conducive to accurate VIV prediction. 

Therefore, to avoid posterior parameters and to use experimental 
datasets instead of numerical datasets, in this study, we alternatively 
propose some intuitive physical quantities to train the ANN so as to 
rationally predict cylinder VIV. Nine intuitive physical quantities are 
chosen based on the governing equations of a cylinder dynamics. These 
intuitive physical quantities can intuitively predict cylinder VIV 
compared to many dimensionless parameters. Furthermore, this 
approach avoids the use of unknown posterior parameters and can 
simplify the processing of experimental data. On the trained ANN, the 
impacts of some important parameters on VIV are also analyzed. 

The paper is structured as follows. In Section 2, the main charac-
teristics of ANNs that consider VIV will be outlined. Bayesian regulari-
zation backpropagation algorithms are selected to train ANN. In Section 
3, VIV is predicted based on the VIVDR Dataset. Furthermore, the in-
fluence of different ANN network structures on the prediction results is 
tested. The error between prediction and experiment is analyzed in 
Section 4. The model parameter range predicted by the trained neural 
network is given. When the two model parameters change, and other 
variables remain unchanged, the influence of the parameters on the 
predicted cross-flow amplitude is studied. The conclusions are drawn in 
Section 5. 

2. Prediction of VIV 

2.1. Flexible cylinder VIV modeling 

The governing differential equation of cylinder dynamics is (How 
et al., 2009) 

EI
∂4y(z, t)

∂z4 − T
∂2y(z, t)

∂z2 +mz
∂2y(z, t)

∂t2 + c
∂y(z, t)

∂t
− f (z, t) = 0 (1)  

where y represents the cross-flow displacement of the cylinder. z rep-
resents the length position. t is the time. EI, T, mz are the bending 
stiffness, the tension, and the uniform mass per unit length of the cyl-
inder (including the cylinder mass mc, inflow mass min, and additional 
mass ma = CAmw), respectively. CA is the additional mass coefficient. mw 
is the drainage mass per unit length of the cylinder. c is the structural 
damping coefficient. f (z, t) represents the transverse force per unit 
length. 

The ocean current acts on the three-dimensional cylinder, and the 
external load generated is divided into two parts: the in-line drag force 
FD(z, t) and the oscillating lift FL(z, t) (Blevins, 1977; Faltinsen, 1990). 
FD(z, t) is comprised of a mean drag term and a harmonic drag. 

FD(z, t)=
1
2

ρCD(z, t)U2(z)D + AD cos(4πfvt+φ1) (2)  

where CD(z, t) is the spatially timely-varying drag coefficient. A is the 
displacement. D is diameter of cylinder. ρ is the water density. U (z) is 

the velocity of current. AD is the amplitude of the harmonic part of the 
drag force. φ1 is the phase angles. FL(z, t), normal to FD(z, t), can be 
expressed as 

FL(z, t) =
1
2

ρCL(z, t)U2(z)D cos(2πfvt+φ2) (3)  

where CL(z, t) is the spatially timely-varying lift coefficient. φ2 is the 
phase angles. fv, the non-dimensional vortex shedding frequency, can be 
expressed as 

fv =
StU
D

(4)  

where St is the Strouhal number, and it usually takes the value of 0.2. 
In forced vibration experiments, Cross-flow excitation coefficient 

CL(z, t) is the function A*
CF and fr,CF , as shown in Fig. 1 (Gopalkrishnan, 

1993). A*
CF is the cross-flow non-dimensional amplitude A/D respec-

tively, fr,CF = fCFD/U is the non-dimensional frequency, fCF is lock-in 
frequency. Furthermore, Fig. 2 shows that the added mass of the riser 
is not a fixed value in the VIV system (Xue et al., 2014). It can be seen 
that in self-excited vibration, the VIV phenomenon is more complicated. 

2.2. Choose the parameters to participate in VIV 

Scientific research prefers to use dimensionless equations because 
dimensionless equations are universal. Furthermore, according to the 
prior experience, the most important parameter affecting VIV is known 
as the Reynolds number, defined as Re=UD/ν, where: U is the relative 
velocity of the flowing fluid experienced by the cylinder, and ν is the 
kinematic viscosity of the fluid, which is 10− 6 m− 2/s used in the paper. 
The second important parameter affecting VIV is known as the mass 
ratio, defined as m* = 4mz/(πρD2), where mz is mass per unit length, 
including the mass of the cylinder itself and the mass of inflow. 

From the governing differential equation of cylinder dynamics Eq. 
(1), we know that the dimensional parameters EI, T, mz, c, f(z, t), L (the 
entire length of the cylinder), length position z, control the dynamic 
displacement y of cylinder. 

y(z, t) =F(EI, T,mz, c, f (z, t), L, z) (5) 

The spatiotemporal root-mean-square (RMS) amplitude of cross-flow 
vibration yRMS,CF is the target output, taking into account the influence 
of Reynolds number, mass ratio, gravity, changes in flow velocity, and 
vibration displacement in the downstream direction on the vibration 
displacement in the transverse direction, the predictive model can be 
expressed as, 

Fig. 1. Cross-flow excitation coefficient CL(z, t).  
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yRMS,CF =F
(
EI,TRMS,T ,TRMS,B,URMS,T ,URMS,B,mz, c, f (z, t), L, z,Re,m*) (6)  

where TRMS,T is the RMS of tension at the top cylinder, TRMS,B is the RMS 
of tension at the bot cylinder, U RMS,T is the RMS of velocity at the top 
cylinder, U RMS,B is the RMS of velocity at the bot cylinder. Usually, only 
the Reynolds number Re with the highest flow velocity at the top of the 
riser is selected, and the additional mass coefficient CA = 1. But in fact, 
the Reynolds number Re and additional mass coefficient change along 
the length of the cylinder and time. 

The structural damping coefficient c has the following forms: 

ci = 2mzwiς (7)  

wi =
iπ
L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

iπ
L

)2EI
mz

+
Tequ

mz

√

(8)  

where Tequ represents equivalent tension, controlled by TRMS,T, T RMS,B, 
self-weight. wi represents frequency of the i-th mode, i is the mode order. 
The structural damping ratio ζ in the experiment was around 0.5% (J. 
Kim Vandiver et al., 2018). 

Further simplification Eq. (6), removing unnecessary duplicate pa-
rameters, available as follows 

yRMS,CF =F
(
EI,TRMS,T ,TRMS,B,URMS,T ,URMS,B,mz,D, L, z

)
(9) 

So Nine intuitive physical quantities, i.e. the bending stiffness EI, 
RMS of tension at the top cylinder TRMS,T, RMS of tension at the bot 
cylinder TRMS,B, RMS of velocity at the top cylinder U RMS,T, RMS of 
velocity at the bot cylinder U RMS,B, uniform mass per unit length of the 
cylinder mz, diameter of cylinder D, entire length of the cylinder L and 
the length position z, are used to predict vibration displacement of the 
cylinder yRMS,CF. However, Eq. (9) only apply to the VIV under uniform 
flow and shear flow, but not for gradient flow and other non-uniform 
flows. 

2.3. Artificial neural network based on experimental data 

The dataset is from VIVDR Dataset 8 and Dataset 10 (VIVDR, 2008). 
This paper only focuses on the VIV phenomenon of bare cylinders, 
ignoring the cylinder data with Strakes. In Dataset 8, the cylinder model 
is 9.63-m-long and was made of a brass pipe with an outer diameter of 
20 mm and a wall thickness of 0.45 mm. The model was tested in uni-
form and linearly shear current profiles with the maximum flow speed, 
Umax, ranging from 0.2 m/s to 2.38 m/s. The time history curve of ve-
locity and displacement of test no.1212 are shown in Fig. 3 and Fig. 4, 
respectively. The flow velocity between the two blue lines is intercepted 

and RMS calculation is performed to obtain the URMS. The Reynolds 
number Re ranges from 4.0 × 103–4.76 × 104. Unfortunately, in some 
tests, Fz_bot is not good. 

TRMS,B,j =FRMS,Z bot,j =FRMS,Z top,j −
1
n

∑n

i=1

(
FRMS,Z top,i − FRMS,Z bot,i

)2 (10)  

where TRMS,B,j is the RMS of tension at the bot cylinder, is equal to 
FRMS,Z bot,j (the RMS of tension at the bot cylinder in dataset). FRMS,Z top,j 

is the RMS of velocity at the top cylinder. j is the serial number of the test 
to be corrected Fz_bot, and i = 1,2,3 …, n is the total number of ex-
periments with reasonable results. Through such simple processing, 
good results have been obtained. 

In Dataset 10, the cylinder model is 38-m-long and an outer diameter 
of 27 mm. The model was tested in uniform and linearly shear current 
profiles with the maximum flow speed Umax, 0.7 m/s, and 1.4 m/s, 
respectively. This resulted in the Reynolds number Re is 1.89 × 104, and 
3.78 × 104. The dimension and order of magnitude of the parameters are 
not consistent, so normalization is carried out. 

The total number of data is 416, and partial data are shown in 
Table 1. Nine intuitive physical quantities are the input parameters of 
ANN, and vibration displacement of the cylinder yRMS,CF is the output 
parameter of ANN according to Eq. (9). 85% of the experimental data 
were randomly selected as the training data, while the rest was used as 
the test data. The number of hidden layers and nodes of the neural 
network has a significant influence on training the neural network. 
There is no effective way to design a neural network structure 

Fig. 2. Added mass coefficient CA for CF- and IL-VIV.  

Fig. 3. Time history curve of velocity of test no.1212.  

Fig. 4. Time history curve of cross-flow displacement of test no.1212 at 6.42 m.  
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(Karsoliya, 2012; Vujicic et al., 2016). Therefore, this paper constructs 
different hidden layer numbers and hidden layer neurons for compara-
tive analysis, as shown in Table 2. Since the weight initialization of the 
neural network is random, the neural network trained will be different 
each time. If the trained neural network cannot generate good results, 
the network can be retrained. 

The Mean squared error and Regression for the configurations of the 
models are compared. ANN-1~ANN-5 have one hidden layer with 
different numbers of neurons. In addition, MSE is almost no different. 
However, as the number of neurons increases, the regression value de-
creases, below 0.75, and even the minimum value is 0.422. Due to 
insufficient training, this is an "underfit" training set. In comparison, 
ANN-6~ANN-9 have two hidden layers with different numbers of neu-
rons. The ANN adapts too much (or overfits) to the training set, like 
ANN-7, and ANN-9, the other test cases are in general the errors are 
large. The Training MSE is litter than Test MSE, and the Training 
Regression is larger than Test Regression in ANN-7, and ANN-9. 

Among the nine models, ANN-6 is the best because the difference 
between Training MSE and Test MES is small, and Training regression 
and Test regression are both higher than 0.9, and the difference is 
minimal. This model can predict the training set and test set well and has 
a certain generalization ability. Fig. 5 shows the Neural Network 
Regression of ANN-6, which is the closest to 1. Therefore, it is not 
difficult to conclude that compared with many dimensionless parame-
ters (Ma et al., 2020), intuitive physical quantities with fewer parame-
ters can intuitively predict VIV. 

3. Predictions of VIV vs experiments of VIV 

Due to the limited amount of experimental data and the small 
coverage of the parameters, a trained neural network can only make 
accurate predictions within a limited range. We use the neural network 
trained by the ANN-6 model to analyze the flexible cylinder VIV 
responses. 

3.1. Errors between predictions and experiments 

The errors between predictions and experiments have been analyzed 
through test no.1115 and test no. 1214 in Dataset 8. Fig. 8 and Fig. 9 are 
RMS displacement of eight different positions on the riser under 
different working conditions. The predicted displacement is close to the 
experimental displacement, and the maximum displacement difference 
is only 0.0014 m (z = 3.21 m in Fig. 6). Except one error of − 38% (z =
2.14 m in Fig. 7), most errors are between − 19% ~ 22%, i.e. the errors 
are − 12%~22% in uniform flow and the errors are − 38%–14% in shear 
flow. It can be seen that the predicted displacement is effective. 

Table 1 
Partial data in 416 groups.  

Input Output 

EI TRMS,T TRMS,B URMS,T URMS,B mz D L z yRMS,CF 

135.4 694.45 653.89 0.282 0.282 0.699 0.02 9.63 6.42 0.0062 
135.4 717.77 698.14 0.831 0.831 0.699 0.02 9.63 2.14 0.0027 
135.4 525.09 483.80 1.624 1.624 0.699 0.02 9.63 1.07 0.0073 
135.4 611.72 570.43 2.243 2.243 0.699 0.02 9.63 1.07 0.0041 
135.4 691.94 649.77 0.494 0.000 0.699 0.02 9.63 2.14 0.0057 
135.4 710.42 669.13 1.263 0.000 0.699 0.02 9.63 8.56 0.0064 
16.1 4090.70 4084.71 1.389 1.389 0.197 0.012 38 16.89 0.0111 
16.1 3871.92 3663.58 0.692 0.000 0.197 0.012 38 13.68 0.0087 
16.1 3871.92 3663.58 0.692 0.000 0.197 0.012 38 33.01 0.0108 
16.1 4219.50 4216.38 1.683 1.683 0.197 0.012 38 28.86 0.0105 
135.4 523.08 481.79 1.865 1.865 0.699 0.02 9.63 3.21 0.0080  

Table 2 
Architecture of the multilayer ANN.  

Configuration Hidden layer Neurons Training Mean squared error Training Regression Test Mean squared error Test Regression 

ANN-1 1 10 2.74e-06 0.726 4.02e-06 0.544 
ANN-2 1 15 4.50e-06 0.461 4.08e-06 0.550 
ANN-3 1 20 4.39e-06 0.484 4.86e-06 0.422 
ANN-4 1 25 4.55e-06 0.476 3.72e-06 0.473 
ANN-5 1 30 4.61e-06 0.468 3.36e-06 0.531 
ANN-6 2 20–5 4.42e-06 0.943 2.28e-06 0.901 
ANN-7 2 20–10 1.62e-07 0.986 4.64e-05 0.342 
ANN-8 2 20–15 2.26e-08 0.763 4.12e-06 0.700 
ANN-9 2 20–20 4.42e-09 1.000 1.85e-06 0.345  

Fig. 5. Neural network regression.  
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3.2. Model parameter range in ANN 

In this section, the analysis flexible cylinder VIV response within the 
parameter range of trained ANN is presented. In uniform flow, the cross- 
flow displacement of test no.1108 in Dataset 8 at 1.070 m is selected for 
our analysis. The contours of RMS displacement, as a function of EI and 
L, are plotted in Fig. 8. In other words, EI and L are variable, and the 
other parameters are constant. In the dataset range, EI and L are between 
(16.1, 135.4) N × m2 and (9.63, 38) m, respectively, and all of the 
displacements are greater than zero. The maximum displacement and 
the minimum displacement are easy to find. The former is about four 
times the latter. When the L is constant, the increase in EI causes the 
displacement to increase to the peak first and then decrease. When the EI 
is constant, the same phenomenon exists. This is the opposite of what we 
expected (L is proportional to displacement). The upper left triangle 
(upper left of the red outline of the maximum displacement) shows that 
the displacement decreases slowly with the increase of L. The lower right 
triangle (the bottom right of the maximum displacement red outline) 
shows that the displacement decreases rapidly with the increase of EI. 
However, when EI exceeds a critical value, the displacement increases 
again. It can be seen that VIV is a complex fluid-solid coupling 
phenomenon. 

Interestingly, the displacement contour lines are parallel at an obli-
que angle. In other words, the displacement of any (EI, L) points can be 
replaced by other (EI, L) points passing through this line, which helps the 
design of small-scale experimental models. 

The contours of RMS displacement as a function of mz and D are 
shown in Fig. 9. In Dataset range, mz and D are between (0.197, 0.699) 
kg/m and (0.012, 0.02) m, respectively. Furthermore, all the displace-
ments are greater than zero. As the D increases, the displacement first 
increases, then decreases, and then increases. In the process of mz in-
crease, there are similar situations. Moreover, the displacement contour 
lines are no longer parallel at an oblique angle. The contour of the 
smallest displacement presents an irregular circle with the same spacing, 
which is interesting. 

In shear flow, the cross-flow displacement of test no.2350 in Dataset 
10 at 4.155 m is selected for analysis. The contours of RMS displacement 
as a function of EI and L, and other parameters are constants, as plotted 
in Fig. 10. The Dataset range is the same as in Fig. 8. The displacement 
increases rapidly with the increase of EI. The displacement decreases 
rapidly with the increase of L, which is different from Fig. 8. As the 
length increases, the natural frequency of the cylinder decreases ac-
cording to Eq.(21). The vortex shedding frequency is close to the natural 
frequency of the cylinder, which will cause VIV lock and increase the 

Fig. 6. Prediction and experiment RMS displacement of VIV in test no.1115 in 
Dataset 8 in uniform flow. 

Fig. 7. Prediction and experiment displacement of VIV in test no.1214 in 
Dataset 8 in shear flow. 

Fig. 8. Contours of RMS displacement as a function of EI and L in uniform flow.  

Fig. 9. Contours of RMS displacement as a function of mz and D in uni-
form flow. 
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displacement. The flow vortex shedding frequency is distributed along 
the entire length of the cylinder, the uniform flow shedding frequency is 
equal, while the shear flow shedding frequency is variable. The 
maximum vortex shedding frequency is at the maximum speed at the 
top, and the minimum vortex shedding frequency is 0 at the bottom. The 
vortex shedding frequency gradually decreases from the top to the low 
end and is highly dense. As a result, the shear flow has coexistence and 
competition of multi-modal VIV. This may be the reason why the 
displacement decreases as the length increases. 

The white part indicates that the predicted displacement value is less 
than 0, which is unreasonable. This shows that the parameter range of 
the trained neural network is limited when predicting. 

Fig. 11 shows the effect of varying mz and D on displacement. The 
displacement decreases with the increase of mz or D. When the diameter 
is constant, the displacement decreases nonlinearly with the increase of 
mz. The possible reason is that mz has changed the natural frequency, 
causing the VIV lock frequency to change. When the mass is constant, 
the displacement increases significantly as the diameter increases. 

From the above analysis and discussion, it can be seen that the neural 
network trained with experimental data is acceptable in predicting VIV 
(around 20% error), and the influences of key parameters on VIV can be 
studied within a specific range. In other words, when the range of pa-
rameters for training the neural network is broad enough, it can cover 
the existing VIV in actual engineering. This approach helps estimate VIV 
in experimental design and preliminary engineering design. 

4. Conclusion 

The VIV of flexible cylinder’s in uniform and shear flows is predicted 
by the developed ANN. The neural network trained with the physical 
parameters can effectively predict VIV, while it avoids the processing of 
many parameters along with possible data missing and truncation dur-
ing processing. According to the characteristics of cylinder VIV, the 
Bayesian regularization backpropagation algorithms are chosen to train 
our neural network. We found that it is important to carefully compare 
and analyze different neural network structures before built a proper 
neural network structure, which may influence the prediction results. 
Here, different neural network structures are tested to VIV predictions. 
Finally, the impacts of parameter changes on VIV according to the 
trained neural network are examined. The main conclusions can be 
summarized as follows: 1) The Bayesian regularization backpropagation 
algorithms are more suitable for VIV prediction mainly because of 
highly nonlinearities of flexible cylinder VIV and inevitable errors 
coming from experimental results. 2) Nine intuitive physical quantities 
are recommended to predict cylinder VIV based on governing equations 
of cylinder dynamics. It is worthwhile to pointed out that the range of 
model parameters is limited in the trained neural network, with around 
20% error. 
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Appendix 

Artificial neural network (ANN) model 

The ANN is a reliable method to approximate the target value, which has been widely used in pattern recognition, classification, clustering, and 
time series (Widrow et al., 1994). The ANNS imitates biological neural networks, a learning system composed of a complex network of interconnected 
simple units (neurons). Each unit performs relatively simple operations separately; however, their interconnection provides a variety of tasks. Fig. 1 
shows an artificial model of the neuron-McCulloch-Pitts neuron (McCulloch and Pitts, 1943). When receiving a given number of inputs xi, i = 1, 2, …, 

Fig. 10. Contours of RMS displacement as a function of EI and L in shear flow.  

Fig. 11. Contours of RMS displacement as a function of mz and D in shear flow.  
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N, each neuron first uses the synaptic weights wi to calculate the linear combination of inputs to generate a weighted input z. Next, it provides the 
output y through the activation function f(z), which must exhibit increasing monotonicity within the specific value range of z and assume constants 
outside this range. 

z=
∑N

i=1
wixi (A.1)  

Fig. 12. McCulloch-Pitts neuron  

Because the sigmoid functions are smooth, and differentiable at all points, with superior and inferior limits, they are continuous activation 
functions widely used in ANN applications. Several types of sigmoid functions are the logistic function and the tangent function. The tangent function 
will be employed in the developments presented in this work. This function is expressed by (Vogl et al., 1988): 

y= f (z) =
2

1 + e− 2z − 1 (A.2) 

Eq. (A.2) is mathematically equivalent to tanh(z). Although there are minimal differences in numerical results, the calculation speed is faster than 
tanh. For ANNs, this function is a good tradeoff because speed is essential, but the exact shape of the transfer function is not. 

Substituting Eq. (A.1) to Eq. (A.2), an expression for the output yj of the jth hidden neuron may be defined as follows, 

yj =
2

1 + e
− 2
∑N

i=1
wixi

− 1 (A.3) 

Similarly, an expression for the network output ŷ can be obtained, taking into account the particular architecture with 20 hidden neurons: 

ŷ =
∑20

j=1
wjo

⎛

⎜
⎜
⎝

2

1 + e
− 2
∑N

i=1
wixi

− 1

⎞

⎟
⎟
⎠ (A.4)  

where wjo is the weight between the wavelon j and the output. 
Taking y =(y1,y2,y3, …,yn) as the set of desired outputs, the error Er is given by: 

Er =
1
2
∑n

k=1
(yk − ŷk)

2 (A.5)  

where 1/2 is to eliminate the coefficient two after Er derivative and simplify the algorithm. 
Training the ANN refers to the process of adjusting the weight value wi of the equation so that the error is sufficiently small. Mean square error 

(MSE) is the most commonly used neural network optimization objective function, and this function is also used in this paper. MSE is minimized at 
each iteration of the training procedure by adjusting the weights proportionally to the derivative of the error function with wji (t). 

Bayesian regularization backpropagation algorithms can produce useful generalizations for difficult, small, or noisy data sets. Although it requires 
more time than Levenberg-Marquardt backpropagation, it can be tolerated for complex VIV problems. This algorithm objective function adds term, 
becomes (Foresee and Hagan, 1997) 

F = αEW + βED (A.6)  

where ED is Er, Ew is the sum of the square of the network weights, α and β are objective function parameters. If α ≪ β, then the training algorithm will 
drive the errors smaller. If α ≫ β, training will emphasize weight size reduction at the expense of network errors, thus producing a smoother network 
response. 

The density function for the weights can be expressed according to Bayes’ rule: 

P(D|α, β,M)=
P(D|w, β,M)P(w|α,M)

P(w|D, α, β,M)
(A.7)  

where w is the ANN weights, D is the data set, and M is the ANN model used. P(w|α,M) is the prior density, which represents our knowledge of the 
weights before any data is collected. P(D|w, β,M) is the likelihood function, which is the probability of the data occurring with the weights w. 
P(D|α, β,M) is a normalization factor, which guarantees that the total probability is 1. 

Applying Bayes’ rule to optimize the objective function parameters α and β. If the VIV noise in the train set data is Gaussian and the prior 
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distribution for the weights is Gaussian, the probability densities can be written 

P(D|w, β,M)=
1

(π/β)n/2e− βED (A.8)  

P(w|α,M)=
1

(π/α)n/2e− αEW (A.9) 

Placing Eq. (A.8) and Eq. (A.9) to Eq. (A.7), we obtain 

P(D|α, β,M)=
ZF(α, β)

(π2/(αβ))n/2e− βED − αEW+F(w) (A.10) 

Because ZF(α, β) is not known, we by Taylor series expansion to estimate it. Since the objective function has the shape of a quadratic in a small area 
surrounding a minimum point, we can expand F(w) around the minimum point of the posterior density wMP, where the gradient is zero. Solving for the 
normalizing constant yields 

ZF(α, β) ≈ (2π)n/2
⃒
⃒
⃒
(
HMP)− 1

⃒
⃒
⃒

1/2
e− F(wMP) (A.11)  

where H = β∇2ED + α∇2EW is the Hessian matrix of the objective function. 
Placing Eq. (A.11) to Eq. (A.10), we obtain the optimal values for α and β at the minimum point. By taking the derivative to each log of Eq. (A.10) 

and setting them equal to zero. This yields 

αMP =
γ

2EW(wMP)
(A.12)  

βMP =
n − γ

2ED(wMP)
(A.13)  

where γ = N − 2αMPtr(HMP)
− 1 is called the effective number of parameters, and N is the total number of parameters. This parameter γ is a measure of 

how many parameters in the ANN are effectively used in reducing the error function. 
A two-layer feed-forward network with sigmoid hidden neurons and linear output neurons illustrated in, can fit multi-dimensional mapping 

problems arbitrarily well with consistent data and enough neurons in its hidden layer.

Fig. 13. A ANN example with 5 inputs and 4 neurons in the first hidden layer  
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