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A B S T R A C T

In Shen et al. (2020), the authors have proposed a novel weighting method to construct the fifth-order WENO-
ZN scheme to improve the accuracy at the second-order critical point. Its basic idea is that, the square of the
fourth-order undivided difference on the global five-point stencil used by the fifth-order WENO scheme is
suggested as the global smoothness indicator. To keep the ENO property and enhance robustness for resolving
shock waves, the constant 1 used to calculate the un-normalized weights in the original WENO-Z schemes is
replaced by an adaptive function, which can approach a small value if the global stencil contains a discontinuity
or approach a large value if the solution is smooth enough. The fifth-order WENO-ZN scheme can obtain
fifth order accuracy at both the first- and second-order critical points. However, limited by the smoothness
indicators, the scheme cannot improve the convergence rate at the third-order and above critical points. In this
paper, we extend the idea of the fifth-order WENO-ZN scheme to construct higher-order WENO-ZN schemes and
investigate their performance. Numerical experiments show that the (2𝑟−1)th-order (𝑟 ≥ 3) WENO-ZN schemes
are robust for capturing shock waves and can improve the accuracy order in smooth regions including the
maximum (2𝑟 − 4)th-order critical points.
1. Introduction

Numerical simulation is a practical as well as efficient method in
the study of shock waves, which is an interesting but complicated
phenomenon in fluid dynamics. For its outstanding performance in
capturing shock waves and small-scale structures, weighted essentially
non-oscillatory (WENO) schemes have been widely studied and applied
in computational fluid dynamics.

Harten [1] first proposed essentially non-oscillatory (ENO) scheme
with the idea of choosing the smoothest sub-stencil in the recon-
struction domain so that the scheme can capture discontinuities and
meanwhile achieve high order in smooth regions. Liu et al. [2] de-
veloped this idea by using a weighted combination of each candidate
sub-stencil instead of choosing the smoothest one and hence the pro-
posed scheme utilized intact information of computing domain and
achieve higher order than ENO scheme. Jiang and Shu [3] then ex-
ploited higher order variations to calculate smoothness indicators of
stencils and introduced a general form of WENO scheme. Since then
many efforts have been taken to improve the accuracy and efficiency
of the WENO scheme. Henrick et al. [4] pointed out that the WENO
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scheme implemented by Jiang and Shu (WENO-JS) would lose or-
der at critical points and then derived the necessary and sufficient
conditions on the weights of fifth-order WENO schemes to achieve fifth-
order convergence. Then they constructed the WENO-M scheme with a
mapping function to correct the weights and the scheme satisfies fifth-
order convergence condition even at critical points. Borges et al. [5]
proposed the WENO-Z scheme with the idea of using the original
smoothness indicators to construct a global smoothness indicator (GSI).
The global smoothness indicator utilized whole five-points stencil in
WENO schemes and helped the WENO-Z scheme achieve similar results
to the WENO-M scheme while consuming less computational resources.

The WENO-Z scheme takes nearly the same cost as WENO-JS does
but gets better results, which provides an improving direction for
WENO schemes. Hu et al. [6] used a six-points global stencil with an
extra three-points substencil and a corresponding global smoothness
indicator to construct the sixth-order central-upwind WENO-Z type
scheme (WENO-CU6). Ha et al. [7] provided a limiter on local smooth-
ness indicator (LSI) and a new sixth-order global smoothness indicator
from the five-points stencil. Fan et al. [8] devised new smoothness
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indicators with Lagrangian interpolation polynomial and constructed
several new high order global smoothness indicators up to eighth-order.
The corresponding WENO-Z𝜂 scheme can achieve fifth-order at critical
oints where the first and second derivatives equal zero. Acker et al. [9]
dded a new term into the WENO-Z weights to increase the influence of
ess-smooth substencils and the new scheme (WENO-Z+) attained better
esolution in smooth regions. Liu et al. [10] presented a new global
moothness indicator together with a function about the indicator,
nd the proposed scheme (WENO-ZA) satisfies the sufficient condi-
ion for fifth-order convergence even at critical points and meanwhile
aintained low dissipation for discontinuous solutions. Recently, Baeza

t al. [11] designed a novel global smoothness indicator, which defines
he new WENO reconstruction (called OWENO) to attain the optimal
rder in smooth regions regardless of the presence of critical points of
ny order. Then the method was extended to develop the third-order
WENO scheme with an additional node [12]. Shen et al. [13] pro-
osed an adaptive function to replace the constant 1 used in nonlinear
eight formulations of WENO-Z scheme. The adaptive function can
pproach a large value when the global stencil is relatively smooth
hile the global stencil contains a discontinuity then the function
pproaches a small value. The scheme proposed by Shen et al. (WENO-
N) can capture shocks robustly and meanwhile reduce dissipation in
mooth regions.

In addition to modifying the nonlinear weights of the weighted
ssentially non-oscillatory schemes, another way to improve the per-
ormance of WENO schemes is to increase the convergence order
f the nonlinear weights. Balsara and Shu [14] designed a class of
igher order WENO schemes up to 11th order of accuracy. Gerolymos
t al. [15] further extended WENO schemes to very-high-order. Balsara
t al. [16,17] then utilized Legendre polynomials to construct the
moothness indicator, which provided an elegant and compact ap-
roach extend WENO schemes to higher order convergence. Shen and
ha [18] developed the seventh-order WENO-Z scheme and discussed
he sufficient condition for seventh-order accuracy. Castro et al. [19]
evised the optimal higher order global smoothness indicators and
nvestigated the accuracy of the high-order WENO-Z schemes at critical
oints. Fan [20] extended the WENO-Z𝜂 schemes to high odd-orders of
ccuracy, but the WENO-Z𝜂 schemes produce strong oscillations (see
he results given in [20]).

In [13], Shen et al. discussed the roles of the global smoothness indi-
ator 𝜏 and the constant 1 used for computing the nonlinear weights in
ENO-Z schemes. The authors suggested using the square of the fourth-

rder undivided difference (which is the maximum-order difference) on
he global five-point stencil used by the fifth-order WENO scheme as
he global smoothness indicator to obtain the high-order approximation
f the ideal weights, and constructed an adaptive function of local
moothness indicator to replace the constant 1. If the global stencil
ontains a discontinuity, the adaptive function will approach a small
alue, which can capture shocks robustly; and if the global stencil is
ufficiently smooth, the adaptive function will approach a large value
o improve accuracy and reduce dissipation. The new fifth-order WENO
cheme is robust for capturing shocks and can achieve fifth order
onvergence rate at both the first- and second-order critical points.
owever, limited by the smoothness indicators, the new scheme cannot

mprove the convergence rate at the third-order and above critical
oints.

The high order critical points measure the different scales structures
n the complex flow fields [21], for example, the first-, second- and
hird-order critical points measure the extrema, curvature and inflec-
ion, respectively. The numerical simulation of complex compressible
low fields, especially the large eddy simulation (LES) or direct numer-
cal simulation (DNS), requires the used numerical method should have
strong capability for shock-capturing and high accuracy for different

cales structures. The fifth-order WENO-ZN scheme provides a general
dea. In this article, we extend the fifth-order WENO-ZN scheme to
2

igher-order schemes and investigate their performance.
Table 1
Coefficients 𝑐𝑘,𝑟.

𝑟 𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

3 1/10 3/5 3/10
4 1/35 12/35 18/35 4/35
5 1/126 10/63 10/21 20/63 5/126

This paper is organized as follows: In Section 2, a brief review of the
WENO schemes is given. The high-order extensions of the WENO-ZN
scheme are presented in Section 3. Section 4 gives several numerical
results to validate the performance of high order WENO-ZN schemes.
Concluding remarks are given in Section 5.

2. Review of the WENO schemes

Considering the scalar hyperbolic conservation law
𝜕𝑢
𝜕𝑡

+
𝜕𝑓 (𝑢)
𝜕𝑥

= 0, (1)

where the flux function 𝑓 (𝑢) can be split into two parts as 𝑓 (𝑢) =
𝑓+(𝑢) + 𝑓−(𝑢) with d𝑓+(𝑢)∕d𝑢 ⩾ 0 and d𝑓−(𝑢)∕d𝑢 ⩽ 0. On a structured
grid where 𝑥𝑖 = 𝑖𝛥𝑥, (𝑖 = 0,… , 𝑁) and 𝛥𝑥 is the grid spacing, Eq. (1)
can be written in a semi-discrete form as

d𝑢𝑖
d𝑡

= −
𝑓𝑖+1∕2 − 𝑓𝑖−1∕2

𝛥𝑥
, (2)

in which 𝑓𝑖±1∕2 = 𝑓+
𝑖±1∕2 + 𝑓

−
𝑖±1∕2 is the numerical flux. Without loss of

generality, in the following article only the positive part 𝑓+
𝑖±1∕2 will be

discussed and the superscript ‘+’ will be dropped for simplicity. The
negative part 𝑓−

𝑖±1∕2 can be calculated by the symmetric rule.
In general, the numerical flux of the (2𝑟 − 1)th WENO scheme [14]

can be written as

𝑓𝑖+1∕2 =
𝑟−1
∑

𝑘=0
𝜔𝑘,𝑟𝑞𝑘,𝑟, (3)

where 𝑞𝑘,𝑟 is the 𝑟th-order flux on the sub-stencil 𝑆𝑟𝑘 = (𝑥𝑖+𝑘−𝑟+1,
𝑥𝑖+𝑘−𝑟+2,… , 𝑥𝑖+𝑘) given by

𝑞𝑘,𝑟 =
𝑟−1
∑

𝑙=0
𝑑𝑘𝑙,𝑟𝑓𝑖+𝑘+𝑙−𝑟+1 (4)

and 𝜔𝑘,𝑟 is called the weight of the substencil 𝑆𝑟𝑘. There are several
methods to calculate the weights [3–5]. For example, the method
proposed by Jiang and Shu [3] is

𝜔𝑘,𝑟 =
𝛼𝑘,𝑟

∑𝑟−1
𝑙=0 𝛼𝑙,𝑟

, 𝛼𝑘,𝑟 =
𝑐𝑘,𝑟

(𝛽𝑘,𝑟 + 𝜀)𝑝
, (5)

here, 𝜀 is a small real number used to avoid division by zero, and 𝑝 is a
onstant which can control the magnitude of the numerical dissipation.
𝑘,𝑟 is the optimal weights given in Table 1.

This paper mainly develops higher order WENO scheme, for com-
leteness and convenience, the related coefficients 𝑑𝑘𝑙,𝑟 of the fifth-,
eventh-, and ninth-order WENO schemes are given in Table 2. One
lso can refer the Refs. [3,14].

For calculating the weight 𝜔𝑘 Eq. (5), the smoothness indicator 𝛽𝑘,𝑟,
hich is used to measure the smoothness of the numerical flux on the

ubstencil 𝑆𝑟𝑘, plays a very important role. In the first WENO scheme
roposed by Liu et al. [2], 𝛽𝑟𝑘 is given as

𝑟
𝑘 =

𝑟−1
∑

𝑙=1

𝑟−𝑙
∑

𝑖=1

(𝑓 [𝑗 + 𝑘 + 𝑖 − 𝑟, 𝑙])2

𝑟 − 𝑙
(6)

where [⋅, ⋅] is the 𝑙th undivided difference operator. To improve accu-
racy, Jiang and Shu [3] exploited interpolation polynomial to construct
the local smoothness indicator as

𝛽𝑟𝑘 =
𝑟−1
∑

∫

𝑥𝑗+1∕2
ℎ2𝑙−1(𝑞(𝑙)𝑘 )2d𝑥 (7)
𝑙=1 𝑥𝑗−1∕2
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Table 2
Coefficients 𝑑𝑟𝑘𝑙 .

𝑟 𝑘 𝑙 = 0 𝑙 = 1 𝑙 = 2 𝑙 = 3 𝑙 = 4

3 0 1/3 −7/6 11/6
1 −1/6 5/6 1/3
2 1/3 5/6 −1/6

4 0 −1/4 13/12 −23/12 25/12
1 1/12 −5/12 13/12 1/4
2 −1/12 7/12 7/12 −1/12
3 1/4 13/12 −5/12 1/12

5 0 1/5 −21/20 137/60 −163/60 137/60
1 −1/20 17/60 −43/60 77/60 1/5
2 1/30 −13/60 47/60 9/20 −1/20
3 −1/20 9/20 47/60 −13/60 1/30
4 1/5 77/20 −43/60 17/60 −1/20

Table 3
Coefficients 𝛼𝑘𝑙,𝑗 for 𝑟 = 4.

𝑘 𝑙 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3

0 1 −19/60 87/60 −177/60 109/60
2 −1/2 2 −5/2 1
3 −1/6 1/2 −1/2 1/6

1 1 11/60 −63/60 33/60 19/60
2 1/2 −1 1/2
3 −1/6 1/2 −1/2 1/6

2 1 −19/60 −33/60 63/60 −11/60
2 1/2 −1 1/2
3 −1/6 1/2 −1/2 1/6

3 1 −109/60 177/60 −87/60 19/60
2 1 −5/2 2 −1/2
3 −1/6 1/2 −1/2 1/6

where 𝑞(𝑙)𝑘 is the 𝑙th-derivative of the interpolation polynomial 𝑞𝑘(𝑥).
or 𝑟 = 2 and 3, the local smoothness indicator defined by Eq. (7) is
asily to be evaluated with Taylor expansion. But for 𝑟 ⩾ 4, evaluating

the explicit form of 𝛽𝑟𝑘 seems a tedious work [14].
Balsara et al. [16,17] proposed a more compact and elegant method

o compute the local smoothness indicator. Using the Hermite polyno-
ials on the domain [−1∕2, 1∕2]

𝐻0(𝜉) = 1; 𝐻1(𝜉) = 𝜉; 𝐻2(𝜉) = 𝜉2 − 1
12

; 𝐻3(𝜉) = 𝜉3 − 3
20
𝜉

4(𝜉) = 𝜉4 − 3
14
𝜉2 + 3

560
(8)

he spatially reconstructed polynomials are given by

𝑟
𝑖 (𝜉) = 𝑝[0]𝑖,𝑘 +𝑝

[1]
𝑖,𝑘𝐻1(𝜉)+⋯+𝑝[𝑟−1]𝑖,𝑘 𝐻𝑟−1(𝜉); 𝜉 ∈ [𝑥𝑖−

1
2
𝛥𝑥, 𝑥𝑖+

1
2
𝛥𝑥] (9)

where, 𝑝[𝑙]𝑖,𝑘 is the difference approximation of the 𝑙th derivative 𝑓 (𝑙) at
he substencil 𝑆𝑟𝑘

[𝑙]
𝑖,𝑘 =

𝑟−1
∑

𝑗=0
𝛼𝑘𝑙,𝑗𝑓𝑖+𝑘+𝑗−𝑟+1. (10)

s an example, Table 3 gives the related coefficients 𝛼𝑘𝑙,𝑗 of the case
= 4. Then the local smoothness indicators are calculated as

𝑘 =

(

𝑝[1]𝑘 +
𝑝[3]𝑘
10

)2

+ 13
3

(

𝑝[2]𝑘
)2

+ 781
20

(

𝑝[3]𝑘
)2

; (𝑘 = 0, 1, 2, 3). (11)

The necessary and sufficient conditions on the weights 𝜔𝑘 for the
(2𝑟 − 1)th-order WENO scheme to achieve the formal (2r−1) order of
convergence rate is given in [4,19] by the truncation error analysis of
the finite difference Eq. (2)
{

∑𝑟−1
𝑘=0 𝐴𝑘(𝜔

+
𝑘 − 𝜔−

𝑘 ) = 𝑂(𝛥𝑥𝑟)
± 𝑟−1

(12)
3

𝜔𝑘 − 𝑐𝑘 = 𝑂(𝛥𝑥 ).
Table 4
Accuracy of the 7th-order WENO-Z scheme at critical points.

Critical point (Cp) First term of 𝛽𝑘 First term of 𝜏7 Order 𝑛 (𝛼𝑘 = 𝑐𝑘 + 𝑂 (𝛥𝑥𝑛))

𝑞 = 1 𝑞 = 2

1st Cp 𝐴𝛥𝑥4 𝐷𝛥𝑥6 2 4
2nd Cp 𝐵𝛥𝑥6 𝐸𝛥𝑥8 2 4
3rd Cp 𝐶𝑘𝛥𝑥8 𝐸𝛥𝑥8 0 0

*𝐴 = 13
12
𝑓 ′′2, 𝐵 = 781

720
(𝑓 (3))2, 𝐶0 = 𝐶3 = 7373

2160
(𝑓 (4))2, 𝐶1 = 𝐶2 = 617

2160
(𝑓 (4))2 𝐷 =

13
3
𝑓 ′′𝑓 (4), 𝐸 = 563

90
(𝑓 (4))2.

nd a sufficient condition for (2𝑟 − 1)th-order convergence is simply
iven by
±
𝑘 − 𝑐𝑘 = 𝑂(𝛥𝑥𝑟). (13)

Henrick et al. [4] constructed the WENO-M scheme with a mapping
function to correct the weights of the fifth-order WENO scheme of Jiang
and Shu [3]. The WENO-M scheme satisfies fifth-order convergence
condition at the first-order critical points. Borges et al. [5] proposed
a different method to calculate the weights by introducing a global
smoothness indicator, the resulted WENO-Z scheme improves the con-
vergence order at the critical points with a lower computational cost,
as well as decreases the dissipation near discontinuities. Later, Castro
et al. [19] developed high order WENO-Z schemes.

The general formulations of the normalized and un-normalized
weights 𝜔𝑧𝑘 and 𝛼𝑧𝑘 of the (2𝑟 − 1)th-order WENO-Z scheme are given
as [5,19],

𝜔𝑧𝑘,𝑟 =
𝛼𝑧𝑘,𝑟

∑𝑟−1
𝑙=0 𝛼

𝑧
𝑙,𝑟

, 𝛼𝑧𝑘,𝑟 = 𝑐𝑘

[

1 +
(

𝜏2𝑟−1
𝛽𝑘 + 𝜀

)𝑞]

. (14)

The global smoothness indicator 𝜏2𝑟−1 is defined as

𝜏2𝑟−1 =

{

|𝛽0 − 𝛽𝑟−1|, mod (𝑟, 2) = 1
|𝛽0 − 𝛽1 − 𝛽𝑟−2 + 𝛽𝑟−1|, mod (𝑟, 2) = 0.

(15)

Wang et al. [21] pointed that the first, second and third order criti-
al point measure the extrema, curvature and inflection, respectively, of
he solution and they are usually the most prominent features of flows
ith large scales structures. The higher order critical points measure

he smaller scales structures. It is important for the WENO schemes to
esolve the high order critical points as accurate and efficient as possi-
le. There are several papers [5,8,13,19,20,22] analyzed the accuracy
rder of WENO schemes at critical points.

Clearly, by using the WENO-Z method Eqs. (14)–(15) [5,19], if the
irst term of 𝜏2𝑟−1 is same as that of 𝛽𝑘, then the convergence rate of
he WENO-Z scheme will reduce to that of the 𝑟th ENO scheme. Here
e take the seventh-order WENO-Z scheme as an example to show this

ssue. For 𝑟 = 4, with the Taylor expansions of the local smoothness
ndicators Eq. (11) at 𝑥𝑖 (see Eq. (16) that is given in Box I), there is

7 = |𝛽0 − 𝛽1 − 𝛽2 + 𝛽3| =
|

|

|

|

4
3
𝑓 ′
𝑖 𝑓

(5)
𝑖 − 13

3
𝑓 ′′
𝑖 𝑓

(4)
𝑖

|

|

|

|

𝛥𝑥6 + 𝑂(𝛥𝑥8). (17)

Table 4 gives the accuracy order 𝑛
(

𝛼𝑘 = 𝑐𝑘 + 𝑂(𝛥𝑥𝑛)
)

of the seventh-
order WENO-Z scheme at critical points. 𝑞 is the power value in
Eq. (14). It can be seen that the seventh-order WENO-Z scheme cannot
improve the convergence order at third-order critical point, regardless
of the power value 𝑞.

In [20], Fan constructed another global smoothness indicator that
has an optimal order of truncation error of 𝑂(𝛥𝑥2𝑟+2). The resulted
WENO-Z𝜂 schemes can improve the accuracy at critical points, but they
produce apparent oscillations (see the results given in [20]).

Recently, by a detailed analysis, Baeza et al. [11] designed a novel
global smoothness indicator as follows,

𝜏𝐷 =
𝑑𝑠11 𝑑

𝑠1
2

𝑠1 𝑠1
(18)
𝑑1 + 𝑑2
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𝐶

𝜔

⎧

⎪

⎪

⎪

⎨
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⎪

⎩

𝛽0 = 𝑓 ′2
𝑖 𝛥𝑥

2 + 13
12𝑓

′′2
𝑖 𝛥𝑥4 − 1

2𝑓
′
𝑖 𝑓

(4)
𝑖 𝛥𝑥5 +

[

781
720 (𝑓

(3)
𝑖 )2 + 3

5𝑓
′
𝑖 𝑓

(5)
𝑖 − 143

72 𝑓
′′
𝑖 𝑓

(4)
𝑖

]

𝛥𝑥6 + 𝑂(𝛥𝑥7)

𝛽1 = 𝑓 ′2
𝑖 𝛥𝑥

2 + 13
12𝑓

′′2
𝑖 𝛥𝑥4 + 1

6𝑓
′
𝑖 𝑓

(4)
𝑖 𝛥𝑥5 +

[

781
720 (𝑓

(3)
𝑖 )2 − 1

15𝑓
′
𝑖 𝑓

(5)
𝑖 + 13

72𝑓
′′
𝑖 𝑓

(4)
𝑖

]

𝛥𝑥6 + 𝑂(𝛥𝑥7)

𝛽2 = 𝑓 ′2
𝑖 𝛥𝑥

2 + 13
12𝑓

′′2
𝑖 𝛥𝑥4 − 1

6𝑓
′
𝑖 𝑓

(4)
𝑖 𝛥𝑥5 +

[

781
720 (𝑓

(3)
𝑖 )2 − 1

15𝑓
′
𝑖 𝑓

(5)
𝑖 + 13

72𝑓
′′
𝑖 𝑓

(4)
𝑖

]

𝛥𝑥6 + 𝑂(𝛥𝑥7)

𝛽3 = 𝑓 ′2
𝑖 𝛥𝑥

2 + 13
12𝑓

′′2
𝑖 𝛥𝑥4 + 1

2𝑓
′
𝑖 𝑓

(4)
𝑖 𝛥𝑥5 +

[

781
720 (𝑓

(3)
𝑖 )2 + 3

5𝑓
′
𝑖 𝑓

(5)
𝑖 − 143

72 𝑓
′′
𝑖 𝑓

(4)
𝑖

]

𝛥𝑥6 + 𝑂(𝛥𝑥7),

(16)
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here, 𝑑1 is the squared undivided difference of the 2𝑟− 1 consecutive
alues {𝑓𝑖−𝑟+1,… , 𝑓𝑖+𝑟−1},

1 = [𝐷(2𝑟−2)(𝑓𝑖−𝑟+1,… , 𝑓𝑖+𝑟−1)]2 (19)

nd 𝑑2 is defined as

2 = 𝐵2 − 4𝐴𝐶 (20)

here 𝐴, 𝐵 and 𝐶 are the coefficients of the parabola
(2𝑟−4)(𝑤) = 𝐶 + 𝐵𝑤 + 𝐴𝑤2. (21)
(2𝑟−4)(𝑤) is the (2𝑟−4)th derivative of the (2𝑟−2)th-degree polynomial
(𝑤) = 𝑝(𝑥𝑖+𝑤𝛥𝑥), where 𝑝 is the reconstruction polynomial associated
ith the data 𝑓𝑖−𝑟+1,… , 𝑓𝑖+𝑟−1. For the fifth-order WENO scheme (𝑟 =
), these coefficients can be obtained as

= 1
2
𝑓𝑖−2 − 2𝑓𝑖−1 + 3𝑓𝑖 − 2𝑓𝑖+1 +

1
2
𝑓𝑖+2,

= −1
2
𝑓𝑖−2 + 𝑓𝑖−1 − 𝑓𝑖+1 +

1
2
𝑓𝑖+2,

= − 1
12
𝑓𝑖−2 +

4
3
𝑓𝑖−1 −

5
2
𝑓𝑖 +

4
3
𝑓𝑖+1 −

1
12
𝑓𝑖+2. (22)

The weights 𝜔𝑘 is calculated by

𝑘 =
𝛼𝑜𝑘

∑

𝑘 𝛼
𝑜
𝑘
, 𝛼𝑜𝑘 = 𝑐𝑘

[

1 +
𝜏𝐷

𝛽𝑠1𝑘 + 𝜖

]𝑠2

, (𝑘 = 0, 1, 2) (23)

in which 𝑠1 = 2 and 𝑠2 = 1 are suggested and used in [11]. Numer-
ical results show that the new scheme can attain the optimal order
regardless of the order of critical points.

Baeza et al. [11] pointed out that the new method does not always
outperform existing ones, as it claimed in [5] that improvements in
the numerical solution of problems with shocks mainly depend on
how far from zero are the weights associated with stencils crossed by
discontinuities rather than on the superior accuracy at critical points
(especially if they are high-order critical points). They also mentioned
that some questions of the OWENO scheme are still open, for example,
the influence of the exponents 𝑠1 and 𝑠2 in the numerical dissipation
and the determination of their optimal values to reduce numerical
dissipation as much as possible without generating artifacts or spurious
oscillations.

3. The new scheme

3.1. The fifth-order WENO-ZN scheme

In [13], Shen et al. proposed a new method for constructing a
fifth-order weighted essentially non-oscillatory scheme to improve the
accuracy at the second-order critical point. The basic idea is that,
the square of the fourth-order undivided difference at the global five-
points stencil is suggested as the global smoothness indicator (𝜏8), and
an adaptive function 𝜃 of the local smoothness indicators is used to
replace the constant 1 in Eq. (14) to enhance stability and reduce
dissipation. The new scheme is called the fifth-order WENO-ZN scheme.
For completeness, we give the formulations as follows,

[ (4) ]2 2
4

𝜏8 = 𝐷 𝑓𝑖 = (𝑓𝑖−2 − 4𝑓𝑖−1 + 6𝑓𝑖 − 4𝑓𝑖+1 + 𝑓𝑖+2) , (24)
𝜃 = 𝐶 ×
(

𝛽0 + 𝛽2 − |𝛽0 − 𝛽2| + 𝜀
|𝛽0 − 𝛽2| + 𝜀

)2
, (25)

here, 𝐶 is an constant number. Shen et al. [13] discussed the role of 𝐶
n the fifth-order WENO-ZN scheme in detail. They showed that 𝐶 = 10

can efficiently increase the contribution of less-smooth substencils in
a reasonable region, and hence the numerical resolution of a high
frequency wave in relatively coarse grids can be improved.

The un-normalized weight 𝛼𝑍𝑁𝑘 of the fifth-order WENO-ZN scheme
is then calculated by

𝛼𝑍𝑁𝑘 = 𝑐𝑘

[

𝜃 +
(

𝜏8
𝛽𝑘 + 𝜀

)𝑞]

. (26)

umerical results showed that, with 𝑞 = 2, the fifth-order WENO-
N scheme can achieve fifth-order convergence rate at both the first-
nd second-order critical points; with 𝑞 = 1 it can achieve fifth-order
nd fourth-order accuracy at the first- and second-order critical points,
espectively. However, as analyzed previously, the fifth-order WENO-
N scheme cannot help to improve the accuracy order at third-order
ritical points.

.2. High order WENO-ZN scheme

In order to meet the demand of resolving the high order critical
oints with high order accuracy, we extend the fifth-order WENO-
N scheme to the general scheme of higher order. The un-normalized
eights 𝛼𝑘 of the (2𝑟−1)th order WENO-ZN schemes can be calculated
y

𝑍𝑁
𝑘 = 𝑐𝑘

[

𝜃 +
(

𝜏4𝑟−4
𝛽𝑘 + 𝜀

)𝑞]

, (27)

here 𝑞 is a tunable parameter. For fifth-order WENO schemes, 𝑞 = 1 is
idely used for the sake of less dissipation [5]. For higher order WENO

chemes, 𝑞 = 2 is suggested for robustness [19]. The adaptive function
is given by

= 𝐶 ×
(

𝛽0 + 𝛽𝑟−1 − |𝛽0 − 𝛽𝑟−1| + 𝜀
|𝛽0 − 𝛽𝑟−1| + 𝜀

)2
(28)

nd the global smoothness indicator 𝜏4𝑟−4 is defined as

4𝑟−4 =
[

𝐷(2𝑟−2)𝑓𝑖
]2 , (29)

here 𝐷(2𝑟−2)𝑓𝑖 is the (2𝑟 − 2)th undivided difference on the global
tencil. For example, for 𝑟 = 3, 4, 5, there are

8 = (𝑓𝑖−2 − 4𝑓𝑖−1 + 6𝑓𝑖 − 4𝑓𝑖+1 + 𝑓𝑖+2)2, (30)

𝜏12 = (𝑓𝑖−3 − 6𝑓𝑖−2 + 15𝑓𝑖−1 − 20𝑓𝑖 + 15𝑓𝑖+1 − 6𝑓𝑖+2 + 𝑓𝑖+3)2, (31)

𝜏16 = (𝑓𝑖−4 − 8𝑓𝑖−3 + 28𝑓𝑖−2 − 56𝑓𝑖−1 + 70𝑓𝑖 − 56𝑓𝑖+1

+28𝑓 − 8𝑓 + 𝑓 )2. (32)
𝑖+2 𝑖+3 𝑖+4
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Fig. 1. relative magnitudes of 𝜏7, 𝜏12 and 𝜃.
Table 5
Accuracy of the WENO-ZN schemes at critical points.

Critical point (Cp) First term of 𝛽𝑘 First term of 𝜏4𝑟−4 Order 𝑛
(

𝛼𝑘 = 𝑐𝑘 + 𝑂(𝛥𝑥𝑛)
)

𝑞 = 1 𝑞 = 2

𝑟 = 3 1st Cp 𝐴𝛥𝑥4 𝜎𝛥𝑥8 4 8
5th-WENO-ZN 2nd Cp 𝐵𝑘𝛥𝑥6 𝜎𝛥𝑥8 2 4

3rd Cp 𝐶𝑘𝛥𝑥8 𝜎𝛥𝑥8 0 0

𝑟 = 4 1st Cp 𝐴𝛥𝑥4 𝜙𝛥𝑥12 8 16
7th-WENO-ZN 2nd Cp 𝐵𝛥𝑥6 𝜙𝛥𝑥12 6 12

3rd Cp 𝐶𝑘𝛥𝑥8 𝜙𝛥𝑥12 4 8
4th Cp 𝐷𝑘𝛥𝑥10 𝜙𝛥𝑥12 2 4
5th Cp 𝐸𝑘𝛥𝑥12 𝜙𝛥𝑥12 0 0

𝑟 = 5 1st Cp 𝐴𝛥𝑥4 𝜓𝛥𝑥16 12 24
9th-WENO-ZN 2nd Cp 𝐵𝛥𝑥6 𝜓𝛥𝑥16 10 20

3rd Cp 𝐶𝛥𝑥8 𝜓𝛥𝑥16 8 16
4th Cp 𝐷𝑘𝛥𝑥10 𝜓𝛥𝑥16 6 12
5th Cp 𝐸𝑘𝛥𝑥12 𝜓𝛥𝑥16 4 8
6th Cp 𝐹𝑘𝛥𝑥14 𝜓𝛥𝑥16 2 4
7th Cp 𝐺𝑘𝛥𝑥16 𝜓𝛥𝑥16 0 0

*𝜎 =
(

𝑓 (4))2, 𝜑 =
(

𝑓 (6))2, 𝜓 =
(

𝑓 (8))2. Coefficients in first term of 𝛽𝑘 can be calculated by using the formula
Eq. (11). Note that 𝐴,𝐵, and 𝐶 are independent of 𝑘.
g
a
T

.3. The properties of the WENO-ZN scheme

(1) The accuracy order of the WENO-ZN schemes at critical points
an be drawn in Table 5. The high-order WENO-ZN schemes (𝑟 ≥ 4)
re more efficient for improving the accuracy at critical points than
he high-order WENO-Z𝜂 schemes [20], since the order of the global
moothness indicator of WENO-ZN is 𝑂(𝛥𝑥4𝑟−4) and that of WENO-Z𝜂
ith the optimal-order global smoothness indicator is 𝑂(𝛥𝑥2𝑟+2). That

is, the (2𝑟−1)th-order WENO-ZN scheme can improve the convergence
rate at the (2𝑟 − 4)th order critical point, while the (2𝑟 − 1)th-order
WENO-Z𝜂 scheme can only improve the convergence rate at the critical
point with the maximum (𝑟 − 1)th-order.

(2) It is clear that the sub-stencils 𝑆0 and 𝑆𝑟−1 can completely
cover the global stencil, which is used by a WENO scheme, without
overlapping. If the global stencil contains a discontinuity, the discon-
5

tinuity must fall into sub-stencil either 𝑆0 or 𝑆𝑟−1. Without loss of
enerality, assume that the sub-stencil 𝑆0 contains the discontinuity
nd 𝑆𝑟−1 is smooth, then there is 𝛽0 ≫ 𝛽𝑟−1 and hence 𝜃 ≪ 1.
he relative magnitudes of the un-normalized weights 𝛼𝑍𝑁𝑘 are mainly

determined by the second term in Eq. (27). Since 𝜏4𝑟−4 is independent
of 𝑘, the ENO property can be kept well by the local smoothness
indicator 𝛽𝑘. Otherwise, for a smooth global stencil, from the Taylor
series expansions, 𝛽0 and 𝛽𝑟−1 always have the same leading terms and
hence there is 𝜃 ≫ 1. The large value of 𝜃 makes the WENO-ZN schemes
have the properties of low dissipation and high resolution.

We take the function 𝑢0(𝑥) Eq. (33) as an example to show the
performance of 𝜏4𝑟−4.

𝑢0(𝑥) =

⎧

⎪

⎨

⎪

− sin(𝜋𝑥) − 1
2𝑥

3, −1 ⩽ 𝑥 < 0

− sin(𝜋𝑥) − 1𝑥3 + 1, 0 ⩽ 𝑥 < 1.
(33)
⎩

2
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Fig. 2. Spectral properties of schemes.
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ig. 1 gives the curves of 𝜏7, 𝜏12 and 𝜃. It can be seen that, in smooth
egions, there are 𝜃 ≫ 1 and 𝜏7 ≫ 𝜏12. When the global stencil contains
discontinuity (𝑥 = 0), there is 𝜏12 ∼ 𝜏7 ≫ 𝜃, so the ENO property is

ept and the scheme can capture discontinuity well.

(3) The spectral properties of a nonlinear schemes can be analyzed
y the approximate dispersion relation method proposed by Piroz-
oli [23]. Fig. 2 gives the comparisons of spectral properties of the
ENO-ZN schemes, the WENO-JS schemes, the WENO-Z schemes, and

he fifth- and seventh-order linear upstream schemes (UW5 and UW7,
espectively). The new schemes maintain low dissipation and dispersion
6

rror in a large region of medium wave number. W
. Numerical examples

In this section, the performance of the new schemes are tested by
everal problems of the linear advection equation, the one-, two- and
hree-dimensional Euler equations. For readability and brevity, this
aper mainly gives and compares the seventh-order schemes. For the
inth-order schemes, we can obtain similar conclusions. The third-order
VD Runge–Kutta method [24] is used for the time integration.

.1. The accuracy at critical point

The function 𝑓 (𝑥) = 𝑥𝑘𝑒𝑥 is used to test the convergence rate of

ENO schemes at critical point [8]. For this function, the point 𝑥 = 0
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Table 6
Convergence order of the 5th-WENO schemes at critical points.

Case 𝛥𝑥 WENO5-JS WENO5-Z WENO5-ZN

Error Order Error Order Error Order

𝑘 = 2 1.25E−02 2.10E−06 – 1.94E−08 – 1.51E−10 –
1st Cp 6.25E−03 2.36E−07 3.15 4.68E−10 5.37 4.75E−12 4.99

3.13E−03 2.79E−08 3.08 1.24E−11 5.24 1.49E−13 5.00
1.56E−03 3.39E−09 3.04 3.53E−13 5.14 4.65E−15 5.00

𝑘 = 3 1.25E−02 1.56E−04 – 1.51E−04 – 4.38E−05 –
2nd Cp 6.25E−03 3.90E−05 2.00 3.51E−05 2.11 1.55E−06 4.82

3.13E−03 9.75E−06 2.00 7.31E−06 2.26 2.71E−08 5.84
1.56E−03 2.44E−06 2.00 1.46E−06 2.32 4.33E−10 5.97

𝑘 = 4 1.25E−02 3.18E−08 – 1.31E−08 – 6.89E−08 –
3rd Cp 6.25E−03 2.41E−09 3.72 5.32E−09 1.30 2.64E−08 1.38

3.13E−03 2.04E−10 3.56 2.38E−09 1.16 5.08E−09 2.38
1.56E−03 1.94E−11 3.39 5.51E−10 2.11 7.21E−10 2.81

Table 7
Convergence order of the 7th-WENO schemes at critical points.

Case 𝛥𝑥 WENO7-JS WENO7-Z WENO7-ZN

Error Order Error Order Error Order

𝑘 = 3 1.25E−02 3.43E−09 – 4.51E−11 – 5.67E−14 –
2nd Cp 6.25E−03 4.68E−10 2.87 1.09E−12 5.38 4.45E−16 6.99

3.13E−03 3.65E−11 3.68 1.95E−14 5.80 3.49E−18 7.00
1.56E−03 2.50E−12 3.87 3.22E−16 5.92 2.73E−20 7.00

𝑘 = 4 1.25E−02 5.17E−07 – 4.99E−07 – 2.83E−13 –
3rd Cp 6.25E−03 4.42E−08 3.55 4.27E−08 3.55 2.22E−15 6.99

3.13E−03 4.22E−09 3.39 4.08E−09 3.39 1.74E−17 7.00
1.56E−03 4.46E−10 3.24 4.31E−10 3.24 1.36E−19 7.00

𝑘 = 5 1.25E−02 9.58E−08 – 9.58E−08 – 6.42E−09 –
4th Cp 6.25E−03 6.02E−09 3.99 6.02E−09 3.99 3.72E−11 7.43

3.13E−03 3.77E−10 4.00 3.77E−10 4.00 1.68E−13 7.80
1.56E−03 2.36E−11 4.00 2.36E−11 4.00 6.99E−16 7.91

is the (𝑘 − 1)th-order critical point. The numerical results given in
ables 6–8 show that the accuracy order is in agreement with the
heoretical analysis of Tables 4 and 5. WENO5-ZN can obtain at least a
ifth-order convergence rate at both the first- and second-order critical
oints, but it cannot improve the accuracy at the third-order one. While
ENO7-ZN can obtain seventh order at the second-, third- and even

ourth-order critical points. Similar conclusion can be drawn for the
inth-order WENO-ZN schemes.

It should be pointed out that, there were two kinds of high-order
ethods proposed to improve the accuracy at critical points. One
ethod is the WENO-Z𝜂 schemes proposed by Fan [20], however, the
igh-order WENO-Z𝜂 schemes produce apparent oscillations. The an-
ther method, which can be denoted as WENO-Z𝑀q𝑛dx𝑚 (for example,
ENO-Z7q2dx3 denotes the seventh-order WENO-Z scheme 𝑀 = 7 with
= 2 and 𝜀 = 𝛥𝑥3), is proposed by Don et al. [22]. Don et al. gave
sufficient condition for achieving the optimal order (2𝑟 − 1) for a

2𝑟−1)th-order WENO-Z scheme Eq. (14), i.e. 𝜃(𝜀) ≤ 𝜃(𝜏2𝑟−1)− (𝑟−1)∕𝑞,
here 𝜃(𝑔(𝛥𝑥)) denotes the power of 𝛥𝑥 in the leading term of the
aylor series expansion of 𝑔(𝛥𝑥). However, since the spatial step cannot

be a nondimensional infinitesimal in practical computing and also the
dimensions of 𝛽𝑘 and 𝛥𝑥 (the operation 𝛽𝑘 + 𝛥𝑥𝑚 is used to calculate
the weights 𝛼𝑘, Eq. (14))are different, this kind of WENO-Z𝑀q𝑛dx𝑚
schemes may generate oscillatory solutions or dissimilar solutions if
different reference values are used to nondimensionalize the unknown
variable (or computational region). Interested readers can refer [13].

Since the WENO-Z𝜂 schemes and the WENO-Z𝑀q𝑛dx𝑚 schemes
cannot keep the ENO property well, in this paper, the two kinds of
schemes are not compared and discussed, though they may obtain
7

high-order accuracy at high-order critical points.
Table 8
Convergence order of the 9th-WENO schemes at critical points.

Case 𝛥𝑥 WENO9-JS WENO9-Z WENO9-ZN

Error Order Error Order Error Order

𝑘 = 4 1.25E−02 3.79E−10 – 5.54E−11 – 2.95E−17 –
3rd Cp 6.25E−03 4.81E−12 6.30 2.30E−13 7.91 5.80E−20 8.99

3.13E−03 4.35E−14 6.79 7.93E−16 8.18 1.13E−22 9.00
1.56E−03 3.13E−16 7.12 2.04E−18 8.60 2.22E−25 9.00

𝑘 = 5 1.25E−02 9.63E−08 – 2.16E−08 – 1.77E−16 –
4th Cp 6.25E−03 6.02E−09 4.00 1.61E−09 3.74 3.47E−19 8.99

3.13E−03 3.76E−10 4.00 1.87E−10 3.11 6.80E−22 9.00
1.56E−03 2.35E−11 4.00 1.31E−11 3.84 1.33E−24 9.00

𝑘 = 6 1.25E−02 1.31E−10 – 4.98E−08 – 8.86E−16 –
5th Cp 6.25E−03 2.80E−12 5.54 1.67E−09 4.90 1.74E−18 9.00

3.13E−03 6.75E−14 5.37 5.43E−11 4.95 3.40E−21 9.00
1.56E−03 1.80E−15 5.23 1.73E−12 4.97 6.65E−24 9.00

𝑘 = 7 1.25E−02 7.63E−11 – 7.90E−09 – 3.66E−11 –
6th Cp 6.25E−03 1.19E−12 6.00 1.34E−10 5.88 2.79E−13 7.04

3.13E−03 1.86E−14 6.00 2.27E−12 5.89 2.07E−15 7.07
1.56E−03 2.91E−16 6.00 3.83E−14 5.89 3.79E−18 9.09

4.2. Linear advection problem

The linear advection equation is given by
{

𝑢𝑡 + 𝑢𝑥 = 0, −1 ⩽ 𝑥 ⩽ 1,
𝑢(𝑥, 0) = 𝑢0(𝑥), periodic boundary.

(34)

with the exact solution at time 𝑡

𝑢(𝑥, 𝑡) = 𝑢0(𝑥 − 𝑡). (35)

he initial condition is

0(𝑥) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
6 (𝐺(𝑥, 𝛽, 𝑧 − 𝛿) + 𝐺(𝑥, 𝛽, 𝑧 + 𝛿) + 4𝐺(𝑥, 𝛽, 𝑧)), −0.8 ⩽ 𝑥 ⩽ −0.6
1, −0.4 ⩽ 𝑥 ⩽ −0.2
1 − |10(𝑥 − 0.1)|, 0 ⩽ 𝑥 ⩽ 0.2
1
6 (𝐹 (𝑥, 𝛼, 𝑎 − 𝛿) + 𝐹 (𝑥, 𝛼, 𝑎 + 𝛿) + 4𝐹 (𝑥, 𝛼, 𝑎)), 0.4 ⩽ 𝑥 ⩽ 0.6
0, otherwise,

(36)

here, same as [3], the functions and constants for this case are taken
s

(𝑥, 𝛽, 𝑧) = 𝑒−𝛽(𝑥−𝑧)
2
, 𝐹 (𝑥, 𝛼, 𝑎) =

√

max(1 − 𝛼2(𝑥 − 𝛼)2, 0),

𝑎 = 0.5, 𝑧 = −0.7, 𝛿 = 0.005, 𝛼 = 10, 𝛽 = log 2∕36𝛿2.

The solution contains a smooth combination of Gaussian wave, a square
wave, a sharp triangle wave and a half ellipse wave. Numerical results
of different 7th-order WENO schemes at 𝑡 = 10 with a grid of 𝑁 = 200
are given in Fig. 3. It can be observed that the WENO-ZN scheme gets
the best result, especially for the square wave and the half ellipse wave.
The WENO-Z scheme generates an apparent asymmetric solution near
the square wave.

4.3. One dimensional Euler problems

The one dimensional Euler equations are given by

𝜕𝑈
𝜕𝑡

+
𝜕𝐹 (𝑈 )
𝜕𝑥

= 0, (37)

here 𝑈 = (𝜌, 𝜌𝑢, 𝐸)𝑇 , 𝐹 (𝑈 ) = (𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝑢(𝐸 + 𝑝))𝑇 . Here 𝜌, 𝑢, 𝐸, 𝑝 are
density, velocity, total energy and pressure, respectively. For ideal gas
𝐸 = 𝑝

𝛾−1 +
1
2𝜌𝑢

2, where 𝛾 = 1.4 is the ratio of specific heat. Time step is

calculated as

𝛥𝑡 = CFL𝛥𝑥 , (38)

max𝑖(|𝑢𝑖| + 𝑐𝑖)
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Fig. 3. Numerical results of linear advection equation by the 7th-order WENO schemes with 𝑁 = 200 at 𝑡 = 10.
Fig. 4. Numerical results of the Lax problem computed by the 7th-order WENO schemes with 𝑁 = 200 at 𝑡 = 1.3.
4

s
i

(

2
t
t

here CFL = 0.5, and 𝑐 =
√

𝛾𝑝∕𝜌 is the speed of sound. The global Lax–
riedrichs flux-splitting method and local characteristic fields is used
o carry out the 7th-order WENO reconstruction [25].

.3.1. Riemann initial value problem of lax
The first problem is the Riemann initial value problem of Lax [3],

nd the initial conditions are given by:

𝜌, 𝑢, 𝑝) =

{

(0.445, 0.698, 3.528), −5 ⩽ 𝑥 < 0
(0.5, 0, 0.571), 0 ⩽ 𝑥 ⩽ 5.

(39)

ero gradient boundary conditions are placed at 𝑥 = ±5.0. Fig. 4
ives the distributions of density computed by the seventh-order WENO
chemes (𝑟 = 4) at 𝑡 = 1.3 with 𝑁 = 200. The reference solution
s obtained by using 𝑁 = 4000 with the fifth-order WENO-Z scheme.
s the figure shows, the WENO-ZN scheme can reduce the numerical
8

issipation near shock waves. W
.3.2. Shu-Osher problem
The second problem is the Shu–Osher problem [24], which de-

cribes the interaction of a Mach 3 shock with a density wave. The
nitial conditions are given by:

𝜌, 𝑢, 𝑝) =

⎧

⎪

⎨

⎪

⎩

( 277 ,
4
√

35
9 , 31

3 ), −5 ⩽ 𝑥 < −4

(1 + 0.2 sin(5𝑥), 0, 1), −4 ⩽ 𝑥 ⩽ 5
(40)

Zero gradient boundary conditions are set at 𝑥 = ±5.0. The numerical
results from different 7th-order WENO schemes at 𝑡 = 1.8 with 𝑁 =
00 are presented in Fig. 5. The reference solution is obtained by
he seventh-order WENO-Z scheme with a grid of 4000. Results show
hat the WENO-ZN scheme gives better resolved short waves than the

ENO-JS and WENO-Z schemes.
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Fig. 5. Numerical results of the Shu–Osher problem computed by the 7th-order WENO schemes with 𝑁 = 200 at 𝑡 = 1.8.
Fig. 6. Numerical results of the two interacting blast waves problem computed by the 7th-order WENO schemes with 𝑁 = 400 at 𝑡 = 0.038.
T

𝐸

.3.3. Interactive blast waves problem
The third problem is the interactive blast waves problem [5] with

he initial condition

𝜌, 𝑢, 𝑝) =

⎧

⎪

⎨

⎪

⎩

(1, 0, 1000), 0 ⩽ 𝑥 < 0.1
(1, 0, 0.001), 0.1 ⩽ 𝑥 < 0.9
(1, 0, 100), 0.9 ⩽ 𝑥 ⩽ 1.

(41)

eflective boundary conditions are set at boundaries. Fig. 6 gives the
umerical results from 7th-order WENO schemes at 𝑡 = 0.038 with
= 400. The reference solution are obtained by the seventh-order

ENO-Z scheme with a gird of 4000. It can be seen that three schemes
an capture the strong shock wave well. The WENO-ZN scheme is less
issipation than the WENO-JS scheme and the WENO-Z scheme.

.4. Two dimensional Euler problems

The governing equation of two-dimensional Euler problems is given
y
𝜕𝑈 +

𝜕𝐹 (𝑈 )
+
𝜕𝐺(𝑈 )

= 0, (42)
9

𝜕𝑡 𝜕𝑥 𝜕𝑦
where

𝑈 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝐸)𝑇 ,

𝐹 (𝑈 ) = (𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝜌𝑢𝑣, (𝐸 + 𝑝)𝑢)𝑇 ,

𝐺(𝑈 ) = (𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 + 𝑝, (𝐸 + 𝑝)𝑣)𝑇 .

he specific total energy 𝐸 can be calculated as

=
𝑝

𝛾 − 1
+ 1

2
𝜌(𝑢2 + 𝑣2). (43)

The time step is taken as

𝛥𝑡 = CFL
𝛥𝑡𝑥𝛥𝑡𝑦
𝛥𝑡𝑥 + 𝛥𝑡𝑦

,

𝛥𝑡𝑥 = 𝛥𝑥
max𝑖,𝑗 (|𝑢𝑖,𝑗 | + 𝑐𝑖,𝑗 )

,

𝛥𝑡𝑦 =
𝛥𝑦

.

(44)
max𝑖,𝑗 (|𝑣𝑖,𝑗 | + 𝑐𝑖,𝑗 )
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Fig. 7. Density contours for Rayleigh–Taylor instabilities by different 7th-order WENO schemes at 𝑡 = 1.95, 𝑁𝑥 ×𝑁𝑦 = 120 × 480.
4.4.1. Rayleigh–Taylor instability
The two-dimensional Rayleigh–Taylor instability problem [26,27]

describes the interface instability between fluids with different densities
when acceleration is directed from the heavy fluid to the light one. The
acceleration effect is introduced by adding 𝜌 and 𝜌𝑣 to the flux of the
𝑦-momentum and the energy equations, respectively. The problem is
often used to test the dissipation property of a high-order scheme. The
initial distribution is given by

(𝜌, 𝑢, 𝑣, 𝑝) =

{

(2, 0, −0.025𝛼 cos(8𝜋𝑥), 2𝑦 + 1), 0 ⩽ 𝑦 < 0.5
(1, 0, −0.025𝛼 cos(8𝜋𝑥), 𝑦 + 1.5), 0.5 ⩽ 𝑦 ⩽ 1,

(45)

where 𝛼 =
√

(𝛾𝑝)∕𝜌 is the speed of sound with 𝛾 = 5∕3. The compu-
tational domain is [0, 0.25] × [0.1]. The left and right boundaries are
reflective boundary conditions, while the top and bottom boundaries
are set as (𝜌, 𝑢, 𝑣, 𝑝) = (1, 0, 0, 2.5) and (𝜌, 𝑢, 𝑣, 𝑝) = (2, 0, 0, 1), respectively.
The solution at 𝑡 = 1.95 is solved by different 7th-order WENO schemes
with the meshes of 120 × 480. The density contours are plotted in
Fig. 7. Since the inviscid Euler equations are solved, the details of the
complex instable structures are related to the numerical dissipation of
the used scheme [28]. Due to less dissipation, the WENO-ZN scheme
generates richer unstable structures than the other two schemes.

4.4.2. Two-dimensional shock vortex interaction problem
The two-dimensional shock vortex interaction problem taken from

[3] is solved to test the dissipation of different schemes. The problem
describes the interaction between a stationary shock and a vortex. The
computational domain is taken as [0, 2] × [0, 1]. A stationary Mach 1.1
shock is positioned at 𝑥 = 0.5 and normal to the 𝑥-axis. Its left state is
(𝜌, 𝑢, 𝑣, 𝑝) = (1, 1.1

√

𝛾, 0, 1). A small vortex is superimposed to the flow
on the left of the shock and is centered at (𝑥 , 𝑦 ) = (0.25, 0.5). The
10

𝑐 𝑐
vortex is described as a perturbation to the velocity (𝑢, 𝑣), temperature
(𝑇 = 𝑝∕𝜌) and entropy 𝑆 = ln(𝑝∕𝜌𝛾 ) of the mean flow and denoted by
the tilde values

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̃� = 𝜀𝜏𝑒𝛼(1−𝜏2) sin 𝜃
�̃� = −𝜀𝜏𝑒𝛼(1−𝜏2) cos 𝜃

�̃� = − (𝛾−1)𝜀2𝑒2𝛼(1−𝜏2)
4𝛼𝛾

�̃� = 0,

(46)

where 𝜏 = 𝑟∕𝑟𝑐 and 𝑟 =
√

(𝑥 − 𝑥𝑐 )2 + (𝑦 − 𝑦𝑐 )2, 𝜀 = 0.3 indicates
the strength of the vortex, 𝛼 = 0.204 controls the decay rate of the
vortex and 𝑟𝑐 = 0.05 is the critical radius for which the vortex has the
maximum strength [3,29]. Fig. 8 shows the comparison of the pressure
between different 7th-order WENO schemes along the center line of
𝑦 = 0.5 at 𝑡 = 0.6. The results are computed with the coarse mesh of
200 × 100, and the result obtained by 7th-order WENO-Z scheme with
a refined mesh of 2000 × 1000 is given as the reference solution. It can
be seen that the WENO-ZN scheme is more accurate than other WENO
schemes.

4.4.3. Forward-facing step
The forward-facing step problem is also originally from the paper

of [30]. The configuration of the problem is as follows: the two-
dimensional wind tunnel spans a domain of [0, 3] × [0, 1], and a forward-
facing step is located at (0.6, 0.2). The problem is initialized by a
right-going Mach 3 flow with a density of 1.4 and a pressure of 1. Re-
flective boundary conditions are applied along the walls of the tunnel,
while inflow and outflow boundary conditions are set for the left and
right boundaries, respectively. The density contours obtained by 7th-
order WENO schemes with the mesh of 600 × 200 at 𝑡 = 4 are shown
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Fig. 8. Numerical results of the shock/vortex interaction problem computed by the 7th-order WENO schemes with the mesh of 200 × 100 at 𝑡 = 0.6.
Fig. 9. Density contours of the forward-facing step problem computed by the 7th-order WENO schemes with the mesh of 600 × 200 at 𝑡 = 4.
in Fig. 9. Numerical results show that all the schemes perform well
with capturing shock waves, while the WENO-ZN scheme gives more
clear roll-up structures of the vortex sheet caused by Kelvin–Helmholtz
instability.
11
4.5. The evolution of taylor–Green vortex

The last example is the evolution of the three-dimensional inviscid
Taylor–Green vortex [31–34]. Three-dimensional Euler equations are
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Fig. 10. Isosurface of vorticity magnitude. The contour is given by velocity from 0 to 1.
Fig. 11. Time-evolution of the normalized kinetic energy and the normalized enstrophy.
solved with 𝛾 = 5∕3. The computational domain is 𝑥𝑖 ∈ [0, 2𝜋) with
periodic boundary conditions, and the initial conditions are

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌 = 1
𝑢 = sin 𝑥 cos 𝑦 cos 𝑧
𝑣 = −cos 𝑥 sin 𝑦 cos 𝑧
𝑤 = 0
𝑝 = 100 + [cos(2𝑧)+2][cos(2𝑥)+cos(2𝑦)]−2

16 .

(47)

Fig. 10 displays the evolution of the Taylor–Green vortex simulated
by the seventh-order WENO-ZN scheme. Fig. 11 shows the temporal
evolution of the mean kinetic energy 𝐸𝑘(𝑡) and enstrophy 𝛺(𝑡) com-
puted by the 7th-order upstream scheme, the WENO-JS scheme, the
WENO-Z scheme and the WENO-ZN scheme with grids of 643 and 1283.

𝐸𝑘(𝑡) =
1
𝐿3 ∫

2𝜋

0 ∫

2𝜋

0 ∫

2𝜋

0
𝜌
𝒖(𝒕)𝒖(𝒕)

2
𝑑𝑥𝑑𝑦𝑑𝑧. (48)

𝛺(𝑡) = 1
𝐿3 ∫

2𝜋

0 ∫

2𝜋

0 ∫

2𝜋

0

𝝎(𝒕)𝝎(𝒕)
2

𝑑𝑥𝑑𝑦𝑑𝑧. (49)

In Fig. 11, the kinetic energy and enstrophy are normalized by their
initial values.

As stated in [33], the evolution of inviscid Taylor–Green vortex
flow in a three-dimensional periodic domain is perhaps the simplest
12
model for investigation of the nonlinear transfer of kinetic energy
among eddies with a range of spatial scales. For the Taylor–Green
vortex flow, the normalized kinetic energy should maintain a constant
value of nearly unity and the normalized enstrophy increases from
unity to infinity by a finite time, as there is no dissipative mechanism
in the system of partial differential equation. Hence, the evolution
of Taylor–Green vortex flow provides a quantitative diagnostic of the
intrinsic numerical dissipation and flow symmetry preservation in a
discretization scheme for the Euler equation.

From Fig. 11 it can be seen that, the WENO-JS scheme dissipates
the energy the most, and its dissipation on the refined meshes (1283)
is even larger than that of the seventh-order upwind scheme on the
coarse meshes (643). The WENO-ZN scheme is less dissipative than both
the WENO-JS and WENO-Z schemes. The numerical dissipation also
reduces the sharpness of the approximation of derivatives, which results
in the different growth rate of the enstrophy. It should be noted that,
although the numerical kinetic energy dissipation of WENO-JS with
meshes of 1283 is larger than the one of the upwind scheme with meshes
of 643, the enstrophy growth of the former is still faster than the latter.
In all, the WENO-ZN scheme has the least numerical dissipation among
the three WENO schemes.
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5. Conclusion

The fifth-order WENO-ZN scheme is extended to higher-order
schemes to improve the accuracy at high-order critical points. The
high-order WENO-ZN schemes are more efficient for improving the
accuracy at critical points than the high-order WENO-Z𝜂 schemes [20].
In addition, the WENO-ZN schemes can keep the ENO property very
well, while the WENO-Z𝜂 schemes produce apparent oscillations for
the shock tube problems. The new scheme is robust for capturing
discontinuities and meanwhile has low dissipation and high resolution
for refined structures.
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