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Helical rotating turbulence is a chiral and anisotropic flow. The energy and helicity
transfers of helical rotating turbulence are studied in this paper. First, we discuss
the antisymmetry and conservation of energy and helicity transfers. There are three
expressions for helicity transfers due to the commutability of differential operators. The
first expression is derived here. The second expression violates antisymmetry, and the
third one introduces non-physical effects. The relations of these expressions are discussed
in detail, including those about the sum of all triads and partial triads, as well as those
about helical wave decomposition. Through direct numerical simulations, we find that
helicity can reduce inverse energy cascades. The inhibition is mainly associated with
transhelical energy fluxes and the interactions of two-dimensional modes. The inverse
cascades of decomposed energy fluxes are related to the two-dimensionalization. For
helicity, rotation does not affect the total helicity flux but generally suppresses the
decomposed helicity fluxes. Positive homochiral and negative heterochiral helicity fluxes
are associated with corresponding positive anisotropic transfers. Notably, the transhelical
helicity fluxes increase the amplitudes of both positive and negative helicity, which is
related to the chirality polarization.
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1. Introduction

Rotation is ubiquitous in geophysics (Pouquet & Marino 2013), astrophysics (Cho et al.
2008) and engineering (Dumitrescu & Cardos 2004). Moreover, in practical flows (Yang
& Wu 2012), rotation is always accompanied by helicity. Lilly (1986) suggested that
helicity is the primary factor that contributes to the stability of long-lived storms. In
addition to energy, helicity, H = ∫

u · ω dV , is the sole quadratic inviscid invariant
in three-dimensional (3-D) turbulent flows (Polifke & Shtilman 1989; Moffatt 2018).
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Helicity is the circulation-weighted sum of the topological linking number between all
vortex line pairs (Irvine 2018). For a thin vortex tube with a smooth core, helicity can be
found in three typical structures: the linking; writhing; and twisting of vortex tubes (Berger
1999).

Unlike enstrophy in two-dimensional (2-D) turbulence, helicity in 3-D turbulence may
be negative, which leads to different dynamics and cascades (Alexakis & Biferale 2018).
Brissaud et al. (1973) analysed two possibilities of cascades in 3-D turbulence: the pure
helicity cascade; and the joint cascades of energy and helicity. Kraichnan (1973) argued
that the second possibility is more plausible. Furthermore, Kraichnan (1973) gave the
absolute equilibrium spectrum of the Euler equation and showed that helicity suppresses
the overall energy transfer. André & Lesieur (1977) further argued that in decaying helical
turbulence, the suppression occurs in the early stages but disappears with the establishment
of an inertial range. Waleffe (1992b) applied helical wave decomposition (HWD) and
stability theory to predict the transfer direction of four typical triad interactions. In helical
turbulence without rotation, both energy and helicity simultaneously cascade to small
scales, and they have the same inertial range (Chen, Chen & Eyink 2003). Considering
the positive chirality only, Biferale, Musacchio & Toschi (2012) found that the inverse
energy cascade truly exists in homochiral transfers. Alexakis (2017) addressed the inverse
energy cascades of homochiral fluxes in the complete Navier–Stokes (N–S) equation.
Notably, if only the positive chirality is considered, the inverse energy cascade can also
be deduced from helicity conservation (Alexakis & Biferale 2018). For helicity, Briard
& Gomez (2017) found the inverse helicity transfers hidden in the total forward helicity
transfer by the eddy-damped quasinormal Markovian closure. Alexakis (2017) investigated
the helicity fluxes in detail by HWD. Recently, a dual-channel theory about the helicity
cascade has been developed: the first channel mainly originates from the vortex-twisting
process, and the second channel is mainly associated with the vortex-stretching process
(Yan, Li & Yu 2020a; Yan et al. 2020b).

Non-helical rotating turbulence has been widely investigated as well. In such
cases, energy presents simultaneous cascades to small and large scales, together
with a two-dimensionalization process (Smith & Waleffe 1999). Regarding anisotropy,
controversy persists about whether isotropy is restored at small scales. Zeman (1994)
proposed a scale kΩ ∼ ε−1/2Ω3/2 (named the Zeman scale) where the eddy turnover
time equals the inertial wave time. When k � kΩ , the rotation effects prevail. The effects
decay as smaller scales are considered. When k � kΩ , isotropy is recovered, which is
consistent with the local isotropy hypothesis of Kolmogorov (1941). However, by an
asymptotic quasi-normal Markovian model with a low Reynolds number Re ≈ 5, Bellet
et al. (2006) found that anisotropy increases with increasing wavenumber. Lamriben,
Cortet & Moisy (2011) also discovered strong small-scale anisotropy in an experiment
with a moderate Reynolds number. The anisotropy at the small scale is also supported
by abundant numerical simulations (Clark Di Leoni et al. 2014; di Leoni & Mininni
2016; Sharma, Verma & Chakraborty 2019). Furthermore, by numerical simulations,
Delache, Cambon & Godeferd (2014) showed that isotropy is only obtained under weak
rotation and that there is a relation between kΩ and the scale with the maximum
anisotropy.

The cascade of non-helical rotating turbulence is anisotropic as well and has been
deeply investigated from various perspectives (Cambon & Jacquin 1989). Slow–fast
decomposition (Waleffe 1992a; Chen et al. 2005; Buzzicotti et al. 2018a) and HWD
(Buzzicotti et al. 2018a) have been applied to study energy fluxes from the viewpoints of
resonant waves and chiralities. Waleffe (1992a) found that under rapid rotation (Ω → ∞),
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the transfers of non-resonant triads decay to zero. By resonant triads, energy is transferred
towards wavevectors perpendicular to the rotating axis. However, resonant triads transfer
energy towards smaller values of cos θ but not cos θ = 0, where θ indicates the angle
between the wavevector and the axis of rotation. Chen et al. (2005) further investigated the
resonant wave theory by slow–fast decomposition, and Chen et al. (2005) also addressed
the k−3 spectrum associated with the inverse cascade. By HWD, Buzzicotti et al. (2018a)
measured the effects of homochiral and heterochiral interactions. Buzzicotti et al. (2018a)
found that homochiral interactions prevail near the forcing wavenumber and are dominated
by 3-D dynamics. Both heterochiral and homochiral interactions are significant at smaller
wavenumbers, where the 2-D mechanism is dominant. Using direct numerical simulation
(DNS) without 2-D modes, Buzzicotti, Di Leoni & Biferale (2018b) further studied the
effects of 3-D modes in inverse cascades, which are carried by homochiral channels. Scale
locality is another topic of the scale-transfer process. Mininni, Alexakis & Pouquet (2009)
argued that the forward energy transfers are mediated by the energy-containing scale, while
the inverse energy transfers are non-local. Furthermore, by ring-to-ring transfer analyses,
Sharma et al. (2019) found that the energy transfers are equatorward at large scales and
poleward at small scales.

To study the effects of chiralities, helicity can be introduced to rotating turbulence
(Thalabard et al. 2011; Sen et al. 2012; Rodriguez Imazio & Mininni 2013). The decaying
properties of helical rotating turbulence were investigated by Morinishi, Nakabayashi &
Ren (2001) and Teitelbaum & Mininni (2009). Morinishi et al. (2001) found that in the
absence of rotation, the decay rate of energy is independent of the helicity injection. In
contrast, with the presence of both helicity and rotation, the decay process is slowed down
by the scrambling effects (due to rotation) and the suppression of nonlinear interactions
(due to helicity). By phenomenological models and numerical simulations, Teitelbaum &
Mininni (2009) argued that energy decays as t−1 in non-helical rotating flows, while in
the presence of helicity, the decay rate is reduced to t−1/3. For scaling laws of energy and
helicity, the relationship of energy and helicity can be recognized by phenomenological
models (Mininni & Pouquet 2009): E(k)H(k) ∼ k−4. The scaling law is also verified by
DNSs (Mininni & Pouquet 2010a; Mininni, Rosenberg & Pouquet 2012). Furthermore,
considering anisotropy, Galtier (2014) derived the results of E(k)H(k) ∼ k−4

⊥ |k‖|−1 by the
asymptotic weak turbulence theory, where ‖ and ⊥ indicate the wavevectors parallel and
perpendicular to the axis of rotation, respectively. Mininni & Pouquet (2010b) discussed
flow structures in detail. They found that strongly helical structures exist in both laminar
and time-varying vortex tangles and that the former tangles live for a much longer time.
In helical rotating turbulence, anisotropy at small scales is also of interest to researchers.
Mininni et al. (2012) presented a detectable trend of small-scale isotropy using a DNS of
30723 points, where the isotropy was recovered at kΩ . Vallefuoco, Naso & Godeferd (2018)
performed numerous simulations and found that as wavenumbers increase, the anisotropy
decreases at first and then remains unchanged until the minimum scale. Considering the
balance between the dissipative and rotating time scales, Vallefuoco et al. (2018) also
proposed a new scale where the anisotropy becomes unchanged.

As discussed above, the helical rotating turbulence is still not fully understood. In this
paper, we mainly address the energy and helicity transfers in helical rotating turbulence.
The paper is organized as follows. In § 2, we give the derivation and properties of
the energy and helicity transfers. The details of simulations and global behaviours are
described in § 3. Next, in § 4, we analyse the transfers of energy and helicity from the
perspectives of chirality and anisotropy. The flow structures are shown and illustrated in
§ 5. Finally, conclusions are given in § 6.
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2. Transfers of energy and helicity

The incompressible N–S equations are

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u + f + 2u × Ω,

∇ · u = 0,

⎫⎬⎭ (2.1)

where u is the velocity, p is the total pressure including the centrifugal effects (Davidson
2010), ν is the kinematic viscosity, f is the forcing term and Ω is the rotating vector and
is aligned with the x3 axis.

2.1. Energy transfers
The energy transfer equation in spectral space can be deduced from (2.1) as

∂E(k)

∂t
+ 2ν |k|2 E(k) =

Δ∑
p,q

TE(k|p|q) + Re{û∗(k) · f̂ (k)}, (2.2)

where E(k) = û(k) · û∗(k)/2 is the energy at wavenumber k,̂represents the quantity in
spectral space, the superscript ∗ represents the conjugate of a complex value, Re{ · } is the
real part of a complex value and the symbol

∑Δ
p,q represents a sum over all values of p

and q with p + q + k = 0.
The nonlinear energy transfer TE(k|p|q) in (2.2) is written as

TE(k|p|q) = Re{û(k) · [û(p) × ω̂(q)]}, (2.3)

where ω̂(q) = iq × û(q) is the vorticity in spectral space at the wavenumber q. Utilizing
the incompressible constraint q · û(q) = 0, the following property holds:

TE(k|p|q) = −TE(p|k|q). (2.4)

This property is named ‘antisymmetry’ for briefness hereafter (Mininni, Alexakis &
Pouquet 2006; Mininni et al. 2009), and is the basis of the following analyses. The
antisymmetry of TE(k|p|q) implies that the energy k receives is equal to the energy p loses.
Here q plays the role of mediation only and does not gain or lose any energy. Therefore,
TE(k|p|q) transfers energy from p to k through q.

The definition of the nonlinear energy transfer in (2.3) is based on a single triad
interaction. To study the properties of the transfer process, the sum of triad interactions
needs to be considered. The energy flux is defined as

ΠE(k = k1) = −
∑

|k|≤k1

Δ∑
p,q

TE(k|p|q). (2.5)

Notably, ΠE(k) is conservative, i.e.

ΠE(k = kmax) = 0, (2.6)

which can be deduced from the antisymmetry. In fact, when a transfer is antisymmetric,
the corresponding flux must be conservative.

In helical flows, since the reflection symmetry is broken, chiralities matter greatly.
Helical wave decomposition (HWD), which has been employed in helical non-rotating
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Transfers in helical rotating turbulence

turbulence (Chen et al. 2003), is also applied here. The details of HWD are summarized
in Appendix A. By HWD, the energy transfer TE(k|p|q) can be divided into eight
components as

TE(k|p|q) =
∑

s1=±

∑
s2=±

∑
s3=±

Ts1,s2,s3
E (k|p|q)

=
∑

s1=±

∑
s2=±

∑
s3=±

Re{ûs1(k) · [ûs2(p) × ω̂s3(q)]}, (2.7)

where s1, s2 and s3 represent the charities.
Similar to (2.5), the decomposed energy flux Π

s1,s2,s3
E (k) can be defined by

Ts1,s2,s3
E (k|p|q). When s1 = s2 = s, Ts,s,s3

E (k|p|q) is antisymmetric, which is the energy
transfer in a single chirality. Thus, the corresponding flux Π

s,s,s3
E (k) is conservative,

which is called the conservative flux (Alexakis 2017). In contrast, when s1 = −s2 =
s, Ts,−s,s3

E (k|p|q) is the energy transfer between the two chiralities, which is called
the transhelical energy transfer (Alexakis 2017). This type of energy transfer is not
antisymmetric. However, there is another relation describing the transhelical energy
transfer:

Ts,−s,s3
E (k|p|q) = −T−s,s,s3

E (p|k|q). (2.8)

Therefore, adding in pairs can lead to an antisymmetric transfer, i.e.

Ts3,th
E (k|p|q) = Ts,−s,s3

E (k|p|q) + T−s,s,s3
E (k|p|q). (2.9)

The related flux Π
s3,th
E (k) is defined by Ts3,th

E (k|p|q) in the same way as (2.5). It is
conservative and is called the averaged transhelical energy flux.

To illustrate the transfer direction of different fluxes, the spectral space can be divided
into two components by a certain wavenumber k1:

R1(k1) = {0 ≤ k ≤ k1}, R2(k1) = {k1 < k ≤ kmax}, (2.10a,b)

which is shown in figure 1. Considering chiralities, Ri (i = 1, 2) can be further
partitioned into Rs

i , where the superscript s represents the chirality. By the division above,
Π

s1,s2,s3
E (k = k1) can be interpreted as follows.

(i) The conservative energy flux: s1 = s2 = s, the flux of energy from Rs
1 to Rs

2 by the
field with the chirality s3.

(ii) The transhelical energy flux: s1 = −s2 = s, the flux of energy from Rs
1 to R−s

1 and
R−s

2 by the field with the chirality s3.

The above explanations are deduced from the antisymmetry of Ts1,s2,s3
E (2.8).

2.2. Helicity transfers
From (2.1), the helicity spectral transfer equation can be derived as

∂H(k)

∂t
+ 2ν|k|2H(k) =

Δ∑
p,q

TH(k|p|q) + Re{ω̂∗(k) · f̂ (k)}, (2.11)

where H(k) = Re{û(k) · ω̂∗(k)}/2 is the helicity at the wavenumber k (Polifke &
Shtilman 1989), TH(k|p|q) is the first expression of the nonlinear helicity transfer. See
Appendix B.1 for the details of the derivations.

946 A19-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

58
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.580


R. Hu, X. Li and C. Yu

R1

R2

S1

S2

k1
ky

kx

kz

θ1

0

k‖Sectors

Figure 1. Division of the spectral space. The spectral space can be divided into five sectors. It can also be
divided into R1 and R2 by k1 or be divided into S1 and S2 by θ1. Here, k1 and θ1 are certain values of k and θ ,
where θ = arccos |k‖|/k.

2.2.1. Three expressions of the helicity transfer
There are three expressions for the helicity transfer of a single triad,

TH(k|p|q) = 1
2 Im{[k · ω̂(q)][û(k) · û(p)]} − 1

2 Im{[k · û(q)][û(k) · ω̂(p)]}
−1

2 Im{[k · û(q)][ω̂(k) · û(p)]}, (2.12a)

T ′
H(k|p|q) = −Im{[k · û(q)][ω̂(k) · û(p)]}, (2.12b)

T ′′
H(k|p|q) = Re{ω̂(k) · [û(q) × ω̂(p)]}, (2.12c)

where Im{·} denotes the imaginary part of a complex value. The first expression TH(k|p|q)

can be decomposed into three components (TH1(k|p|q), TH2(k|p|q) and TH3(k|p|q),
respectively). Here, TH1(k|p|q) and TH2(k|p|q) are associated with the vortex stretching
process, and TH3(k|p|q) is related to the vortex twisting process (Eyink 2006; Yan et al.
2020a,b). The first expression, TH(k|p|q), is derived by a similar approach in physical
space (Yan et al. 2020b). In this paper, it is first discussed in the spectral analyses of helical
flows, and its detailed derivations are given in Appendix B.1. The second expression,
T ′

H(k|p|q), comes from the advection u · ∇u, which has been applied by Chen et al.
(2003). The third expression, T ′′

H(k|p|q), is derived from the Lamb vector u × ω (Mininni
et al. 2006; Alexakis 2017).

The three expressions are not equal when only one triad is considered. However, as
proved in Appendix B.2.1, the three expressions are identical for the sum of all p and q
with k + p + q = 0, i.e.

Δ∑
p,q

TH(k|p|q) =
Δ∑

p,q

T ′
H(k|p|q) =

Δ∑
p,q

T ′′
H(k|p|q). (2.13)

As is well known, there is only one expression of helicity transfer in physical space
(Yan et al. 2020b), which is related to (2.12a) here. The reason for the different
three expressions here is the commutability of differential operators in spectral space.
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Taking part of the derivations in Appendix B.2.1 as examples, the following relations hold:

Re{û∗ · F{∇ × (u × ω)}} = Re{ω̂∗ · F{u × ω}}, (2.14a)

u · [∇ × (u × ω)] = ω · (u × ω) + ∇ · [(u × ω) × u], (2.14b)

where F{·} represents the Fourier transform. Equation (2.14a) is in spectral space, and
(2.14b) is in physical space. As shown by these relations, the differential operators
commute with other terms in spectral space, while commuting in physical space could
introduce another gradient.

Moreover, in §§ 2.2.2, 4.2 and Appendix B.2, more relations about helicity transfers and
fluxes are discussed. It is demonstrated that the three expressions are truly different. Only
the expression derived here (2.12a) is directly associated with the expression in physical
space.

2.2.2. Properties of helicity transfers and fluxes
It can be deduced from the definition of the helicity transfer that TH(k|p|q) and T ′′

H(k|p|q)

satisfy antisymmetry, while T ′
H(k|p|q) does not. Therefore, TH(k|p|q) and T ′′

H(k|p|q) have
clear physical meanings. The first expression of the helicity flux is written as

ΠH(k = k1) = −
∑

|k|≤k1

Δ∑
p,q

TH(k|p|q). (2.15)

Similar to (2.15), ΠHi(k) (i = 1, 2, 3), Π ′
H(k) and Π ′′

H(k) can be defined by THi(k|p|q) (i =
1, 2, 3), T ′

H(k|p|q) and T ′′
H(k|p|q), respectively. According to (2.13), the three fluxes are

equal, i.e.

ΠH(k) = Π ′
H(k) = Π ′′

H(k), (2.16)

where ΠH(k) includes three components ΠHi(k)(i = 1, 2, 3).
For the results of HWD, T ′′

H(k|p|q) can be decomposed as

T ′′
H(k|p|q) =

∑
s1=±

∑
s2=±

∑
s3=±

T ′′ s1,s2,s3
H (k|p|q)

=
∑

s1=±

∑
s2=±

∑
s3=±

Re{ω̂s1(k) · ûs2(q) × ω̂s3(p)}, (2.17)

where the superscripts s1, s2 and s3 correspond to the field at wavenumbers k, q and p,
respectively (Alexakis 2017). Here Ts1,s2,s3

H (k|p|q) can be defined in the same way.
Similar to (2.15), the decomposed helicity fluxes (Π s1,s2,s3

H (k) and Π
′′ s1,s2,s3
H (k)) are

defined by Ts1,s2,s3
H (k|p|q) and T ′′ s1,s2,s3

H (k|p|q), respectively. By the division shown in
figure 1, Π

s1,s2,s3
H (k = k1) can be interpreted as follows.

(i) The conservative helicity flux: s1 = s3 = s, the flux of helicity from Rs
1 to Rs

2 by the
field with the chirality s2.

(ii) The transhelical helicity flux: s1 = −s3 = s, the flux of helicity from Rs
1 to R−s

1 and
R−s

2 by the field with the chirality s2.
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It has been proved in Appendix B.2.3 that only when s2 = s3 = s will the first and the
third expressions of the decomposed helicity fluxes be equal, viz.

Π
s1,s,s
H (k) = Π

′′ s1,s,s
H (k). (2.18)

Since Ts1,s2,s3
H (k|p|q) and T ′′ s1,s2,s3

H (k|p|q) are the same when considering antisymmetry
and conservation, only the properties of Ts1,s2,s3

H (k|p|q) are discussed here. When s1 =
s3 = s, Ts,s2,s

H (k|p|q) satisfies antisymmetry, which can be interpreted as the helicity
transfer in a single chirality. The corresponding flux is called the conservative helicity
flux (Alexakis 2017). Otherwise, Ts,s2,−s

H (k|p|q) is the transfer between the two chiralities
and is not antisymmetric. The corresponding flux Π

s,s2,−s
H (k) is called the transhelical

helicity flux (Alexakis 2017). Here Ts2,th
H (k|p|q) can be obtained by adding Ts,s2,−s

H (k|p|q)

in pairs,

Ts2,th
H (k|p|q) = Ts,s2,s

H (k|p|q) + T−s,s2,s
H (k|p|q), (2.19)

which is antisymmetric. The relative flux Π
s2,th
H (k) is conservative and is called the

averaged transhelical helicity flux. Similar to energy, for the transhelical transfers of
helicity, there is another relation:

Ts,s2,−s
H (k|p|q) = −T−s,s2,s

H (p|k|q). (2.20)

In addition, T ′′ s2,th
H (k|p|q) and Π

′′ s2,th
H (k) are defined by T ′′ s1,s2,s3

H (k|p|q) similar to (2.19)
and (2.15), respectively.

In summary, the antisymmetry of transfers is the sufficient condition for the
conservation of related fluxes, regardless of energy or helicity. The conservative flux
represents the flux in a single chirality, while the (averaged) transhelical flux represents
the flux between the two chiralities. The conservative and averaged transhelical fluxes
are conservative. In contrast, the transhelical flux is not conservative. Additionally, when
s1 = s2 = s3 = s, Π

s,s,s
E (k) and Π

s,s,s
H (k) are homochiral fluxes. Otherwise, Π

s1,s2,s3
E (k)

and Π
s1,s2,s3
H (k) are heterochiral fluxes.

3. Numerical simulations

3.1. Numerical set-up
Seven DNSs with 15363 grid points are carried out. A 2-D parallel pseudospectral code
is implemented to solve the incompressible N–S equations (2.1). In addition, the explicit
second-order Adams–Bashforth technique is performed for temporal evolution.

There are two forcing schemes. Since different relative helicity injection rates are needed
to study the influence of helicity, the forcing scheme of Teimurazov et al. (2018) is applied,

f̂ (k) = Aû(k) + Bω̂(k), (3.1)

which is named Tei18 hereafter. Given the energy injection εE and the helicity injection
εH , the parameters A and B are determined as

A = 1
2

Wf εE − Hf εH

Ef Wf − H2
f

, B = 1
2

Ef εH − Hf εE

Ef Wf − H2
f

, (3.2a,b)

where Ef = ∑
|k|∈kf

1
2 |û(k)|2, Hf = ∑

|k|∈kf
1
2 Re{û(k) · ω̂∗(k)} and Wf = ∑

|k|∈kf
1
2 k2|û(k)|2 are energy, helicity and enstrophy at the forcing scale kf , respectively.
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Transfers in helical rotating turbulence

Case Ω εE εH
εH

kf εE

Hf

kf Ef
Re Ro Forcing T0

T0 0.00 0.075 0.525 1.00 0.969 3434.3 ∞ Tei18 1.17
T1 7.00 0.075 0.00 0.00 0.013 5260.7 0.09328 Tei18 0.77
T2 7.00 0.075 0.225 0.43 0.401 5156.3 0.09147 Tei18 0.78
T3 7.00 0.075 0.525 1.00 0.843 5077.6 0.09008 Tei18 0.76
TD3 7.00 0.00 0.00 — 0.398 5077.6 0.09008 — 0.76
ABC3 7.00 0.075 0.525 1.00 0.918 5580.3 0.09895 ABC 0.72
T4 4.00 0.075 0.525 1.00 0.917 4401.9 0.13659 Tei18 0.92

Table 1. Descriptions of the data: rotation rate (Ω); energy injection rate (εE); helicity injection rate (εH);
relative helicity injection rate (εH/kf εE); relative helicity at kf (Hf /kf Ef ); Reynolds number (Re); Rossby
number (Ro); the forcing scheme (forcing); eddy turnover time (T0).

In addition, to exclude the artificial effects of the forcing scheme, the Arnold–Beltrami–
Childress (ABC) forcing scheme (Mininni & Pouquet 2009) is also considered, which can
be written in physical space as

f (x) = F0{[B cos(kf x2) + C sin(kf x3)]e1 + [C cos(kf x3) + A sin(kf x1)]e2

+ [A cos(kf x1) + B sin(kf x2)]e3}, (3.3)

where A = 0.9, B = 1.0, C = 1.1; ei is the unit vector of corresponding axis; and F0 is
determined by the given energy injection rate εE. The ABC forcing scheme can only inject
maximum helicity, i.e. εH = kf εE. Notably, in both forcing schemes above, the forcing
term is a solenoid vector, i.e. ik · f̂ (k) = 0.

In helical rotating turbulence, the Reynolds and Rossby numbers are defined as

Re = Lf U
ν

, Ro = U
2ΩLf

, (3.4a,b)

where Re represents the ratio of the inertial force and the viscous force, Ro is the ratio of
the inertial force and the Coriolis force, Lf = 2π/kf is the forcing scale and U =

√
〈u2〉

is the root mean square velocity. The main arguments are listed in table 1, where the eddy
turnover time is T0 = Lf /U. Since TD3 starts from T3 and freely decays, Re, Ro and T0 of
TD3 are the same as T3, its relative helicity is calculated at 2.5 eddy turnover times. Other
common parameters include the forcing wavenumbers kf = 7 and the kinematic viscosity
ν = 2 × 10−4.

The simulations first reach a balance with Ω = 0.06 and 7683 grid points. Then, T0 is
interpolated to 15363 grid points and continues for 6.61 eddy turnover times with Ω = 0,
which is steady after the first 1.4 eddy turnover times. Other cases except for TD3 continue
for approximately nine eddy turnover times with 7683 grid points and Ω in table 1. Finally,
these cases are interpolated to 15363 grid points and continue for approximately five eddy
turnover times. The exact moments of interpolation are marked by triangles in figure 2,
when the trend of evolution is monotonic. Starting from T3 at 11.6 eddy turnover times,
TD3 continues for 4.9 eddy turnover times with no injection.

Here, T0 has a zero rotation rate but maximum helicity injection; T1, T2 and T3 have
the same rotation rate but different helicity injection rates; T4 has a smaller rotation rate
than T3; TD3 has no energy or helicity injection. Except for the forcing scheme, ABC3
has the same arguments as T3.
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Figure 2. Temporal evolution of the averaged (a) energy and (b) helicity. The triangles represent the time
when interpolation is performed. The blocks represent the time when numerical results are calculated.

3.2. Global behaviours
Figure 2 presents the evolution of the averaged energy E = 〈u(x) · u(x)〉/2 and helicity
H = 〈u(x) · ω(x)〉/2. The time in the figure is normalized by the eddy turnover time. In
figure 2(a), after a transition of no more than six eddy turnover times, E of T1 and T2
develops faster than that of T3 and ABC3, which means that strong helicity can inhibit
the rate of energy increase. In figure 2(b), H of T1 varies around zero, which involves
no helicity injection. Additionally, H of T2 and T4 is approximately steady. In T3 and
ABC3, where nearly maximum helicity is injected, the helicity initially increases and then
decreases. The energy and helicity of TD3 decrease monotonically. If not specified, the
numerical results hereafter are calculated at the time marked by blocks in figure 2.

The isotropic spectra of energy and helicity are defined as

E(k) =
∑
|k|=k

E(k), H(k) =
∑
|k|=k

H(k). (3.5a,b)

Figure 3 shows the energy and helicity spectra of all cases. Without rotation, the scaling
laws of the energy and helicity spectra of T0 are shallower than k−5/3. Similar results have
been reported by other researchers (Mininni & Pouquet 2010b; Alexakis & Biferale 2018).
Moreover, with a relatively small rotation rate (Ω = 4), the scaling law of the energy
spectrum of T4 presents two different behaviours: E(k) ∼ k−2.2 when k < 20, and E(k) ∼
k−5/3 when k > 20. This can be attributed to the recovery of isotropy at small scales and
is consistent with the results of Mininni et al. (2012). In addition, except for T0 and T4, the
scaling laws of the energy spectra are nearly k−2.2 for all cases. However, as the helicity
injection becomes stronger from T1 to T3, the energy spectra become slightly shallower
from k−2.2 to k−2.15. Furthermore, ABC3 and T3 have the same slope in the inertial range,
which means that the forcing schemes have negligible effects here. For the cases except
for T0, T1 and T4, the scaling laws of the helicity spectra are close to k−1.8. The helicity
spectrum of T1 oscillates violently, which can be attributed to the absence of helicity
injection. Additionally, the net helicity of T1 is positive at a wide range of wavenumbers,
which is just a special case. The helicity spectrum generally oscillates around zero during
the whole evolution process.

Furthermore, Galtier (2014) has derived the cospectrum of E(k)H(k) ∼ k−4, which
has also been addressed by numerical simulations (Mininni & Pouquet 2010a). In our
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Figure 3. Compensated spectra of energy and helicity: (a) E(k)k2.2; (b) H(k)k1.8.
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Figure 4. Temporal evolution of compensated spectra: (a) T2; (b) T3.

simulation, the scaling laws of the cospectra of TD3, T2, T3 and ABC3 vary from k−4.0

to k−3.9. Figure 4 gives the evolution of the compensated spectra E(k)H(k)k4 of T2 and
T3. The spectra mainly vary at the early six eddy turnover times. In the later stage, the
small-scale spectra (k ≥ 15) are almost unaffected, while the amplitudes of the large-scale
spectra keep growing. In addition, the interpolation has small effects on the evolution of
the spectra in the inertial range.

The decomposed energy spectrum Es(k) is defined by (A5). Figure 5 shows Es(k) of T1
and T3. As shown in figure 5(a), without any helicity injection, the two chiralities of T1
are far from distinguishable. In contrast, in T3, the imbalance of chiralities mainly occurs
around the forcing wavenumber kf . At small scales (k � 102) and the largest scale (k ≈ 1),
the reflection symmetry is recovered.

Considering the anisotropy, a spectrum can be divided into N sectors according to the
angle (θ ∈ [0, π/2]) between the wavevector and the rotating axis,

E(k, α) =
∑
|k|=k

∑
θα−1<θ≤θα

E(k), (3.6)

where θ = arccos(k‖/k), θα = πα/2N is the angle of different sector boundaries and α =
{1, . . . , N} is the index of sectors. Figure 1 gives the division of the spectral space into
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Figure 5. Decomposed energy spectra after HWD: (a) T1; (b) T3.

five sectors. To study the anisotropy in detail, the relative difference of the directional
spectrum and corresponding isotropic spectrum is introduced (Vallefuoco et al. 2018),

ΔE(k, α) = 1
| cos(θα) − cos(θα−1)|

E(k, α)

E(k)
− 1, (3.7)

where N = 5 in this paper. Since E(k, α) ≥ 0, ΔE(k, α) ≥ −1.
Figure 6 presents the results of anisotropy of T2, T3, ABC3 and T4. In general, for most

wavenumbers, energy is concentrated in sector 5, which means the two-dimensionalization
of flows. The comparison of figure 6(a) with figure 6(b) indicates that as the helicity
injection becomes stronger, the energy at kf tends to concentrate on sector 1. However,
the comparison of figure 6(b) with figure 6(c) reveals that the abnormal distribution
at kf in figure 6(b) is introduced by the forcing scheme Tei18. The artificial effects
are limited to wavenumbers [4, 20]. Similar artificial effects can also be identified in
figure 6(d). Nonetheless, figure 6(d) still carries important information about the recovery
of small-scale isotropy. As shown in the figure, the non-dimensional directional spectra
at small scales do not recover to fully isotropic, and they do not reach constant values
until k > 60, which is consistent with the results of Vallefuoco et al. (2018). Furthermore,
Mininni et al. (2012) argued that small scales recover to isotropy mainly by the transition
of energy scaling laws. A similar tendency is also shown in figure 3(a) in this paper.
However, the results here reveal that even if the scaling law is similar to the isotropic
case, the small scales are still not fully isotropic. At small scales (k > 70) of T4, sector 5
contains approximately 1.5 times as much energy as sector 1.

4. Results of transfers

The scale transfer is complicated, especially considering the chirality and anisotropy in
helical rotating turbulence. However, transfer analyses are significant for understanding
and modelling the process (Chen et al. 2003). In helical rotating turbulence, attributed to
its complexity, detailed analyses of the transfer processes are still scarce.

4.1. Energy transfers
According to the antisymmetry of TE(k|p|q) (2.4), ΠE(k = k1) represents the energy flux
from [0, k1] to (k1, kmax]. In figure 7, the energy fluxes of all cases are given. In this paper,
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Figure 6. The results of anisotropy: (a) T2; (b) T3; (c) ABC3; (d) T4.
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Figure 7. Overall energy fluxes. The black horizontal line represents zero flux for reference.

all fluxes are normalized by corresponding injection rates except for TD3. The fluxes of
TD3 hereafter are normalized by the parameters of T3.

With a zero rotation rate, T0 cascades energy forward only. Other cases cascade energy
upscale and downscale simultaneously. As more helicity is injected (from T1 to T3), the
inverse cascades become weaker. As the rotation rate decreases from T3 to T4, the inverse
cascades are also significantly suppressed. The suppression of inverse cascades can be
associated with the smaller rate of energy increase shown in figure 2(a). This is because
energy is mainly contained at large scales where dissipation is negligible. The rate of
energy increase is approximately proportional to the strength of inverse cascades.
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4.1.1. Energy fluxes decomposed by HWD
Figure 8 gives the results of decomposed energy fluxes of T0, T1, T3 and ABC3.
The results in figure 8(a) are consistent with those of Alexakis (2017). With the zero
rotation rate in T0, the inverse energy cascade is hidden in the overall forward cascade
and is supported by the homochiral fluxes (Π+++

E (k) + Π−−−
E (k)). The comparison of

figure 8(a) with figure 8(c) indicates that as rotation is introduced, the inverse cascade of
the homochiral fluxes is strengthened. Additionally, inverse cascades are also introduced
by conservative heterochiral fluxes (Π++−

E (k) + Π−−+
E (k)) and averaged transhelical

energy fluxes (Π+,th
E (k) + Π

−,th
E (k)), where the former fluxes have a minor effect. Notably,

the two classes of fluxes are heterochiral. Similar results were reported by Buzzicotti et al.
(2018a), who associated homochiral energy fluxes with the interactions of 3-D modes and
heterochiral energy fluxes with the interactions of 2-D modes. To evaluate the effects of
helicity injection, figures 8(b) and 8(c) are compared. As helicity is injected, the overall
inverse cascades are suppressed. The homochiral fluxes are relatively unaffected, while
the inverse cascades of the averaged transhelical energy fluxes are suppressed. This is also
supported by the results of ABC3 in figure 8(d) and of T3 at another instant (not shown
here). The averaged transhelical energy fluxes are the fluxes between the two chiralities and
are associated with the 2-D modes according to the research of Buzzicotti et al. (2018a).
Therefore, the reduction of the inverse cascades and energy growth rate can be attributed
to the injection of helicity suppressing the interactions of two chiralities as well as those
of 2-D modes. The suppression of 2-D interactions is in agreement with previous results,
since helicity does not work in 2-D dynamics (Biferale, Buzzicotti & Linkmann 2017).

Figure 9 shows the detailed energy flux decomposition of T3. The results of ABC3
in Appendix C are consistent with those in figure 9 and are not discussed here. As
predicted, all four transhelical energy fluxes are not conservative. In addition, since
the injected helicity is positive, the components with more positive modes have larger
amplitudes than their symmetric components, such as Π+++

E (k) versus Π−−−
E (k) or

Π+−+
E (k) versus Π−+−

E (k). Furthermore, according to the interpretation given in § 2,
since Π+−+

E (k) + Π+−−
E (k) > 0, energy is mainly injected into the positive chirality and

then transferred to the negative chirality.
The findings of inverse cascades can also be explained in terms of reflection symmetry

recovery. Inverse cascades only occur when Π
s1,s2,s3
E (k) < 0, which means that the energy

is transferred towards large scales. In helical cases, the positive chirality is dominant. The
recovery of the reflection symmetry implies that the dominant chirality loses more energy
than another chirality. Thus, Π

s1,+,+
E (k) (Π+++

E (k) and Π−++
E (k)) dominate the inverse

cascades, which is consistent with the numerical results in figure 9.

4.1.2. Anisotropic energy transfers
In helical rotating turbulence, another topic of the energy transfer is the anisotropy.
Referring to the definition of the energy anisotropy (3.6), the energy transfer across the
angle θ1 is written as

ΠE(θ = θ1) = −
∑

p‖/|p|≥cos θ1

∑
k‖/|k|<cos θ1

∑
q=−p−k

TE(k|p|q). (4.1)

According to the results of figure 6, the forcing scheme Tei18 introduces artificial effects
around the forcing wavenumber. Therefore, the small-scale anisotropic energy transfer is
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Figure 8. Results of energy flux decomposition: (a) T0; (b) T1; (c) T3; (d) ABC3.
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Figure 9. Detailed energy flux decomposition of T3: (a) conservative energy fluxes; (b) transhelical energy
fluxes.

also considered here to exclude the effects:

Π>
E (θ = θ1) = −

∑
p‖/|p|≥cos θ1

∑
k‖/|k| < cos θ1

|k| > 20

∑
q=−p−k

TE(k|p|q). (4.2)

The wavenumbers (k > 20) considered in Π>
E (θ) include part of the inertial range and the

whole dissipative range.
Figure 10 gives the results of ΠE(θ) and Π>

E (θ). As shown in figure 10(a), ΠE(θ) of
T3 is completely different from that of ABC3, which could be attributed to the artificial
effects of the forcing scheme Tei18. Furthermore, considering TD3, even if this case freely
decays for 2.5 eddy turnover times, it still maintains the artificial effects of the forcing
scheme Tei18. When considering Π>

E (θ) at small scales in figure 10(b), various cases lead
to similar results. Notably, the results in figure 10(b) show small-scale anisotropy in T4,
which is consistent with the anisotropy results in figure 6(d).
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Figure 10. Anisotropic energy transfers: (a) ΠE(θ); (b) Π>
E (θ).

Similar to (4.2), the decomposed anisotropic energy transfers Π
> s1,s2,s3
E (θ = θ1) can be

defined by Ts1,s2,s3
E (k|p|q). As illustrated in figure 1, the spectral space can be divided into

two components by θ1:

S1(k1) = {0 ≤ θ ≤ θ1}, S2(k1) = {θ1 < θ ≤ π/2}. (4.3a,b)

Furthermore, Si (i = 1, 2) can be further partitioned into Ss
i when chiralities are

considered. Here Π
s1,s2,s3
E (θ = θ1) can be interpreted as follows.

(i) The conservative anisotropic energy transfer: s1 = s2 = s, the transfer of energy
from Ss

1 to Ss
2 by the field with the chirality s3.

(ii) The transhelical anisotropic energy transfer: s1 = −s2 = s, the transfer of energy
from Ss

1 to S−s
2 by the field with the chirality s3.

Strictly speaking, all components of decomposed anisotropic transfers are conservative,
viz., Π

s1,s2,s3
E (θ = π/2) = 0. However, for consistency, we still name those components

conservative or transhelical anisotropic energy transfers.
Figure 11 gives Π

> s1,s2,s3
E (θ) of T3, where conservative anisotropic energy transfers are

given in figure 11(a) and transhelical anisotropic energy transfers are given in figure 11(b).
Notably, Π

> s1,s2,s3
E (θ) generally has the opposite sign to Π

s1,s2,s3
E (k). There is only one

exception: Π>−−+
E (θ) crosses the zero line at θ = 0.4π, but it still fits the sign results

over the wide range [0, 0.4π]. The results of ABC3 in Appendix C are consistent with
those in figure 11 and are not discussed for concision. The signs of anisotropic energy
transfers mean that the inverse cascades are associated with two-dimensionalization, and
the forward cascades are associated with the three-dimensionalization. This result is
consistent with those of Yokoyama & Takaoka (2021), who used energy-flux vectors to
reveal the relation between fluxes and anisotropic transfer directions.

4.2. Helicity transfers
The helicity flux ΠH(k) is defined in (2.15). The results of helicity fluxes are simpler than
those of energy fluxes. As shown in figure 12, helicity cascades forward for all cases. The
overall helicity flux of T1 is nearly zero and is not shown here.
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Figure 11. Detailed anisotropic energy transfer decomposition of T3: (a) conservative anisotropic energy
transfers; (b) transhelical anisotropic energy transfers.
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Figure 12. Overall helicity fluxes.

4.2.1. Relations of the three expressions of helicity fluxes
As mentioned in (2.13), the three expressions of the helicity transfers are equal when
considering the sum of all triads. The numerical verification is given in figure 13(a). The
helicity fluxes ΠH(k), Π ′

H(k) and Π ′′
H(k) are exactly the same, which verifies the identity

(2.13). The results about the three components ΠHi(k) (i = 1, 2, 3) of the first expression
are also shown in figure 13(a). The forward cascade of helicity is supported by ΠH1(k)
and ΠH3(k), while ΠH2(k) is mainly related to the inverse cascade. The inverse cascade
of ΠH2(k) at large scales is balanced by ΠH1(k). The balance may be broken locally
in physical space (Yan et al. 2020b). In addition, similar subdominant inverse helicity
transfers have also been found by Briard & Gomez (2017).

In addition, as discussed in § 2, the equivalence is invalid for a single triad. To verify the
issue, the following quantity is calculated:

ΠH(K, P) = −
∑

|k|<K

∑
|p|=P

∑
q

TH(k|p|q). (4.4)

Similarly, Π ′
H(K, P) and Π ′′

H(K, P) can also be defined in the same way. A comparison
of ΠH(K, P = 10), Π ′

H(K, P = 10) and Π ′′
H(K, P = 10) is shown in figure 13(b). The

results of the three expressions are distinct. Therefore, they are certainly not equivalent
for a single triad. However, at the cutoff wavenumber, the first and the third expressions
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Figure 13. Numerical verification of the helicity transfer identity by T3.

are equal, viz.

ΠH(K = kmax, P) = Π ′′
H(K = kmax, P), (4.5)

which is proved in Appendix B.2.2.
Figure 14 presents the results of Π

s1,s2,s3
H (k) and Π

′′ s1,s2,s3
H (k) of T1. The results of

Π
′′ s1,s2,s3
H (k) are consistent with those of Alexakis (2017). As mentioned in (2.18) and

Appendix B.2.3, the two expressions Π
s1,s2,s3
H (k) and Π

′′s1,s2,s3
H (k) are equal only for the

components with s2 = s3. Notably, the homochiral helicity fluxes (+++ and −−−) are
equal. This is verified in figure 14. In addition, the overall heterochiral fluxes are also
not affected, which can be obtained by corresponding definitions. The results of other
components with s2 = s3 are also consistent with the derivation and are not shown here.
In contrast, when s2 = −s3 = s, Π s1,s,−s

H (k) and Π
′′ s1,s,−s
H (k) are totally different. Derived

from the results in Appendix B.2.3, the difference between Π
s1,s,−s
H (k) and Π

′′ s1,s,−s
H (k)

can be written as

Π
′′ s1,s,−s
H (k) − Π

s1,s,−s
H (k) = −

∑
|k|≤k1

1
2

Re{ω̂s1(k) · F{us · (∇u−s)T}∗(k)}. (4.6)

As mentioned in § 2 and Appendix B.1, the first expression Π
s1,s2,s3
H (k), which is derived

in this study, is the only expression consistent with this in physical space. The difference
of Π

s1,s2,s3
H (k) and Π

′′ s1,s2,s3
H (k) implies that in the derivation of the third expression

Π
′′ s1,s2,s3
H (k), artificial effects are introduced. The non-physical effects are addressed more

obviously when considering the anisotropic helicity transfers in § 4.2.3.

4.2.2. Helicity fluxes decomposed by HWD
Figure 15 gives the details of the helicity flux decomposition of T3, where figure 15(a)
gives the conservative and averaged transhelical helicity fluxes and figure 15(b) gives
the transhelical helicity fluxes. The comparison between figures 15(a) and 14(b) shows
that rotation does not change the signs of the decomposed helicity fluxes in helical flows.
However, the amplitudes of all components are generally suppressed. These are the same
for the results of ABC3 in Appendix C.
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Figure 14. Results of helicity flux decomposition of T0: (a) HWD results of Π
′′ s1,s2,s3
H (k)/εH ; (b) HWD

results of Π
s1,s2,s3
H (k)/εH .
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Figure 15. The HWD results for the helicity flux of T3: (a) conservative and averaged transhelical helicity
fluxes; (b) transhelical helicity fluxes.

As shown in figure 15, the components of helicity fluxes are different from those
of energy fluxes mainly in two aspects. First, compared with the overall helicity flux
ΠH(k), the amplitudes of Π

s1,s2,s3
H (k) are too large. The maximum of Π

s1,s2,s3
H (k) is

approximately five times as large as the helicity injection εH . Another difference is that for
the transhelical helicity fluxes, Π−++

H (k) + Π−−+
H (k) ≥ 0 and Π++−

H (k) + Π+−−
H (k) ≤

0. These components transfer helicity from the negative chirality to the positive chirality.
Since H−(k) < 0 but H+(k) > 0, the transhelical helicity fluxes increase both

amplitudes of |Hs(k)| (s = ±). Similar phenomena were also addressed by Alexakis
(2017), who qualitatively explained them by the sustainment of forward energy cascades.

To interpret the two phenomena quantitatively, the helicity transfer equation should be
studied in detail. Summing over all k with |k| ≤ k1 in the helicity transfer equation (2.11),
we can obtain that

Ds
H(k = k1) ≈ Fs

H(k = k1) + Π s
H(k = k1), (4.7)

where the time derivative is neglected for simplification, Ds
H(k = k1) = ∑

k≤k1
2νk2Hs(k),

Fs
H(k = k1) = ∑

|k|≤k1
Re{ω̂s∗(k) · f̂ s(k)} and Π s

H(k = k1) = ∑
s2,s3

Π
s,s2,s3
H (k = k1) are

the dissipation, production and flux, respectively. Since Hs(k) = skEs(k), the dissipation
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Figure 16. Balance of the helicity dissipation, production and flux of T3.

can be estimated as

|Ds
H(k = k1)| =

∑
k≤k1

2νk3Es(k) ∼ k1
∑
k≤k1

2νk2Es(k) ∼ 1
2

k1
∑
k≤k1

2νk2E(k). (4.8)

Notably, |Ds
H(k = k1)| is overestimated, but its order is suitable. If k1 = kmax, |Ds

H(k =
kmax)| ∼ 1

2 kmaxεE ∼ 1
2εHkmax/kf . The production can be estimated as

|Fs
H(k = kmax)| = 1

2 |εEkf + sεH| ∼ 1
2εEkf ∼ 1

2εH. (4.9)

The ratio between dissipation and production is kmax/kf � 1. According to (4.7), the
decomposed helicity flux is assessed as

|Π s
H(k = kmax)| ∼ |Ds

H(k = kmax)| ∼ 1
2

kmax

kf
εH. (4.10)

In addition, since the maximum of the overall flux |ΠH(k = kf )| ∼ εH , the ratio of the
decomposed helicity flux and the overall flux is

|Π s
H(k = kmax)|/|ΠH(k = kf )| ∼ 1

2
kmax

kf
� 1. (4.11)

The balance of helicity dissipation, production and flux is presented in figure 16, which
verifies the deduction above. At the cutoff wavenumber kmax, the decomposed helicity flux
|Π s

H(k = kmax)| is comparable to the decomposed dissipation |Ds
H(k = kmax)|, and they are

both far larger than the decomposed production |Fs
H(k = kmax)|. However, the ratio of the

decomposed flux and production is less than kmax/kf , which could mainly be attributed
to the overestimation in (4.8). Through the analyses and numerical results, the first
phenomenon of amplitudes is interpreted in detail. Considering the second phenomenon
of Π−++

H (k) + Π−−+
H (k) ≥ 0 and Π++−

H (k) + Π+−−
H (k) ≤ 0, the decomposed helicity

dissipation Ds
H(k) is far larger than the decomposed helicity production Fs

H(k), and the
dissipation is mostly balanced by the corresponding flux Π s

H(k). Moreover, since the
conservative helicity fluxes are conservative, at the cutoff wavenumber kmax, the helicity
dissipation is mostly balanced by the transhelical helicity flux. Then, H−(k) decreases and
H+(k) increases. Since H−(k) < 0, both amplitudes of |Hs(k)| (s = ±) increase. The two
phenomena of the decomposed helicity fluxes have now been fully interpreted.

Helicity can diminish in two ways: by dissipation and by the cancellation of positive and
negative helicity. The numerical results above reveal that the second way is not a sink but
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Transfers in helical rotating turbulence

a source of helicity. In other words, the dissipation of decomposed helicity is too large.
Therefore, the transhelical fluxes are the sources of balancing the dissipation. It could be
a mechanism of chirality polarization, viz., a mechanism to separate the two chiralities.

4.2.3. Anisotropic helicity transfers
For the anisotropy, similar to the corresponding definitions of energy (4.1), the transfers of
helicity across the angle θ1 can be written as

ΠH(θ = θ1) = −
∑

p‖/|p|≥cos θ1

∑
k‖/|k|<cos θ1

∑
q=−p−k

TH(k|p|q), (4.12a)

Π>
H (θ = θ1) = −

∑
p‖/|p|≥cos θ1

∑
k‖/|k| < cos θ1

|k| > 20

∑
q=−p−k

TH(k|p|q), (4.12b)

which are the anisotropic helicity transfers at all scales and small scales (k > 20).
Similar to (4.12), the decomposed anisotropic helicity transfers Π

> s1,s2,s3
H (θ = θ1) and

Π
′′ > s1,s2,s3
H (θ = θ1) can be defined by Ts1,s2,s3

H (k|p|q) and T ′′ s1,s2,s3
H (k|p|q), respectively.

Notably, since only partial p and q are considered in the definition of anisotropic helicity
transfers, when s2 = s3 = s, Π> s1,s,s

H (θ) is not equal to Π
′′ > s1,s,s
H (θ). Now Π

> s1,s2,s3
H (θ =

θ1) can be interpreted as follows.

(i) The conservative anisotropic helicity transfer: s1 = s3 = s, the transfer of helicity
from Ss

1 to Ss
2. When s = +, it means a two-dimensionalization process of the

positive helicity. On the contrary, when s = −, since H−(k) < 0, it makes H−(k)
more isotropic.

(ii) The transhelical anisotropic helicity transfer: s1 = −s3 = s, the transfer of helicity
from Ss

1 to S−s
2 . Whether s = + or −, the transfer always makes H+(k) more

anisotropic but makes H−(k) more isotropic.

The numerical results of the anisotropic helicity transfers are shown in figure 17, where
only the cases related to maximum helicity injection are considered. The non-physical
effects of the forcing scheme Tei18 are also addressed in figure 17(a), while the results at
small scales (k > 20) in figure 17(b) are relatively reliable. In figure 17(b), the helicity is
transferred to the 2-D modes, which is a tendency of two-dimensionalization.

The decomposed anisotropic helicity transfers of T3 at small scales are given in
figure 18, where figure 18(a) gives the results of the first expressions of the conservative
anisotropic helicity transfers Π

> s,s2,s
H (θ), figures 18(b) and 18(c) give the results of the

first (Π> s,s2,−s
H (θ )) and the third expressions (Π ′′ > s,s2,−s

H (θ )) of transhelical anisotropic
helicity transfers, respectively. In addition, those of ABC3 are shown in Appendix C.
The results of the first expressions in figures 18(a) and 18(b) are more complicated than
those of the anisotropic energy transfers. The homochiral anisotropic helicity transfers
(Π> s,s,s

H (θ )) have the same sign as corresponding decomposed helicity fluxes (Π s,s,s
H (k)) in

figure 15, whereas the heterochiral anisotropic helicity transfers have the opposite sign as
corresponding decomposed helicity fluxes. This means that the homochiral fluxes towards
small scales and heterochiral fluxes towards large scales are associated with positive values
of the corresponding anisotropic helicity transfers. Relative physical meanings cannot be
fully interpreted by two- or three-dimensionalization, which have been discussed in detail
in the interpretation of Π

> s1,s2,s3
H (θ).
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Figure 17. Anisotropic helicity transfers: (a) ΠH(θ); (b) Π>
H (θ).
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Figure 18. Details of anisotropic helicity transfer decomposition of T3. (a) Conservative anisotropic helicity
transfers Π

> s,s2,s
H (k)/εH . (b) Transhelical anisotropic helicity transfers (the first expression) Π

> s,s2,s
H (k)/εH .

(c) Transhelical anisotropic helicity transfers (the third expression) Π
′′> s,s2,s
H (k)/εH .

Figures 18(b) and 18(c) show a comparison of different expressions of transhelical
anisotropic helicity transfers. The third expressions Π

′′ > s,s2,−s
H (θ), which have been

applied by Alexakis (2017), present obviously non-physical tendencies. In particular,
the term Π ′′ > ++−

H (θ) crosses the zero line three times, which means that the transfer
directions change three times.

The properties and phenomena of energy and helicity transfers are summarized in
table 2. The inverse energy cascades are mainly supported by the homochiral and
transhelical energy fluxes. The inhibition by strong helicity is mainly associated with the
latter fluxes. For all components of energy transfers, the inverse energy cascades are always
related to two-dimensionalization. For helicity, rotation does not change the sign of helicity
fluxes, but generally suppresses all components of HWD. In addition, the homochiral
anisotropic helicity transfers have the same sign as corresponding fluxes, while it is the
opposite for the heterochiral anisotropic helicity transfers and corresponding fluxes.
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Π
s,−s,s3
E , Π

s,s2,−s
H ,

Terms Π
s,s,s
E , Π

s,s,s
H Π

s,s,−s
E , Π

s,−s,s
H (Π

s,th
E , Π

s,th
H )

Properties and names Homochiral,
conservative
transfer/flux

Heterochiral,
conservative
transfer/flux

Heterochiral,
(averaged) transhelical
transfer/flux

Energy results IEF, 2DAT, small IEF
inhibition by helicity

FEF and small IEF,
3DAT

IEF (2DAT) and FEF
(3DAT), IEF inhibition
by helicity

Helicity results s = +, PHF, PAHT;
s = −, NHF, NAHT

s = +, PHF, NAHT;
s = −, NHF, PAHT

s = +, NHF, PAHT;
s = −, PHF, NAHT

Table 2. Summary of energy and helicity transfers: forward/inverse energy flux (FEF/IEF);
two-dimensionalized/three-dimensionalized anisotropic energy transfer (2DAET/3DAET); positive/negative
helicity flux (PHF/NHF); positive/negative anisotropic energy transfer (PAHT/NAHT).
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1 2 3 4
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(b)(a)

Figure 19. Velocity (|u|) of the x1 − x2 plane at x3 = 2π: (a) T0; (b) T3.

5. Structures

As discussed above, in helical rotating turbulence, helicity and rotation deeply affect the
behaviours and transfer processes of flows. The effects can also be found in flow structures.
In this section, flow structures are investigated in detail and are associated with the results
above.

Figure 19 displays the flow structures of T0 and T3 by the contour of velocity
amplitudes and velocity vectors. The comparison shows that rotation could introduce
energetic large-scale structures. As shown by velocity vectors, most large-scale structures
are anticlockwise vortices, aligning with the rotation vector Ω .

In figure 20, the vortices of T0, T1, T3 and T4 are shown in more detail by the Q criterion
(Q = 1

8 [2|∇ × u|2 − |∇u + (∇u)T|2] > 500). As shown in figure 20(a), there is no
columnar structure in T0. As rotation becomes stronger (from T0, T4 to T3), the columnar
vortices appear and become more energetic. Notably, for T4, there are anticlockwise
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Figure 20. Vortex structure of Q > 500: (a) T0; (b) T1; (c) T3; (d) T4. The solid lines are streamlines. Only
partial domains with the size of 0.25π × 0.7π × 2π are shown.

columnar large-scale structures as well as roughly isotropic small-scale structures.
The observation is consistent with the spectral characteristics of T4 in figure 3. However,
quantitative anisotropy results in figure 6 reveal that small scale is actually anisotropic. As
helicity injection becomes stronger (from T1 to T3), the large-scale columnar vortices
become weaker, and more 3-D vortices appear. This is the artificial effects of the
forcing scheme Tei18. The solid lines in figure 20 represent the streamlines near the
vortex cores, which are integrated by fourth-order Runge–Kutta methods. As the integral
step increases, the colour changes from blue to yellow. Upward-spiralling streamlines
represent H(x) = u(x) · ω(x)/2 > 0, downward-spiralling streamlines represent H(x) <

0 and circular streamlines represent H(x) = 0. In T1, attributed to the zero injection of
helicity, the mean helicity 〈H(x)〉 ≈ 0. However, as shown in figure 20(b), the streamlines
are upward-spiralling (H(x) > 0), downward-spiralling (H(x) < 0) or circular (H(x) =
0). In figure 20(c,d), since the maximum helicity is injected in T3 and T4, the streamlines
are upward-spiralling only. The upward-spiralling streamlines are the main carriers of
strong helicity.

6. Conclusions

Helicity often appears in rotating flows, such as in thunderstorms and turbomachinery.
Based on traditional rotating turbulence, the introduction of helicity is of great practical
significance. To investigate the effects of rotation and helicity, we have performed seven
DNSs and studied the chirality and anisotropy of transfers.

First, the antisymmetry of transfers and the conservation of fluxes are discussed in detail.
In addition, three expressions of the helicity transfer in spectral space are compared. The
first expression is derived here by a similar approach in physical space. The second and
third expressions were proposed in previous studies (Chen et al. 2003; Alexakis 2017). The
first and the third expressions satisfy antisymmetry, while the second one does not. The
relations of the three expressions have been discussed in depth, including those about the
sum of all triads and partial triads, as well as those about HWD components. The different
expressions are due to the commutability of differential operators in spectral space. The
first expression is the only one consistent with the expression in physical space.

By DNSs, we find that helicity injection can inhibit the energy increase rate. The
scaling law E(k)H(k) ∼ k−4 is also verified. Moreover, the imbalance of the chiralities
mainly occurs at large scales. By HWD, we find that the inhibition of inverse energy
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cascades is mainly related to transhelical energy fluxes and 2-D mode interactions.
The two-dimensionalization of energy is associated with the inverse energy cascades.
In terms of helicity transfers, the relations of the three expressions are verified at first.
Furthermore, we find that the third expressions could introduce artificial effects, especially
corresponding anisotropic transhelical helicity transfers. In addition, the results show
that rotation suppresses the decomposed helicity fluxes in general, whereas the signs
are not affected. The transhelical components increase both the amplitudes of positive
and negative helicity. The process can be regarded as the polarization of chiralities. The
anisotropic transfers of helicity are different from those of energy. The positive homochiral
and negative heterochiral helicity fluxes are related to corresponding positive anisotropic
transfers. Finally, we have investigated the effects of rotation and helicity on flow structures
and identified the main carriers of helicity.

Through rigorous derivations and detailed analyses, we have discussed energy and
helicity transfers in helical rotating turbulence at great length. In particular, the first
expression of helicity transfers is closely related to the helicity transform in physical space.
We expect that the expression will contribute to the extension of results from spectral to
physical space and from homogeneous to inhomogeneous flows. Finally, the dynamics of
helical rotating turbulence also need further investigation, such as the locality of energy
and helicity transfers.
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Appendix A. Helical wave decomposition

According to the incompressible constraint k · û(k) = 0, the velocity fields can be
decomposed by projection onto hs(k), where hs(k) (s = ±) and k form an orthogonal
base. The vector hs(k) is defined as

hs(k) = 1√
2
(ν × κ + siν), (A1)

where 1/
√

2 is a normalization factor, ν = (z × κ)/|z × κ |, κ = k/|k| and z is an arbitrary
non-zero vector. It can be verified that ik × hs(k) = s|k|hs(k). By the orthogonal base, the
velocity can be decomposed as

û(k) = û+(k) + û−(k)

= a+(k)h+(k) + a−(k)h−(k), (A2)

where as(k) = hs∗(k) · û(k). The vorticity can be decomposed as

ω̂(k) = ω̂+(k) + ω̂−(k)

= |k|(û+(k) − û−(k)), (A3)

where ω̂s(k) = ik × ûs(k) = s|k|ûs(k). Thus, after projection onto hs(k), the decomposed
vorticity ω̂s(k) is collinear with the decomposed velocity ûs(k), leading to the
decomposition of helicity.
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Similarly, the decomposed energy and helicity can be defined as

Es(k) = ûs(k) · ûs∗(k)/2,

Hs(k) = ûs(k) · ω̂s∗(k)/2,

}
(A4)

from which Hs(k) = s|k|Es(k) can be deduced. Notably, Im{Hs(k)} = 0. Therefore, the
definition of Hs(k) is consistent with the definition of net helicity in (2.11). By the
definitions of decomposed energy and helicity, we can obtain that

Es(k) = 1
2 (E(k) + sH(k)/|k|) ,

Hs(k) = 1
2 (s|k|E(k) + H(k)) .

}
(A5)

Appendix B. Derivations and proofs about helicity transfers

B.1. Derivation of the first expression TH(k|p|q)

From N–S (2.1), the vorticity equation can be derived as

∂ω

∂t
− ω · ∇u + u · ∇ω = ν∇2ω + ∇ × f + 2Ω · ∇u, (B1)

where the nonlinear terms are derived by the Lamb vector ω × u (=u · ∇u − 1
2∇|u|2).

The vorticity equation can be written in spectral space as

∂ω̂(k)

∂t
+ νk2ω̂(k) =

Δ∑
p,q

i[k · ω̂∗(q)]û∗(p) −
Δ∑

p,q

i[k · û∗(q)]ω̂∗(p)

+ ik × f̂ (k) + 2i[Ω · k]û(k). (B2)

Contracting its conjugate equation with û(k), partial helicity transfer equation can be
obtained as

û(k) · ∂ω̂∗(k)

∂t
+ νk2û(k) · ω̂∗(k) = −

Δ∑
p,q

i[k · ω̂(q)][û(p) · û(k)]

+
Δ∑

p,q

i[k · û(q)][ω̂(p) · û(k)]

− iû(k) · [k × f̂ ∗(k)] − 2i[Ω · k][û(k)∗ · û(k)].
(B3)

The velocity equation in (2.1) can be written in spectral space as

∂û(k)

∂t
+ νk2û(k) = −P(k) ·

⎡⎣ Δ∑
p,q

i(k · û∗(q))û∗(p)

⎤⎦ + f̂ (k) + 2û(k) × Ω, (B4)
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where the projection operator Pij(k) = δij − kikj/k2. Contracting the equation with ω̂∗(k),
part of the helicity transfer equation can be obtained as

ω̂∗(k) · ∂û(k)

∂t
+ νk2ω̂∗(k) · û(k) = −

Δ∑
p,q

i[k · û∗(q)][û∗(p) · ω̂∗(k)]

+ ω̂∗(k) · f̂ (k) + 2ω̂∗(k) · [û(k) × Ω]. (B5)

Considering the forcing term and the Coriolis term in (B3), (B5), the following relations
hold:

−iû(k) · [k × f̂ ∗(k)] = if̂ ∗(k) · [k × û(k)]

= f̂ ∗(k) · ω̂(k), (B6a)

2ω̂∗(k) · [û(k) × Ω] = −2i[k × û∗(k)] · [û(k) × Ω]

= 2i[Ω · k][û(k)∗ · û(k)]. (B6b)

Taking into account the relations (B6) and Re{ f̂ ∗(k) · ω̂(k)} = Re{ f̂ (k) · ω̂∗(k)}, the sum
of (B3), (B5) leads to

∂H(k)

∂t
+ 2ν|k|2H(k) =

Δ∑
p,q

TH(k|p|q) + Re{ω̂∗(k) · f̂ (k)}, (B7)

where H(k) = Re{û(k) · ω̂∗(k)}/2 is the helicity at wavenumber k. The nonlinear helicity
transfer TH(k|p|q) is the sum of three components THi(k|p|q) (i = 1, 2, 3):

TH(k|p|q) = TH1(k|p|q) + TH2(k|p|q) + TH3(k|p|q)

= 1
2 Im{[k · ω̂(q)][û(k) · û(p)]} − 1

2 Im{[k · û(q)][û(k) · ω̂(p)]}
− 1

2 Im{[k · û(q)][ω̂(k) · û(p)]}. (B8)

B.2. Relations of the three helicity transfer expressions

B.2.1. Relations of overall helicity fluxes
For the sum of all p and q with k + p + q = 0, the three expressions are identical, i.e.

Δ∑
p,q

TH(k|p|q) =
Δ∑

p,q

T ′
H(k|p|q) =

Δ∑
p,q

T ′′
H(k|p|q),

ΠH(k) = Π ′
H(k) = Π ′′

H(k).

⎫⎪⎪⎬⎪⎪⎭ (B9)
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Proof . The three expressions of the overall helicity transfer can be written in a more
straightforward form,

Δ∑
p,q

TH = 1
2

Re{û∗ · F{ω · ∇u}} − 1
2

Re{û∗ · F{u · ∇ω}}

−1
2

Re{ω̂ · F{u · ∇u}∗},
Δ∑

p,q

T ′
H = −Re{ω̂∗ · F{u · ∇u}},

Δ∑
p,q

T ′′
H = Re{ω̂∗ · F{u × ω}},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B10)

where F{·} represents the Fourier transform.
The second expression can be written as

Δ∑
p,q

T ′
H = −Re{ω̂∗ · F{u · ∇u}} = −Re

{
ω̂∗ · F

{
−u × ω + 1

2
∇|u|2

}}

= Re{ω̂∗ · F{u × ω}} − 1
2

Re{iω̂∗ · kF{|u|2}}

= Re{ω̂∗ · F{u × ω}} =
Δ∑

p,q

T ′′
H, (B11)

where ω̂∗ · k = 0.
Then, the first expression could be simplified as

Δ∑
p,q

TH = 1
2

Re{û∗ · F{ω · ∇u}} − 1
2

Re{û∗ · F{u · ∇ω}} − 1
2

Re{ω̂ · F{u · ∇u}∗}

= 1
2

Re{û∗ · F{∇ × (u × ω)}} − 1
2

Re{ω̂ · F{u · ∇u}∗}

= 1
2

Re{iû∗ · (k × F{u × ω})} + 1
2

Re{ω̂ · F{u × ω}∗}

= 1
2

Re{F{u × ω} · (−ik × û∗)} + 1
2

Re{ω̂∗ · F{u × ω}}

= Re{ω̂∗ · F{u × ω}} =
Δ∑

p,q

T ′′
H. (B12)

The proof is completed. �

B.2.2. Relation between ΠH(K, P) and Π ′′
H(K, P)

Terms ΠH(K, P) and Π ′′
H(K, P) are defined by (4.4). There is a relation between the two

terms:
ΠH(K = kmax, P) = Π ′′

H(K = kmax, P). (B13)
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Proof . Since TH and T ′′
H satisfy antisymmetry, there are the following relations:

ΠH(K = kmax, P) = −
∑

|k|<kmax

∑
|p|=P

∑
q

TH(k|p|q)

=
∑

|p|<kmax

∑
|k|=P

∑
q

TH(k|p|q)

=
∑

|k|=P

Δ∑
p,q

TH(k|p|q),

Π ′′
H(K = kmax, P) =

∑
|p|<kmax

∑
|k|=P

∑
q

T ′′
H(k|p|q)

=
∑

|k|=P

Δ∑
p,q

T ′′
H(k|p|q). (B14)

Then, according to (B9), (B13) can be proved. �

B.2.3. Relation of decomposed helicity fluxes Π
s1,s2,s3
H (k) and Π

′′ s1,s2,s3
H (k)

The following relations describe the decomposed helicity fluxes:

Δ∑
p,q

Ts1,s,s
H (k) =

Δ∑
p,q

T ′′ s1,s,s
H (k),

Π
s1,s,s
H (k) = Π

′′ s1,s,s
H (k).

⎫⎪⎪⎬⎪⎪⎭ (B15)

In other words, only when s2 = s3 do the two expressions Π
s1,s2,s3
H (k) and Π

′′ s1,s2,s3
H (k)

give the same results.

Proof . The third expression of the overall helicity transfer can be written as

Δ∑
p,q

T ′′ s1,s2,s3
H = Re{ω̂s1∗ · F{us2 × ωs3}}

= 1
2 Re{F{us2 × ωs3} · (−ik × ûs1∗)} + 1

2 Re{ω̂s1∗ · F{us2 × ωs3}}
= 1

2 Re{iûs1∗ · (k × F{us2 × ωs3})} + 1
2 Re{ω̂s1 · F{us2 × ωs3}∗}

= 1
2 Re{ûs1∗ · F{∇ × (us2 × ωs3)}} + 1

2 Re{ω̂s1 · F{us2 × ωs3}∗}
= 1

2 Re{ûs1∗ · F{ωs3 · ∇us2}} − 1
2 Re{ûs1∗ · F{us2 · ∇ωs3}}

+ 1
2 Re{ω̂s1 · F{us2 · (∇us3)T}∗} − 1

2 Re{ω̂s1 · F{us2 · ∇us3}∗}. (B16)

The first expression of the helicity transfer
∑Δ

p,q T ′′ s1,s2,s3
H can be written as
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Figure 21. Detailed energy flux decomposition of ABC3: (a) conservative energy fluxes; (b) transhelical
energy fluxes.
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Figure 22. Detailed anisotropic energy transfer decomposition of ABC3: (a) conservative anisotropic energy
transfers; (b) transhelical anisotropic energy transfers.
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Figure 23. The HWD results of the helicity flux of ABC3: (a) conservative and averaged transhelical helicity
fluxes; (b) transhelical helicity fluxes.
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Figure 24. Details of anisotropic helicity transfer decomposition of ABC3. (a) Conservative anisotropic
helicity transfers Π

> s,s2,s
H (k)/εH . (b) Transhelical anisotropic helicity transfers (the first expression)

Π
> s,s2,s
H (k)/εH . (c) Transhelical anisotropic helicity transfers (the third expression) Π

′′> s,s2,s
H (k)/εH .

Δ∑
p,q

Ts1,s2,s3
H = 1

2
Re{ûs1∗ · F{ωs2 · ∇us3}} − 1

2
Re{ûs1∗ · F{us2 · ∇ωs3}}

− 1
2

Re{ω̂s1 · F{us2 · ∇us3}∗}. (B17)

The difference of the two expressions leads to

Δ∑
p,q

T ′′ s1,s2,s3
H −

Δ∑
p,q

Ts1,s2,s3
H =

∑
|k|≤k1

1
2

Re{ω̂s1 · F{us2 · (∇us3)T}∗}. (B18)

Then, it can be proved that only when s2 = s3 are the two expressions equal. �

Appendix C. Results of ABC3

Figures 21 and 23 give the detailed energy and helicity flux decomposition of ABC3,
respectively. The results of energy and helicity anisotropic transfer decomposition of
ABC3 can be seen in figures 22 and 24, respectively.
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