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Hydraulic falls on the interface of a two-layer density stratified fluid flow in the presence
of bottom topography are considered. We extend the previous work [Philos. Trans. R. Soc.
London A 360, 2137 (2002)] to two successive bottom obstructions of arbitrary shape.
The forced Korteweg-de Vries and modified Korteweg-de Vries equations are derived in
different asymptotic limits to understand the existence and classification of fall solutions.
The full Euler equations are numerically solved by a boundary integral equation method.
New solutions characterized by a train of trapped waves are found for interfacial flows past
two obstacles. The wavelength of the trapped waves agrees well with the prediction of the
linear dispersion relation. In addition, the effects of the relative location, aspect ratio, and
convexity-concavity property of the obstacles on interface profiles are investigated.
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I. INTRODUCTION

The problem of a constant-moving flow over a bottom obstacle in an open channel has a long
history in hydrodynamics. Studies of the existence and stability of steady solutions are an important
step toward understanding the whole problem. For free surface flows over a single localized obstacle,
solutions depend on the Froude number F , defined as F = U/

√
gH , where U is the uniform

upstream/downstream velocity of the fluid, H denotes the uniform upstream/downstream fluid
depth, and g is the acceleration due to gravity. The uniform flow at infinity is called supercritical for
F > 1 and subcritical for F < 1. Four basic flows were identified by Dias and Vanden-Broeck [1]:
supercritical flow on both sides, subcritical flow upstream and waves downstream, subcritical flow
upstream and supercritical flow downstream (hydraulic fall), and waves upstream and supercritical
flow downstream (generalized hydraulic fall). The first three types of solution in the steady Euler
equations have been numerically studied previously by many groups. Forbes and Schwartz [2] com-
puted the first two types of solution in the presence of a semicircular obstruction. Vanden-Broeck [3]
further explored the first type and found that supercritical solutions can exist only for values of the
Froude number greater than some threshold. And for some Froude numbers, there are two solutions,
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FIG. 1. A field observation of internal hydraulic jump obtained by Farmer and Armi near the sill in Knight
Inlet in autumn 1995 (see Fig. 7(d) in Ref. [11]).

one being a perturbation of a uniform stream and the other being a perturbation of a solitary wave. In
the nearly critical regime, hydraulic falls were calculated by Forbes [4], who found that as the radius
of the submerged obstacle is increased, the speed of the downstream portion of the flow increases,
with a consequent reduction in the upstream Froude number. For a submerged triangular obstacle,
Dias and Vanden-Broeck [5] studied waves of permanent form without oscillation in the far-field,
and they found that solutions exist for triangles of arbitrary size.

Solutions of the fourth type were computed by Dias and Vanden-Broeck [6]; however, as they
pointed out, the generalized hydraulic falls lack physical meaning because waves on the free surface
do not satisfy the radiation condition. Nevertheless, Dias and Vanden-Broeck [1] argued that the
radiation condition could be satisfied by introducing a second obstacle in the channel. Therefore
these generalized hydraulic falls can be used to describe locally the flow past two successive
obstacles resulting in trapped waves. Shortly after, Binder et al. [7] revisited the same problem and
discovered more configurations of hydraulic falls with trapped waves between submerged obstacles
and forced solitary waves through weakly nonlinear analysis and numerical computations of the
fully nonlinear equations. Page and Părău [8] examined the stability property of gravity trapped
waves upstream of a hydraulic fall using direct numerical simulations for the unsteady Euler
equations, indicating that they are stable. When other restoring forces are included in addition to
gravity, trapped waves between two submerged obstructions were later investigated by Page et al.
[9,10] for capillary-gravity waves and flexural-gravity waves, respectively.

Hydraulic falls occurring in the interiors of oceans as stratified tidal flows pass sills or submarine
ridges also attract research attention due to their associations with ocean mixing as well as the
generation of nonlinear internal waves or wave trains (see Ref. [11], for example). Figure 1
shows the field observation of a stratified flow over topography in Knight Inlet (British Columbia,
Canada) measured by Farmer and Armi [11], illustrating the downstream formation of an undular
internal hydraulic jump. A simple mathematical idealization for studying internal waves is the
wave propagation on the sharp density discontinuity between two immiscible fluids. Under this
simplification, interfacial hydraulic falls have been considerably investigated in numerics, theory,
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and experiment over the past several decades. The first interfacial waterfall-like solution over
a semicircle obstruction was numerically found in the full Euler equations by Forbes [12] in
the transcritical regime based on the conformal mapping technique. For the same problem, Sha
and Vanden-Broeck [13] computed forced interfacial solitary waves based on a novel boundary
integral equation method with the arclength parametrization of the interface and found two limiting
configurations: broadening and overhanging. On the theoretical side, Shen [14] used a forced
Korteweg-de Vries (KdV) equation to obtain solitary and hydraulic solutions for two-layer flows
over a bottom obstruction. Notably, he allowed the upper layer to be bounded above by a free surface
rather than a rigid lid. Dias and Vanden-Broeck [15,16] combined theory and computation, i.e., the
weakly nonlinear results obtained by integrating the forced KdV equation or the forced modified
Korteweg-de Vries (mKdV) equation are validated by comparison with numerical results obtained
by solving the full Euler equations. Consequently, they found new branches of solutions akin to
the single-layer situation. Moreover, considerable understanding of two-layer flow over an obstacle
was also gained from controlled experiments, notably the towing-tank experiments of Long [17]
and Baines [18] and the fixed-obstacle experiments of Lawrence [19]. It is also worth mentioning
that when the bottom obstacle is of significant height, a situation occasionally encountered in real
ocean flows, the forced KdV theory no longer applies, so numerical and experimental studies were
carried out to investigate those cases. For example, Cummins et al. [20] and Cabeza et al. [21]
performed experimental measurements for two-layer flows past pronounced obstacles and simu-
lated the observed phenomena using the incompressible Navier-Stokes equation with Boussinesq
approximation for buoyancy terms.

Though Dias and Vanden-Broeck [15,16] conducted extensive numerical simulations on steady
interfacial hydraulic falls, computations of two-layer flows past two successive obstacles and the
resultant trapped interfacial waves remain lacking. Furthermore, the effect of the combination mode
of two obstructions (convex or concave) at the bottom merits an investigation. In the present paper,
we report numerical results of steady hydraulic falls for two-layer flow over bottom obstacles and
pay particular attention to trapped waves between two obstructions. Direct numerical computations
of the primitive Euler equations are performed based on the boundary integral equation method
proposed by Belward and Forbes [22], a scheme applicable to arbitrary bottom topography. Our
numerical results also confirm the predictions of the weakly nonlinear theory.

The rest of the article is structured as follows. The mathematical formulation of the problem is
described in Sec. II. The theoretical results are presented in Sec. III, including the linear dispersion
relation and the weakly nonlinear theory leading to the forced KdV equation and the forced mKdV
equation based on the small-amplitude assumption on both interface and obstacle. Section IV begins
with computations of interfacial hydraulic falls over a single obstacle in the full Euler equations.
The goal is threefold: to validate the numerical scheme of the boundary integral formulation, to
understand the influence of obstacle’s aspect ratio on falls, and to gain iterative initial data of
Newton’s method for computations of trapped waves. Next, trapped interfacial waves between
two obstacles of different aspect ratios and combination modes are numerically solved, where the
predictions of the KdV theory are used to guide the computations of the fully nonlinear equations.
Finally, a conclusion is given in Sec. V.

II. DESCRIPTIONS OF PROBLEM

Two inviscid, incompressible, and immiscible fluids are bounded together in a two-dimensional
channel of finite vertical extent and infinite horizontal extent. A sketch of the system is shown in
Fig. 2. The top boundary is flat, and the topographic relief at the bottom is locally confined. We
introduce a Cartesian coordinate system such that the x axis is parallel to the rigid top wall and
the y axis is parallel to the opposite direction of gravity. We denote by y = H1 + H2 and y = b(x)
the upper and lower boundaries, respectively, where b(x) is a function with compact support. The
interface between two fluids is denoted as y = H1 + ζ (x). The subscripts 1 and 2 refer to fluid
properties associated with the lower and upper fluid layers, respectively. The fluid density in each
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FIG. 2. Schematic description of the physical problem.

layer is supposed to be constant, designated by ρ j ( j = 1, 2), and the system is in a stable density
configuration, namely ρ2 < ρ1. The depth of each layer at infinity is denoted by Hj for upstream
and hj for downstream. The upstream and downstream velocities are supposed to be uniform and
are designated as Uj and Vj , respectively.

The motion of each fluid is assumed to be irrotational; thus, we can introduce velocity potentials
φ1 and φ2, which satisfy the Laplace equation in the corresponding layers, namely

φ1xx + φ1yy = 0, for b(x) < y < H1 + ζ (x), (1)

φ2xx + φ2yy = 0, for H1 + ζ (x) < y < H1 + H2. (2)

The impermeability boundary conditions at the top and bottom are written as

φ1y = φ1xbx, at y = b(x), (3)

φ2y = 0, at y = H1 + H2. (4)

Since we search for steady solutions in the present paper, the kinematic boundary conditions at the
interface can be written as

0 = φ1y − φ1xζx = φ2y − φ2xζx, at y = H1 + ζ (x), (5)

indicating the continuity of normal velocity across the media. The dynamic boundary condition
resulting from the continuity of pressure across the interface reads

1
2

[
ρ1

(
φ2

1x + φ2
1y

) − ρ2
(
φ2

2x + φ2
2y

)] + g(ρ1 − ρ2)ζ − 1
2

(
ρ1U

2
1 − ρ2U

2
2

) = 0, (6)

where the Bernoulli constants at infinity are used. In addition, conservations of mass and height
yield

H1 + H2 = h1 + h2, U1H1 = V1h1, U2H2 = V2h2. (7)

Equations (1)–(7) form a closed system for steady internal hydraulic falls. Finally, for the conve-
nience of later discussion, we introduce dimensionless parameters including the density ratio, depth
ratio, velocity ratios, Froude numbers upstream, and Froude numbers downstream as

R = ρ2

ρ1
, � = H2

H1
, β = U2

U1
, β1 = V1

U1
, β2 = V2

U2
,

F1u = U1√
gH1

, F2u = U2√
gH2

, F1d = V1√
gh1

, F2d = V2√
gh2

,

where the subscripts u and d refer to the parameters associated with the flows upstream and
downstream, respectively.
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III. THEORETICAL ANALYSIS

A. Linear analysis

In the subsequent analyses, we investigate the problem from the linear perspective. First, the
smallness assumption is made on wave amplitude, ζ/H1 ∼ O(ε), and on bottom topography,
b/H1 ∼ O(ε2), where ε � 1 is a small parameter. We then linearize the whole system around
the trivial solution φ j = Ujx and ζ = 0. The perturbations of velocity potentials and interface are
chosen to be expressed in the form of separated variables, i.e.,

ζ = ε ζ̂ eikx, φ j = Ujx + ε φ̂ j (y) eikx, (8)

where j = 1, 2 and k is the wave number. Next, we drop nonlinear terms in Eqs. (1)–(7) and solve
the problem in a uniform channel. Substituting the solution ansatz into the Laplace equations (1)
and (2) and the impermeability boundary conditions (3) and (4), one obtains

φ̂1 = α cosh (ky), φ̂2 = −αβ
sinh (kH1)

sinh (kH2)
cosh (kH1 + kH2 − ky), (9)

where α is a free parameter. Furthermore, using the kinematic boundary conditions at the interface,
ζ can be solved as

ζ = εα

iU1
sinh (kH1) eikx. (10)

Then, substituting the expressions of φ j and ζ into the linearized dynamic boundary condition yields
a linear dispersion relation

F 2
1u = (1 − R) tanh (K ) tanh (�K )

K tanh (�K ) + Rβ2K tanh (K )
, (11)

where K = kH1 is the normalized wave number. The critical Froude number for the lower-layer
upstream can be defined by taking the limit K → 0, i.e.,

F ∗
1u

2 = �(1 − R)

� + Rβ2
. (12)

A similar derivation can be applied to the quantities downstream, and the dispersion relation reads

F 2
1d =

(1 − R) tanh
(

K
β1

)
tanh

(
�K
β2

)
K
β1

tanh
(

�K
β2

) + Rβ2K β2
2

β3
1

tanh
(

K
β1

) , (13)

where K = kh1 is the corresponding wave number. It is noted that the dispersion relations (11) and
(13) will be used later to estimate the wavelength of trapped waves between two obstacles.

B. Weakly nonlinear analysis

In this part, the forced KdV-type models are derived via asymptotic analyses in the long-wave
approximation. These models will be used in the next section to guide numerical computations of
the full Euler equations and provide qualitative understandings of interfacial hydraulic falls. Our
analyses are based on a fundamental assumption that both fluid layers are thin compared with
a characteristic wavelength. Small parameters ε = a/H1 � 1 and μ = H1/l � 1 are defined to
measure the nonlinearity and dispersion, respectively, where l is a characteristic wavelength in
the x direction and a is a typical amplitude of the interface displacement. We consider the classic
Boussinesq scaling:

x = lx′, y = H1y′, ζ = aζ ′, b = ε2H1b′, U1 =
√

gH1F1u, U2 =
√

gH1F1uβ,

φ1 =
√

gH1F1ulx′ + agl√
gH1

φ′
1, φ2 =

√
gH1F1uβlx′ + agl√

gH1
φ′

2.
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It is noted that velocity potentials have been expressed as a sum of a background flow and its
perturbation. Using these dimensionless variables and dropping the apostrophes for the ease of
notations, the field equations and the wall boundary conditions become

μ2φ1xx + φ1yy = 0, for 0 < y < 1 + εζ ,

μ2φ2xx + φ2yy = 0, for 1 + εζ < y < 1 + �,

φ1y = εμ2F1ubx + ε2μ2φ1xbx, at y = ε2b,

φ2y = 0, at y = 1 + �. (14)

At the same time, the kinematic and dynamic boundary conditions at the interface y = 1 + εζ are
recast to

0 = μ2F1uζx + εμ2φ1xζx − φ1y = μ2F1uβζx + εμ2φ2xζx − φ2y, (15)

0 = 1

2

[
2F1uφ1x + εφ2

1x + ε

μ2
φ2

1y − R

(
2βF1uφ2x + εφ2

2x + ε

μ2
φ2

2y

)]
+ ζ (1 − R). (16)

Small parameters are chosen to satisfy ε = μ2 to balance dispersion and nonlinearity. Based on the
system (14), we can write the asymptotic expansions of φ1 and φ2 as

φ1 = f1(x) − ε

2
f1xxy2 + ε2

24
f1xxxxy4 + ε2F1ubxy + O(ε3), (17)

φ2 = f2(x) − ε

2
f2xx(y − 1 − �)2 + ε2

24
f2xxxx(y − 1 − �)4 + O(ε3), (18)

where f1(x) and f2(x) are the velocity potentials at the bottom and top walls, respectively. Sub-
stituting the expressions (17) and (18) into Eqs. (15) and (16) and retaining terms valid up to the
next-to-leading order for each equation, one obtains

ζx + 1

F1u
f1xx + ε

F1u

(
f1xζx + f1xxζ − 1

6
f1xxxx

)
= εbx, (19)

βζx − �

F1u
f2xx + ε

F1u

(
f2xζx + f2xxζ − �3

6
f2xxxx

)
= 0, (20)

1 − R

F1u
ζ + f1x − Rβ f2x + ε

(
1

2
f1xxx + Rβ�2

2
f2xxx + 1

2F1u
f 2
1x − R

2F1u
f 2
2x

)
= 0. (21)

First, the solvability condition for the linearized system of (19)–(21) indicates F1u = F ∗
1u + ελ,

where λ = O(1) is a newly introduced parameter. Then it is a little tedious but straightforward
to convert (19)–(21) to a single equation, the steady forced KdV equation. Eliminating f1 and f2 in
Eq. (21) by virtue of (19)–(20) and retaining terms valid up to O(ε), one obtains

− �

2(� + Rβ2)
bx = − λ

F ∗
1u

ζx + 3

2

�2 − Rβ2

�(� + Rβ2)
ζ ζx + 1

6

�(1 + Rβ2�)

� + Rβ2
ζxxx, (22)

which can be transformed to the standard form

− 1
2 bx = −λζx ± 3

2ζ ζx + 1
6ζxxx. (23)

The derivation is rather standard, and the interested readers are referred to Ref. [23] for more details.
If we assume the topography b(x) is a Dirac δ function of weight Q, namely b(x) = Qδ(x), then
integrating Eq. (23) yields

ζxx ± 9
2ζ 2 − 6λζ = −3Qδ. (24)
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Again, integrating Eq. (24) over a small interval including the original point, from −ε to ε with
ε → 0, say, gives

ζx(0+) − ζx(0−) = −3Q, (25)

indicating that the derivative of the interface features a jump at the position of the bottom obstruc-
tion. Furthermore, letting A = ζ and B = ζx, solutions to the homogenous KdV equation (Q = 0)
can be described by an autonomous system,

dA

dx
= B,

dB

dx
= ∓9

2
A2 + 6λA, (26)

with two equilibrium/saddle points: ζ = 0 and ζ = ± 4
3λ.

It is well known that the KdV equation is obtained by balancing dispersive and nonlinear effects.
However, when � ≈

√
Rβ2, the nonlinear term is very close to zero, and hence rescaling is required

in the asymptotic analysis to achieve a new balance. Under this particular situation, we should
choose ε = μ and assume Rβ2 = �2 + εσ , F1u = F ∗

1u + ε2λ, and b = ε3H1b′ to introduce a higher-
order nonlinearity to balance the dispersion (see, for example, Ref. [16] for more details). Following
a similar asymptotic procedure, a forced mKdV equation including the cubic nonlinearity can be
obtained

− bx

2(1 + �)
= − λ

F ∗
1u

ζx + 3σ

�2 + �
ζζx − 3(1 − �)

�2 + �
ζ 2ζx + 1 − � + �2

6
ζxxx. (27)

The above equation can be rewritten in a more revealing form via rescaling,

− 1
2 bx = −λζx + 3

2σζζx − 3
4ζ 2ζx + 1

6γ ζxxx, (28)

where γ = (1 − � + �2)F ∗
1u. By neglecting the external forcing, the dynamical system has three

equilibrium/saddle points, ζ = 0 and ζ = 3
2σ ± 1

2

√
9σ 2 − 16λ, when λ < 16

9 σ 2. However, the
number of the equilibrium points reduces to two and one for λ = 16

9 σ 2 and λ > 16
9 σ 2, respectively.

We emphasize that the weakly nonlinear results described in this section are not new but are
included here for completeness (see Refs. [15,16]). The hydraulic solutions can be divided into six
categories in terms of F1u and �. The flow upstream can be subcritical if F1u < F ∗

1u or supercritical
if F1u > F ∗

1u. We define a case as the “thick upper layer” for � >
√

β2R, the “thick lower layer” for
� <

√
β2R, and the critical case for � =

√
β2R. This paper is primarily devoted to the numerical

evidence and basic properties of interfacial hydraulic falls. Using a phase diagram of (λ, Q) of
the KdV equation, Dias and Vanden-Broeck show that the hydraulic solutions exist only when
|Q| = 4

9

√
2|λ|3/2 (see Ref. [15]). Their theoretical prediction classifies the solutions and associates

each with a corresponding region. In this paper, the parameter β is fixed as β = 1, and we focus
on far-field wave-free solutions. Four typical regimes will be considered, and they are denoted as
follows: Regime (I) subcritical flow upstream and thick upper layer; Regime (II) supercritical flow
upstream and thick upper layer; Regime (III) subcritical flow upstream and thick bottom layer; and
Regime (IV) subcritical flow upstream and critical depth. Finally, we should point out that we did
not manage to find the numerical solutions in the full Euler equations for the other two cases, namely
supercritical flow upstream with a critical depth and supercritical flow upstream with a thick bottom
layer, which are left for future studies.

IV. NUMERICAL RESULTS

A. Numerical scheme

The fully nonlinear problem can be numerically solved by using the boundary integral equa-
tion method with the arclength parametrization of the interface. This numerical scheme was first
proposed by Forbes and Schwartz in Ref. [2] and was widely used to search for steady hydraulic
falls on the water surface. We briefly introduce the numerical scheme, and the interested readers
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FIG. 3. Sketch of the contour of integration (a) for the lower fluid and (b) for the upper fluid.

are referred to Refs. [16,22] for more details. It is convenient to choose H1 and H1U1 as the
units of length and velocity potential, respectively. Following Ref. [22], the fluid interface is
first parametrized by writing x = X (s) and y = 1 + ζ (x) = Y (s) so that the following condition
is satisfied automatically: (

dX

ds

)2

+
(

dY

ds

)2

= 1. (29)

Thus the parameterized dynamic boundary condition can be rewritten as

1

2

(
dφ1

ds

)2

− R

2

(
dφ2

ds

)2

− 1

2
(1 − Rβ2) + 1

F 2
1

(1 − R)(Y − 1) = 0. (30)

Second, we introduce the complex velocity potential w j (z) = φ j (x, y) + iψ j (x, y) for j = 1, 2,
where z = x + iy is a point on the complex plane, and ψ j (x, y) stands for the stream function in
each fluid layer. Following Belward and Forbes [22], we introduce the complex velocity as

χ j =
{ dw j

dz − 1 = φ jx − iφ jy − 1, j = 1,

dw j

dz − β = φ jx − iφ jy − β, j = 2.
(31)

The Cauchy integral formula is applied to χ1 for the lower fluid layer, and a sketch of the integration
contour C is shown in Fig. 3(a). It consists of the interface, channel bottom, and vertical lines joining
them at x = ±L with L → ∞. Since we are interested in the values of χ1 on the interface and
bottom, the Cauchy integral formula gives

π (�′
1X ′(s) − 1) =

∫ ∞

−∞

[�′
1(σ̂ ) − X ′(σ̂ )][Y (σ̂ ) − Y (s)] + Y ′(σ̂ )[X (σ̂ ) − X (s)]

[X (σ̂ ) − X (s)]2 + [Y (σ̂ ) − Y (s)]2
d σ̂

−
∫ ∞

−∞

{u(σ̂ )[1 + bx(σ̂ )2] − 1}[b(σ̂ ) − Y (s)] + bx(σ̂ )[σ̂ − X (s)]

[σ̂ − X (s)]2 + [b(σ̂ ) − Y (s)]2
d σ̂ , (32)

and

π [u(x) − 1] =
∫ ∞

−∞

[�′
1(σ̂ ) − X ′(σ̂ )][Y (σ̂ ) − b(x)] + Y ′(σ̂ )[X (σ̂ ) − x]

[X (σ̂ ) − x]2 + [Y (σ̂ ) − b(x)]2
d σ̂

−
∫ ∞

−∞

{u(σ̂ )[1 + bx(σ̂ )2} − 1][b(σ̂ ) − b(x)] + bx(σ̂ )(σ̂ − x)

(σ̂ − x)2 + [b(σ̂ ) − b(x)]2
d σ̂ , (33)

where σ̂ represents the value of the arclength at the varying point on the contour; the evaluation
points s and x are placed on the interface and the bottom, respectively; �1 is the velocity potential
at the interface; and u(σ̂ ) stands for the horizontal velocity at the channel bottom.

Next, the Cauchy integral formula is applied to the function χ2 for the upper fluid layer. A
modification to the integration path is modified to avoid setting mesh points on the top wall. Indeed,
the impermeability boundary conditions can be satisfied automatically by using the method of
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images. Figure 3(b) shows a sketch of the new integration path. Denoting the velocity potential
at the interface by �2, the Cauchy integral formula thus leads to

π [�′
2(s)X ′(s) − β]

=
∫ ∞

−∞

−[�′
2(σ̂ ) − βX ′(σ̂ )][Y (σ̂ ) − Y (s)] − βY ′(σ̂ )[X (σ̂ ) − X (s)]

[X (σ̂ ) − X (s)]2 + [Y (σ̂ ) − Y (s)]2
d σ̂

−
∫ ∞

−∞

−[�′
2(σ̂ ) − βX ′(σ̂ )][2 + 2D − Y (σ̂ ) − Y (s)] − βY ′(σ̂ )[X (σ̂ ) − X (s)]

[X (σ̂ ) − X (s)]2 + [2 + 2� − Y (σ̂ ) − Y (s)]2
d σ̂ . (34)

Since we confine our attention to hydraulic falls in the present paper, the solution approaches
constant states on both sides in the far field. It is sufficient to perform numerical computations in a
truncated domain. We introduce a set of mesh grids equally distributed on the interface, denoted as
s j , j = 1, 2, . . . , M, and the corresponding unknowns

d�1

ds
(s j ),

d�2

ds
(s j ),

dY

ds
(s j ).

X ′(s j ) can be obtained through the parametric equation (29). Similarly, the N mesh points x j , j =
1, 2, . . . , N , can be defined at the bottom, and u(x j ) are the associated unknowns. To avoid the
singularities in computations of the Cauchy integrals, we introduce the other two sets of mesh grids,

sm
j = s j + s j+1

2
, j = 1, 2, . . . , M − 1,

xm
j = x j + x j+1

2
, j = 1, 2, . . . , N − 1.

Evaluating Eqs. (32)–(34) at the midpoints results in 2M + N − 3 algebraic equations, and the
dynamic boundary condition at the interface (30) provides additional M equations while being
evaluated at the mesh points {s j}. We can determine β1 by enforcing β1 = 1

Y (sM ) to satisfy the
downstream far-field condition. We can further obtain β2 based on conservation of the total fluid
height in the far-field, namely solving for β2 from

1 + � = 1

β1
+ �

β2
. (35)

Then, substituting the downstream far-field state into the dynamic boundary condition yields

1

2
F 2

1uRβ2
(
1 − β2

2

) + 1

2
F 2

1u

(
β2

1 − 1
) + (1 − R)

(
1

β1
− 1

)
= 0, (36)

which gives the value of F1u. Finally, to solve the system by Newton iterations, three more
equations describing the flow in the far-field are needed to close the system. These equations can
be defined depending on the form of solution to be found; for example, Y ′(1) = 0, u(1) = 1, and
�′

2(1) = β (see Refs. [1,16] for details). This numerical scheme was successfully implemented by
Refs. [1,6,9,10] for computing free-surface hydraulic falls and Refs. [16,22] for interfacial waves
over a single obstacle.

B. Results

Following Refs. [1,9,10], the numerical computations are performed by assuming that the bottom
topography features a combination of separated half-period cosine-type profiles, namely

b(x) =

⎧⎪⎨⎪⎩
A1 cos2

[
π (x−x1 )

L1

]
, for − L1

2 < x − x1 < L1
2 ,

A2 cos2
[

π (x−x2 )
L2

]
, for − L2

2 < x − x2 < L2
2 ,

0, for |x − x1| > L1
2 , |x − x2| > L2

2 ,

(37)
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FIG. 4. Interfacial hydraulic falls over one obstacle in Regime (I). (a) Phase portrait for the KdV
equation with the topography approximated by a positive Dirac δ function. (b) Wave profiles of the full
Euler equations for convex obstacles with different sizes: A1 = 0.1, L1 = 5, F1u = 0.4 (solid line); A1 = 0.1,
L1 = 2, F1u = 0.46 (dotted line); A1 = 0.02, L1 = 2, F1u = 0.52 (dashed line). (c) Phase portrait for the KdV
equation with the topography approximated by a negative Dirac δ function. (d) Wave profiles of the full
Euler equations for concave obstacles with different widths: A1 = −0.02, L1 = 5, F1u = 0.51 (solid line);
A1 = −0.02, L1 = 2, F1u = 0.53 (dotted line).

where Aj and Lj are the height and width of obstacles, respectively, and two obstacles are centered
at x = x1 and x = x2. The height of the obstacle may be positive, negative, or zero, but two heights
cannot be zero simultaneously.

1. Single obstacle

Hydraulic falls of a two-layer flow over a single obstacle are numerically calculated and com-
pared to the theoretical results predicted by the forced KdV equation. In this section, A2 is chosen to
be zero so that only one obstacle exists at the bottom. The parameter R = 0.6 is fixed and we select
� = 2 for the case of the thick upper layer and � = 0.5 for the case of the thick lower layer, and
accordingly, the critical Froude numbers are F ∗

1u = 0.55 and F ∗
1u = 0.43, respectively. The initial

guess for Newton’s iteration is essential in our computations. To overcome this difficulty, solutions
to the associated KdV equation that provide qualitative approximations to the full Euler equations,
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FIG. 5. Interfacial hydraulic falls over one obstacle in Regime (II). (a) Phase portrait for the KdV equa-
tion with the topography approximated by a positive Dirac δ function. (b) Wave profiles of the full Euler
equations for convex obstacles with different widths: A1 = 0.1, L1 = 5, F1u = 0.63 (solid line); A1 = 0.1,
L1 = 2, F1u = 0.61 (dotted line). (c) Phase portrait for the KdV equation with the topography approximated by
a negative Dirac δ function. (d) Wave profiles of the full Euler equations for concave obstacles with different
widths: A1 = −0.02, L1 = 5, F1u = 0.58 (solid line); A1 = −0.02, L1 = 2, F1u = 0.57 (dotted line).

are analyzed before performing direct numerical simulations. For example, the parameter β1 is
chosen to be greater than one if the weakly nonlinear theory predicts that the depth downstream
is smaller than upstream. Interfacial hydraulic falls resulting from various heights and widths of
the obstacle will be investigated to illustrate the effects of the spatial scale characteristics of the
obstruction.

We first consider Regime (I): subcritical flow upstream with a thick upper layer. Figure 4(a)
shows the phase portrait of the homogeneous KdV equation plotted using the system (26) with the
negative nonlinear term and λ < 0. When the equation is forced by a topography described as a
positive Dirac δ function, since the flow is uniform upstream with ζ = 0, the solution must jump
downwards to satisfy the jump condition (25) and then move along the trajectory to the saddle
point. Thus, a hydraulic fall is obtained. Figure 4(b) demonstrates that interfacial hydraulic falls
calculated numerically with the full Euler equations are qualitatively similar to the weakly nonlinear
theory. Results of various sizes of the obstacle are compared. It is evident in Fig. 4(b) that for a
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FIG. 6. Interfacial hydraulic falls over one obstacle in Regime (III). (a) Phase portrait for the KdV
equation with the topography approximated by a positive Dirac δ function. (b) Wave profiles of the full
Euler equations for convex obstacles with different widths: A1 = 0.1, L1 = 5, F1u = 0.33 (solid line); A1 = 0.1,
L1 = 2, F1u = 0.35 (dotted line). (c) Phase portrait for the KdV equation with the topography approximated by
a negative Dirac δ function. (d) Wave profiles of the full Euler equations for concave obstacles with different
widths: A1 = −0.02, L1 = 5, F1u = 0.39 (solid line); A1 = −0.02, L1 = 2, F1u = 0.40 (dotted line).

positive, convex obstacle, as the width L1 enlarges, the upstream Froude number F1u decreases, and
the vertical drop of the fall (namely |H1 − h1|) becomes more significant. In addition, increasing the
obstacle’s height leads to a reduction of F1u and an amplification of |H1 − h1|. When the obstacle
is concave (Q < 0), the solution must jump upwards in the weakly nonlinear analysis to satisfy
the jump condition. So a nonequilibrium stationary point corresponding to the peak of the solution
is passed before reaching the saddle point. In this case, hydraulic falls are expected to rise and
fall over the obstacle, with the depth of the lower fluid being smaller downstream than upstream
[see Fig. 4(c)]. For concave bottom obstructions, Fig. 4(d) shows the full Euler computations with
the solutions featuring a nonmonotonic structure which agrees well with the theoretical prediction.
Tendencies similar to Fig. 4(b) are also found when the aspect ratio of the obstruction is changed.

In the same vein, the KdV-based analysis can be carried out for the other three cases (see the
phase portraits in Figs. 5–7), and the details will not be repeated hereafter. Interfacial hydraulic falls
in Regime (II), supercritical flow upstream with a thick upper layer, show a more significant depth of
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FIG. 7. Interfacial hydraulic falls over one obstacle in Regime (IV) with � = √
3/5 and F ∗

1u = 0.48.
(a) Phase portrait for the KdV equation with the topography approximated by a positive Dirac δ func-
tion. (b) Wave profiles of the full Euler equations for convex obstacles with different widths: A1 = 0.02,
L1 = 5, F1u = 0.45 (solid line); A1 = 0.02, L1 = 2, F1u = 0.46 (dotted line). (c) Phase portrait for the KdV
equation with the topography approximated by a negative Dirac δ function. (d) Wave profiles of the full
Euler equations for concave obstacles with different widths: A1 = −0.02, L1 = 5, F1u = 0.45 (solid line);
A1 = −0.02, L1 = 2, F1u = 0.46 (dotted line).

the lower fluid downstream than upstream, meaning that they are “jump-ups.” In Figs. 5(b) and 5(d),
F1u and |H1 − h1| increase with the broadening of the obstacle. For concave obstacles, hydraulic falls
feature a bulge structure rather than a monotonic increasing curve. This phenomenon differs slightly
from Regime (I) since the lower layer ultimately reaches a higher level as x → +∞, namely h1 >

H1. The results of Regime (III)—subcritical flow upstream with a thick lower layer—and Regime
(IV)—subcritical flow upstream with a critical depth—are presented in Figs. 6 and 7, respectively.
Similar behaviors akin to Regime (I), a reduction of F1u, and an amplification of |H1 − h1| alongside
the increase of L1, are observed. It is worth mentioning that the concave obstruction can lead to
hydraulic jump-ups in Regime (IV), as seen in Fig. 7(d). That is because the flow upstream has to
jump upwards at the equilibrium point (ζ = 0, ζx = 0) to satisfy the jump condition (25) and moves
to the right saddle point in the phase portrait of the forced mKdV equation [see Fig. 7(c)].

In summary, broadening the obstacle increases the vertical jump of the interfacial hydraulic fall.
At the same time, it decreases the Froude number upstream for subcritical flows and increases the
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FIG. 8. Interfacial hydraulic falls over two convex obstacles in Regime (I) with A1 = 0.1, L1 = 5, and
x1 = 0. [(a) and (b)] A soliton-like solution and its phase portrait in the full Euler equations with A2 = 0.02,
L2 = 2, and x2 = 15. [(c) and (d)] Trapped wave solutions and their phase portraits for x2 = −15 and various
aspect ratios of the second obstacle: A2 = 0.02, L2 = 2, λc ≈ 4.3 (solid line); A2 = 0.02, L2 = 5, λc ≈ 4.3
(dotted line); A2 = 0.1, L2 = 2, λc ≈ 4.2 (dashed line).

Froude number upstream for supercritical flows. The numerical solutions are coherent with the
phase portraits based on the KdV or mKdV equation, partially validating our numerical algorithms.
The solutions obtained in this subsection provide good initial data for the Newton iteration when
computing trapped waves between two successive obstacles in the next subsection.

2. Two successive obstacles

We extend the problem to a two-layer flow past two successive obstacles, one of which is placed
at the origin, and the other can be placed upstream or downstream. The main focus of this part is on
the existence and wavelength of trapped waves. The influences of horizontal and vertical sizes of the
obstacles and their relative distance are considered. We find that the solutions are very sensitive to
the initial conditions we choose. For our code to converge quickly, the hydraulic fall solutions over
a single obstacle computed in the precedent subsection are used as the initial data for the Newton
iteration. And the second obstacle can be introduced using a numerical homotopy continuation
by increasing its amplitude gradually until the desired value. The wavelengths of trapped waves
can be predicted theoretically with the dispersion relation given in Eqs. (11) and (13), and the
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FIG. 9. Interfacial hydraulic falls over two successive obstacles of mixed type in Regime (I). The wave
profiles (a) and phase portraits (b) are obtained by solving the full Euler equations with L1 = L2 = 2, x1 = 0,
and x2 = −15; other parameters are A1 = 0.1, A2 = −0.1, λc ≈ 6.6 (solid line); A1 = −0.1, A2 = 0.1, λc ≈
8.1 (dotted line). The numerical results with two successive convex obstacles are presented for comparison and
the parameters are A1 = 0.1, A2 = 0.1, λc ≈ 6.2 (dashed line).

predictions are compared with the numerical results of the full Euler equations. It is noted that the
theoretical wavelength is obtained using the upstream/downstream Froude number arising from the
case with a single obstruction fixed at the origin (while the second obstruction is just considered
an additional disturbance). This approximation will be shown to provide satisfactory agreement
with the computed result in subsequent analyses. The parameters � and R remain the same as the
previous subsection for four different regimes.
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FIG. 10. Dispersion relations, F1u (solid lines) and F1d (dotted line) given in Eqs. (11) and (13) with
(�, R, β ) = (2, 0.6, 1), and predicted wave numbers for Regime (I). (a) The theoretical prediction of the wave
number for the cases in Fig. 8(c). The obtained upstream Froude number (horizontal dashed line) and down-
stream Froude number (horizontal dash-dotted line) indicate trapped waves upstream with λt ≈ 4.3 (triangle).
(b) For the cases in Fig. 9, the computed upstream Froude numbers (horizontal dashed and dash-dotted lines)
intersecting the dispersion relation (11) gives the theoretical wave numbers of trapped waves: λt ≈ 6.5 for
(A1, A2) = (0.1, −0.1) and λt ≈ 8.2 for (A1, A2) = (−0.1, 0.1).
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FIG. 11. Interfacial hydraulic falls over two successive convex obstacles in Regime (II), computed in the
full Euler equations with (A1, L1, x1) = (0.1, 2, 0) and (A2, L2, x2) = (0.02, 2, ±30). [(a) and (b)] Wave profile
and phase portrait for x2 = −30. [(c) and (d)] Wave profile and phase portrait for x2 = 30, exhibiting trapped
waves downstream with λc ≈ 15.2.

When the flows upstream are in Regime (I), interfacial hydraulic falls over two successive convex
obstacles are numerically computed, with fixed geometrical parameters (A1 = 0.1, L1 = 5, and
x1 = 0) for one obstacle and variable sizes and locations for the other. Since the upstream flow
is subcritical, the linear theory predicts that the second obstacle must be placed upstream of the
hydraulic fall to obtain trapped waves, confirmed by the numerical experiments of the full Euler
equations shown in Fig. 8. Indeed, when the second obstacle is placed downstream, there are no
trapped waves between the two. The interface features a soliton-like form right above the second
obstacle [see Fig. 8(a)], akin to the phenomenon occurring in free-surface hydraulic falls described
in Ref. [1]. A train of trapped waves appears upstream when the second obstacle is placed upstream
[see Fig. 8(c)]. It is observed that a variation in the horizontal or vertical size of the second obstacle
only results in the change of amplitude of the trapped waves but does not influence the wavelength
significantly. It is not surprising that the higher the second obstacle is, the larger the trapped waves’
amplitude; however, the width of the second obstacle has little impact on wave amplitude.

Furthermore, cases for two obstacles having different polarities are calculated with A1 = ±0.1
and A2 = ∓0.1 (see Fig. 9). The numerical result for A1 = A2 = 0.1 is also presented in the same
figure for comparison purposes. It is shown that for a convex obstacle at the origin, changing the
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FIG. 12. Trapped wave profiles (a) and phase portraits (b) of interfacial hydraulic falls over two successive
obstacles of mixed type in Regime (II). Solid lines: (A1, L1, x1) = (0.1, 2, 0), (A2, L2, x2) = (−0.1, 2, 30), and
λc ≈ 15.8; dotted lines: (A1, L1, x1) = (−0.1, 2, 0), (A2, L2, x2) = (0.1, 2, 30), and λc ≈ 17.3.

polarity of the second obstacle results in a similar wavelength of the generated trapped waves, but
not vice versa, indicating that the wavelength of the trapped waves upstream under this situation
depends primarily on the obstacle at the origin. However, the phase portraits in Fig. 9(b) show that
the polarity of the second obstruction determines the sign of ζx when leaving the equilibrium point
(ζ , ζx ) = (0, 0).

The dispersion relations in Eqs. (11) and (13) are presented in Fig. 10. The theoretical wavelength
of upstream trapped waves can be estimated via solving for K in Eq. (11) based on the computed
upstream Froude number F1u for the case with single obstruction placed at the origin, namely the
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FIG. 13. Dispersion relations with (�, R, β ) = (2, 0.6, 1) and predicted wave numbers for Regime (II).
(a) Theoretical result (λt ≈ 15.0) for the case of Fig. 11(c): dispersion curve F1u(K ) (solid line), dispersive
curve F1d (K ) (dotted line), computed upstream Froude number (horizontal dashed line), and computed down-
stream Froude number (horizontal dash-dotted line). (b) Theoretical result (λt ≈ 15.0) for the solid-line case
of Fig. 12: dispersion curve F1d (K ) (solid line) and computed downstream Froude number (horizontal dashed
line); theoretical result (λt ≈ 16.1) for the dotted-line case of Fig. 12: dispersion curve F1d (K ) (dotted line)
and computed downstream Froude number (horizontal dash-dotted line).
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FIG. 14. Wave profiles of interfacial hydraulic falls over two successive convex obstructions and phase
portraits in Regime (III), computed with the full Euler equations with (A1, L1, x1) = (0.1, 5, 0) and L2 = 2.
Other parameter are [(a) and (b)] A2 = 0.02, x2 = 10 (solid line) and A2 = 0.1, x2 = 10 (dotted line); [(c) and
(d)] A2 = 0.02, x2 = −10, λc ≈ 3.3 (solid line) and A2 = 0.02, x2 = −15, λc ≈ 3.4 (dotted line).

intersection point of F = F1u and the dispersion relation F = F1u(K ). Similarly, the intersection
point of the horizontal line F = F1d and the dispersion curve F = F1d (K ) given in Eq. (13) is
used if a train of trapped waves exits downstream. We denote by λt the theoretical prediction of
the wavelength from the linear perspective and by λc the computed wavelength in the full Euler
equations. It is shown in Fig. 10(a) that the upstream Froude number intersecting the upstream
linear dispersion relation results in λt ≈ 4.3, which offers good agreement with the numerical
results shown in Fig. 8(c) and 8(d). Similarly, λt ≈ 6.5 and λt ≈ 8.2 are predicted [see Fig. 10(b)]
for the cases presented in Fig. 9. Note that for hydraulic falls in Regime (I), the downstream
Froude numbers are larger than the critical value, meaning that the downstream Froude number
cannot intersect with the downstream dispersion relation, which explains why no periodic wave
train appears downstream.

Similar numerical experiments are carried out for the other three regimes of upstream flow.
The results of hydraulic falls over two successive convex obstacles when the upstream flows are
in Regime (II) are presented in Fig. 11. The geometrical parameters of the obstacle at the origin
are fixed as A1 = 0.1 and L1 = 2. Since Regime (II) demands supercritical upstream flows, it is
impossible to have an intersection point between the upstream Froude number F = F1u and the
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FIG. 15. Trapped wave profiles (a) and phase portraits (b) of interfacial hydraulic falls over two successive
obstacles of mixed type in Regime (III). Solid lines: (A1, L1, x1) = (0.1, 2, 0), (A2, L2, x2) = (−0.1, 2, −15),
and λc ≈ 4.0; dotted lines: (A1, L1, x1) = (−0.1, 2, 0), (A2, L2, x2) = (0.1, 2, −15), and λc ≈ 4.7.

upstream dispersion curve F = F1u(K ) [see the solid curve and horizontal dashed line in Fig. 13(a)],
indicating that trapped waves can only appear downstream. A typical trapped wave solution is
shown in Fig. 11(c). These waves feature a greater wavelength than those in Regime (I), so a
more extended computational domain is required. Numerical examples when bottom obstacles are
of opposite phases are demonstrated in Fig. 12. To estimate the wavelength of trapped waves,
we place the second obstruction further downstream from the origin, say, x2 = 30, in Figs. 11
and 12. For A1 = 0.1 fixed, as shown by the solid lines in Figs. 11(c) and 12(a), the generated
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FIG. 16. Dispersion relations with (�, R, β ) = (0.5, 0.6, 1) and predicted wave numbers for Regime (III).
(a) Theoretical result (λt ≈ 3.4) for the cases in Fig. 14(c): Dispersion curve F1u(K ) (solid line), dispersion
curve F1d (K ) (dotted line), computed upstream Froude number (horizontal dashed line), and computed
downstream Froude number (horizontal dash-dotted line). (b) Theoretical predictions of wave number for the
examples shown in Fig. 15: λt ≈ 3.8 for the case A1 = 0.1 and λt ≈ 5.0 for the case A1 = −0.1. Solid line:
Dispersion curve F1u(K ); horizontal dashed line: computed upstream Froude number for the case A1 = 0.1;
horizontal dash-dotted line: computed upstream Froude number for the case A1 = −0.1.
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FIG. 17. Wave profiles of interfacial hydraulic falls over two successive obstructions and phase portraits
in Regime (IV), computed with the full Euler equations with (A1, L1, x1) = (0.02, 5, 0). Other parameter are
[(a) and (b)] (A2, L2, x2) = (0.02, 2, 25); [(c) and (d)] (A2, L2, x2 ) = (0.02, 2, −25), λc ≈ 10.4 (solid line) and
(A2, L2, x2) = (−0.02, 2, −25), λc ≈ 9.1 (dotted line).

trapped waves have similar wavelengths regardless of the sign and size of A2. This fact implies
that changing the phase of the obstacle closer to the subcritical flow does not exert a noticeable
influence on the wavelength. The theoretical predictions of wavelength calculated using the linear
theory are λt ≈ 15.0 for the case in Fig. 11(c) and λt ≈ 15.0, 16.1 for the cases in Fig. 12, which
show acceptable agreement with the numerical results of the primitive equations. From Figs. 11(c)
and 12(a), we can remark that for a fixed L2, a larger size of the second obstacle results in larger
amplitude trapped waves, and reversing the phases of the two obstacles have a considerable impact
on the amplitude and wavelength of trapped waves.

Numerical results for upstream flows in Regime (III) are presented in Figs. 14 and 15. According
to the dispersion relations shown in Fig. 16, trapped waves only appear upstream. The effect of
the size of the second obstacle placed downstream can be observed from Figs. 14(a) and 14(b):
Increasing the height of the second obstacle leads to a slight rise in amplitude of the soliton-like
wave right above it. The effect of the distance between two obstacles on trapped waves is shown
in Figs. 14(c) and 14(d). It is found that the variation of the distance between the obstacles only
influences the number of waves trapped between the two but has little impact on the wavelength
and amplitude of the waves. This is comparable with the results of the single-layer case; see
Vanden-Broeck and Dias [1] for the fully nonlinear solutions and Pratt [24] for experimental results.
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FIG. 18. Wave profiles of interfacial hydraulic falls over two successive obstructions and phase portraits
in Regime (IV), computed with the full Euler equations with (A1, L1, x1) = (−0.02, 5, 0). Other parameter are
[(a) and (b)] (A2, L2, x2) = (0.02, 2, 25); [(c) and (d)] (A2, L2, x2) = (0.02, 2, −25), λc ≈ 9.5 (solid line) and
(A2, L2, x2) = (−0.02, 2, −25), λc ≈ 11.0 (dotted line).

Similarly to Regime (I) associated with subcritical flows upstream, the predictions of wavelength
are made by using the intersection point between the upstream Froude number and the upstream
dispersion relation. The corresponding results, λt ≈ 3.4 for the cases in Figs. 14(c) and 14(d) and
λt ≈ 3.8, 5.0 for the cases in Fig. 15, agree well with the numerical solutions.

Figures 17 and 18 show the numerical results for Regime (IV), namely subcritical flow upstream
with critical depth past two successive obstacles. Similarly to Regimes (I) and (III), trapped waves
in Regime (IV) only exist upstream [see Figs. 17(c) and 18(c)]. The train of waves is predicted by
the linear dispersion relation shown in Fig. 19(a) when a convex obstruction is located at the origin
[see also Fig. 19(b) for the case with a concave obstruction]. The wavelength of the trapped waves
is in rough agreement with that indicated by the linear theory. In this case, the difference between
wavelengths of trapped waves computed with different phases of the second obstacle cannot be
ignored [see Figs. 17(c) and 18(c)], implying that the second obstacle may play a role when its
amplitude becomes comparable with the one at the origin.

074801-21



Z. WANG et al.

510150

K

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F

(a)

510150

K

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

F

(b)

FIG. 19. Dispersion relation with (�, R, β ) = (0.77, 0.6, 1) and predicted wave numbers for Regime (IV).
(a) Theoretical result (λt ≈ 9.5) for the cases in Fig. 17(c): Dispersion curve F1u(K ) (solid line), dispersion
curve F1d (K ) (dotted line), computed upstream Froude number (horizontal dashed line), and computed
downstream Froude number (horizontal dash-dotted line). (b) Theoretical result (λt ≈ 10.6) for the cases in
Fig. 18(c): Dispersion curve F1u(K ) (solid line), dispersion curve F1d (K ) (dotted line), computed upstream
Froude number (horizontal dashed line), and computed downstream Froude number (horizontal dash-dotted
line).

V. CONCLUSIONS

Most existing studies on hydraulic falls for a steady flow past localized bottom topography focus
on one-layer flow past one obstacle or two successive obstacles and two-layer flow past a single
obstruction. We have extended the configuration to a two-layer flow past two successive obstacles in
the present paper. We first followed the conventional wisdom to derive the weakly nonlinear theory
(the KdV type equations with the bottom topography served as the external forcing) to understand
the mechanisms of existence and classification of hydraulic fall solutions. Interfacial hydraulic fall
solutions over a single obstacle can be divided into six categories according to flow properties
upstream, four of which have been carefully studied in the paper: subcritical flow upstream with
a thick upper layer, supercritical flow upstream with a thick upper layer, subcritical flow upstream
with a thick bottom layer, and subcritical flow upstream with critical depth. The phase portrait
analyses of the KdV type equations with the force of the δ-function form indicate that the convexity-
concavity property of the obstacle can lead to different interface profiles. This statement has been
confirmed by the numerical computations of the full Euler equations based on a boundary integral
equation method. It has also been shown numerically that increasing the vertical or horizontal size
of the obstacle increases the vertical drop of the fall.

When the second obstacle is added to the system, the existence of trapped waves depends on its
position. Numerical computations of the fully nonlinear equations show that the second obstruction
has to be placed on the subcritical side of the fall to generate trapped waves. Varying the horizontal
or vertical size of the second obstacle or its relative distance to the first obstacle exerts little influence
on the wavelength of the generated trapped waves though the amplitude may change significantly.
However, changing the phase of the first obstacle from convex to concave can considerably affect
the wavelength. The wavelength of trapped waves can also be estimated based on the linear theory
by intersecting the computed subcritical Froude number with the linear dispersion curve. The
prediction can be accurate enough with less than a few percent relative error.

When the upstream flow is supercritical, the numerics for the full Euler equations seem more
challenging. We did not manage to find solutions in the remaining two regimes: supercritical flow
upstream with a thick bottom layer and supercritical flow upstream with critical depth. These two
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cases are also interesting and merit further investigation. Additionally, recent work on modeling and
field observations of hydraulic fall for three-layer flow past a bottom obstacle (see Chesnokov [25],
for example) also stimulates us to find steady solutions in the same configuration.
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