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Quasi-dynamic subgrid-scale kinetic energy
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A quasi-dynamic subgrid-scale (SGS) kinetic energy one-equation eddy-viscosity model
is introduced in this paper for large-eddy simulation (LES) of compressible flows. With
the additional SGS kinetic energy equation, the SGS kinetic energy can be predicted
properly. Then, using the dual constraints of SGS kinetic energy and the SGS kinetic
energy flux, the eddy-viscosity model can be determined exactly. Taking a similar scheme
as the expansion of the SGS stress, other unclosed quantities in the equations to be
solved could be well modelled separately. Therefore, with the advance of the equations,
all the model coefficients can be determined dynamically. Differing from the classic
dynamic procedure, the new methodology needs no test filtering, and thus it could also
be called a quasi-dynamic procedure. Using direct numerical simulation of compressible
turbulent channel flow, the a priori test shows that the key modelled quantities of the
suggested model display high correlations with the real values. In LES of compressible
turbulent channel flows of the Mach number being 1.5 and 3.0, the proposed model can
precisely predict some important quantities, including the mean velocity, Reynolds stress
and turbulent flux, and it can also supply more abundant turbulent structures. For the
compressible flat-plate boundary layer, the new model can correctly predict the transition
process, mean velocity and turbulence intensities in the turbulent region. The results
show that the proposed model has the advantage of scale adaptivity. Finally, the new
model is applied to LES of turbulent mixing in spherical converging Richtmyer–Meshkov
instability, and the accurate results show that the new model has a good ability for LES of
complex fluids.
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1. Introduction

Large-eddy simulation (LES) is increasingly applied to simulate high Reynolds number
turbulent flows and plays an important role in science and engineering research. Although
many subgrid-scale (SGS) models are applied in simulating complex flows, reliable
results cannot be ensured because more current SGS models are constructed based on
the assumption that the subgrid scales are approximately isotropic (Moser, Haering &
Yalla 2021). In addition, most of the current SGS models were initially constructed for
incompressible flows and are directly generalized to compressible flows, which means that
the current models cannot exactly predict certain phenomena, such as compression shocks
in compressible flows (Garnier, Adams & Sagaut 2013).

In LES, the filtered Navier–Stokes (N–S) equations contain some SGS terms for
modelling. The eddy-viscosity model is the most popular SGS stress model used in
practical LES because of its strong numerical robustness and simplicity (Meneveau &
Katz 2000; Rozema et al. 2015). The Smagorinsky model (SM) (Smagorinsky 1963;
Lilly 1967) is the most representative eddy-viscosity model, and it’s coefficient Csm
can take different values empirically for different simulation cases. Metais & Lesieur
(1992) obtained a new SGS eddy viscosity using a second-order structure function.
Nicoud & Ducros (1999) proposed a wall-adapting local eddy-viscosity model, which
can correctly predict behaviours in the near-wall region. Vreman (2004) proposed a
low dissipation eddy-viscosity model (Vreman model) for turbulent shear flows, and
it can also predict transitional flow well. Then, through the analysis of the singular
values of the resolved velocity gradient tensor, Nicoud et al. (2011) proposed the σ

model to improve the prediction of wall-bounded flows. According to the balance of
the helicity transfer and dissipation in the inertial region and a spectral relative helicity
relation, Yu et al. (2013) supplied a new eddy-viscosity model, which was successfully
applied to simulate compressible transitional flows (Zhou et al. 2019). Rozema et al.
(2015) supplied an anisotropic minimum-dissipation eddy-viscosity model, which does
not need an approximation of the filter width. Recently, Leoni et al. (2021) introduced an
eddy-viscosity model based on fractional gradients, which can provide stronger non-local
correlations than traditional eddy-viscosity models. Although eddy-viscosity models are
popularly adopted, they still have some drawbacks. The current eddy-viscosity models
always supply pure dissipation and have low correlation with the real SGS stress, so
they cannot exactly depict the characteristics of the real physical quantities in turbulence
(Vreman, Geurts & Kuerten 1996; Meneveau & Katz 2000). The eddy-viscosity model
cannot correctly reproduce the distributions of the SGS kinetic energy flux (KEF) and
the SGS stress (Meneveau & Katz 2000). It should be noted that the KEF is a significant
characteristic for SGS models in LES (Moser et al. 2021).

Aside from the eddy-viscosity model, there are other types of SGS model, such as the
structural model and the mixed model. The scale-similarity model is one of the structural
models proposed by Bardina, Ferziger & Reynolds (1984) and revised by Liu, Meneveau
& Katz (1994). The gradient model (Clark, Ferziger & Reynolds 1979; Vreman et al.
1996) is another structural model that was derived from Taylor expansions for SGS stress
using the filtered velocity. Different from the eddy-viscosity model, the scale-similarity
model and gradient model have common merits in that they have a high correlation with
the real SGS stress and the KEF predicted by these two structural models is also highly
correlated with the real value. However, the shortcoming is that they easily lead to unstable
simulation, which has been proven through linear stability analysis (Vreman et al. 1996).
Then, several mixed models were proposed to achieve a relatively high correlation with the
SGS stress and address the shortcoming of instability in simulation (Bardina et al. 1984;
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Zang, Street & Koseff 1993; Vreman, Geurts & Kuerten 1994; Horiuti 1997). Even so,
these improvement methods still have some drawbacks, such as excessive SGS dissipation
(Vreman et al. 1996) and a deteriorated correlation (Yu, Zuoli & Xinliang 2016).

The SGS kinetic energy equation model (k-equation model) for LES was introduced by
Schumann (1975) through dimensional analysis for LES of incompressible flows. Then,
Yoshizawa (1985) also independently obtained the k-equation model from the two-scale
direct interaction approximation. Since the k-equation model can take into account the
deviation from the equilibrium state and time history effect (Horiuti & Tamaki 2013), it
has been successfully applied in different types of turbulent flows (Moeng 1984; Horiuti
1985; Yoshizawa 1991; Stevens, Moeng & Sullivan 1999). The dynamic procedure was
also applied to the k-equation model in incompressible turbulence (Ronchi, Ypma &
Canuto 1992; Wong 1992; Ghosal et al. 1995; Kim & Menon 1999). Pomraning & Rutland
(2002) applied infinite series expansions to model unclosed quantities and suggested a
new dynamic one-equation non-viscosity LES model. At the same time, the k-equation
model was generalized to compressible flows with compressible effects considered in
all SGS terms (Patel, Stone & Menon 2003), and the compressible k-equation model
was also successfully applied to simulate supersonic combustion flows (Genin & Menon
2010). Although the k-equation model has been successfully applied to different kinds
of flows, the modelling for the unclosed terms in the SGS kinetic energy equation is
not satisfactory. For most studies, the unclosed terms in the equation are grouped into
production and dissipation terms. Unlike in previous research, Chai & Mahesh (2012)
proposed a new dynamic k-equation model (dk-equation model) for LES of compressible
turbulence, where each of the unclosed quantities is modelled independently to improve
the effects of predictions.

To effectively improve the simulation, the dynamic procedure is often used to determine
the coefficients in SGS models. Based on the assumption of scale invariance, the dynamic
procedure can determine the coefficient of the SGS model with the aid of the Germano
identity (Germano et al. 1991; Germano 1992). Later, Lilly (1992), Ghosal et al. (1995)
and Meneveau, Lund & Cabot (1996) modified the method, and the coefficient could be
obtained locally. Porte-Agel, Meneveau & Parlange (2000) supplied a scale-dependent
dynamic SGS model in which the model coefficient varies with scale. Considering the
ratio of the SGS energy dissipation across an arbitrary grid scale to the resolved viscous
dissipation, Yu, Xiao & Li (2017) proposed a scale-adaptive dynamic SGS model, which
has been proven to be better than traditional dynamic SGS models. The dynamic procedure
can also be applied to model the SGS heat flux. Moin et al. (1991) proposed a dynamic
linear eddy thermal diffusivity model. Then, Wang et al. (2008) supplied three new
dynamic tensor thermal diffusivity SGS heat flux models based on the general gradient
diffusion hypothesis. Subsequently, Meneveau (2012) restated the Germano identity in
a generalized form that can be applied to the dynamic procedure for any scalar flux
model.

As discussed above, both the eddy-viscosity model and the gradient model
have distinctive merits and defects. This study proposes a new quasi-dynamic
SGS kinetic energy equation model (QKM) combining the advantages of both the
eddy-viscosity model and the gradient model based on the SGS kinetic energy equation.
The newly proposed model is tested in three different representative compressible
flows.

The structure of this paper is as follows: the governing equations and SGS models are
introduced in § 2. The derivation of the QKM is supplied in § 3. In § 4, we test the new
model compared with the traditional dynamic models and give detailed analyses. Finally,
the conclusions are provided in § 5.
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2. Governing equations and SGS models

The filtered N–S equations for compressible flows in LES take the form

∂ρ̄

∂t
+ ∂ρ̄ũi

∂xj
= 0, (2.1)

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũj

∂xj
= − ∂ p̄

∂xi
+ ∂σ̃ij

∂xj
− ∂τij

∂xj
, (2.2)

∂ρ̄Ẽ
∂t

+ ∂(ρ̄Ẽ + p̄)ũj

∂xj
= −∂ q̃j

∂xj
+ ∂σ̃ijũi

∂xj
− ∂CpQj

∂xj
− ∂Jj

∂xj
, (2.3)

where (·) represents spatial filtering with a low-pass filter at scale Δ and (·̃) represents
density-weighted (Favre) filtering (φ̃ = ¯ρφ/ρ̄). In the filtered N–S equations, ρ̄, ũi, p̄ and Ẽ
are the filtered density, velocity, pressure and total energy, respectively. In this study, (2.3)
is obtained by applying the filtering operator to the total energy equation, and the form
of the filtered total energy can be represented as ρ̄Ẽ = ρ̄CvT̃ + 1

2 ρ̄ũiũi + ρ̄ksgs (Martín,
Piomelli & Candler 2000; Garnier et al. 2013), where ksgs is the SGS kinetic energy and
can be expressed as

ρ̄ksgs = 1
2 ρ̄(ũiui − ũiũi). (2.4)

The filtered pressure is determined by p̄ = ρ̄RT̃ , where R is the specific gas constant and
T̃ is the filtered temperature. The resolved viscous stress σ̃ij and heat flux q̃j are expressed
as

σ̃ij = 2μ(T̃ )̃Sij, (2.5)

S̃ij = S̃ij − 1
3
δijS̃kk = 1

2

(
∂ ũi

∂xj
+ ∂ ũj

∂xi

)
− 1

3
∂ ũk

∂xk
δij, (2.6)

q̃j = Cpμ(T̃)

Pr

∂T̃
∂xj

, (2.7)

where the molecular viscosity μ takes the form μ = (1/Re)(T̃/T̃∞)3/2((T̃∞ + Ts)/

(T̃ + Ts)) according to Sutherland’s law, in which Ts is 110.3 K, the Reynolds number
Re takes the form Re = ρ∞U∞L/μ∞ and S̃ij = 1

2 (∂ ũi/∂xj + ∂ ũj/∂xi) is the resolved
strain-rate tensor. Here, Cp is the specific heat at constant pressure and Pr is the molecular
Prandtl number. In (2.2) and (2.3), there are still some SGS unclosed terms, which are the
SGS stress

τij = ρ̄(ũiuj − ũiũj), (2.8)

the SGS heat flux
Qj = ρ̄(ũjT − ũjT̃), (2.9)

and the SGS turbulent diffusion term

Jj = 1
2 ρ̄(ũiuiuj − ũiuiũj). (2.10)

All the unclosed terms need to be modelled using the filtered quantities. Next, we will
discuss the modelling of these terms in detail.

Because of its numerical robustness and simplicity, the eddy-viscosity model is most
often adopted in practical simulations (Meneveau & Katz 2000; Rozema et al. 2015).
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The eddy-viscosity model is a phenomenological model, and the proposal of this model is
based on a Boussinesq-type hypothesis, which is

τmod
ij − 1

3δijτ
mod
kk = −2μsgsS̃ij, (2.11)

where τmod
kk is the isotropic part of the SGS stress model.

Comparing (2.8) and (2.4), we find that the isotropic part of SGS stress τkk and the SGS
kinetic energy ksgs have the relationship as

τkk = 2ρ̄ksgs. (2.12)

In the eddy-viscosity model, the SM is the typical model and widely exists in LES of
different types of flows (Smagorinsky 1963). Therefore, the SM is chosen as the object
model in this study. In the SM, the eddy viscosity can be written as

μmod
sgs = ρ̄CsmΔ2|S̃|, (2.13)

where

|S̃| =
√

2S̃ijS̃ij, (2.14)

and Csm is the coefficient of the anisotropic part of the SM. The isotropic part of the SGS
tensor for the SM is

τmod
kk = 2CI ρ̄Δ2|S̃|2, (2.15)

where CI is the coefficient of the isotropic part of the SM (Yoshizawa 1986).
For the SGS heat flux model, we still take the commonly used SGS diffusion model

(Moin et al. 1991) as

Qmod
j = − μsgs

Prsgs

∂T̃
∂xj

, (2.16)

where Prsgs is the SGS Prandtl number.

3. Derivation of the QKM

3.1. The SGS kinetic energy equation
Since the k-equation model was proposed by Schumann (1975) and Yoshizawa (1985), it
has been successfully used in LES of incompressible and compressible flows (Pomraning
& Rutland 2002; Genin & Menon 2010; Chai & Mahesh 2012). Consequently, we will
attach the SGS kinetic energy equation to the N–S equations to improve the precision of
the SGS models in this study.

The derivation of the compressible SGS kinetic energy equation has been reported by
Chai & Mahesh (2012), and the equation can be written as

∂ρ̄ksgs

∂t
+ ∂ρ̄ksgsũj

∂xj
= −ΠΔ − ∂Jj

∂xj
− εs − εd + Πp + ∂ζj

∂xj
+ ∂

∂xj

[
μ(T̃)

∂ksgs

∂xj

]
, (3.1)
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where

ΠΔ = τij
∂ ũi

∂xj
, (3.2)

εs = 2μ(T̃)(S̃ijDij − S̃ijD̃ij), (3.3)

Dij = ∂ui

∂xj
− 1

3
δij

∂uk

∂xk
, (3.4)

εd = ∂

∂xj

[
5
3
μ(T̃)(

˜
uj

∂uk

∂xk
− ũj

∂ ũk

∂xk
)

]
, (3.5)

Πp = p
∂uk

∂xk
− p̄

∂ ũk

∂xk
, (3.6)

and

ζj = τijũi + μ(T̃)
∂

∂xi

(
τij

ρ̄

)
+ RQj. (3.7)

In (3.1) to (3.7), there are some other unclosed quantities, which are the KEF ΠΔ across
the mesh scale Δ, the solenoidal dissipation εs, the dilatational dissipation εd and the
pressure dilatation Πp (Chai & Mahesh 2012). Equation (3.1) is the exact form of the SGS
kinetic energy equation. To precisely predict the key quantities in compressible turbulence,
we will construct each unclosed quantity individually.

3.2. The quasi-dynamic procedure and modelling
Since the turbulent cascade description was proposed by Richardson, the turbulent cascade
has become the most fundamental conception of turbulent theory. The KEF is the core
physical quantity for the turbulent cascade and is also a critical characteristic for SGS
modelling in LES (Moser et al. 2021). In past studies, several modelling methods for KEF
have been developed, such as parametrization based on the tensor eddy viscosity (Borue &
Orszag 1998), a multi-scale gradient expansion (Eyink 2006) and artificial neural networks
(Yuan, Xie & Wang 2020).

As presented in (3.2), SGS stress τij is the only unclosed quantity in the KEF. To obtain
the resolved form of τij, the infinite series expansion (Bedford & Yeo 1993) is applied to
expand it. The infinite series expansion is expressed as

fg − f̄ ḡ = α
∂ f̄
∂xk

∂ ḡ
∂xk

+ 1
2!

(α)2 ∂2 f̄
∂xk∂xl

∂2ḡ
∂xk∂xl

+ 1
3!

(α)3 ∂3 f̄
∂xk∂xl∂xm

∂3ḡ
∂xk∂xl∂xm

+ · · · ,

(3.8)
where

α( y) =
∫ ∞

−∞
2x2G(x, y) dx. (3.9)

Here, G(x, y) is the kernel of the filter, and f and g can be vectors or scalars. In this
study, G(x, y) is designated as the box filter for the case of a priori test and the grid filter
(Tejada-Martínez & Jansen 2004) is used in the LES cases.

The parameter α can be taken as

α = C0Δ
2
k, (3.10)

where Δk is the grid width in the xk direction.
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Through the method of (3.8), τij can be expanded as

τij = C0Δ
2
k ρ̄

∂ ũi

∂xk

∂ ũj

∂xk
+ 1

2!
(C2

0Δ
2
kΔ

2
l )ρ̄

∂2ũi

∂xk∂xl

∂2ũj

∂xk∂xl
+ · · · . (3.11)

Since the other higher-order terms are small enough compared with the first term of
(3.11) (Vreman et al. 1996), and also for avoiding the complexity of additional boundary
conditions, we only reserve the first term in (3.11) as the approximation of τij

τij ≈ C0Δ
2
k ρ̄

∂ ũi

∂xk

∂ ũj

∂xk
. (3.12)

When C0 = 1/12, (3.12) can take the same form as the gradient model
(τmod

ij = 1
12Δ2

k ρ̄(∂kũi)(∂kũj)) (Clark et al. 1979; Vreman et al. 1996).
Then the approximation of KEF ΠΔ is

ΠΔ = C0Δ
2
k ρ̄

∂ ũi

∂xk

∂ ũj

∂xk
S̃ij. (3.13)

From (3.12), we find that

τkk = C0Δ
2
l ρ̄

∂ ũk

∂xl

∂ ũk

∂xl
. (3.14)

Comparing (2.12) with (3.14), we can confirm the real value of C0 in LES as

C0 = 2ksgs

Δ2
l
∂ ũk

∂xl

∂ ũk

∂xl

, (3.15)

which is the constraint condition for obtaining more precise τij, ΠΔ and other unclosed
quantities.

As discussed in the introduction, the gradient model has a high correlation with the
real SGS stress but is unstable in practical simulations (Vreman et al. 1996). Thus, we
can deduce that the approximated τij in (3.12) has the same advantages and disadvantages
as the gradient model. The SM has low correlation with the real SGS stress but strong
numerical robustness in simulations (Meneveau & Katz 2000; Moser et al. 2021). To
obtain a more accurate KEF across the scale Δ (ΠΔ) from the SM in LES, we use (3.13)
to constrain the SM as

ΠΔ = ΠSM
Δ , (3.16)

where

ΠSM
Δ = ΠSMA

Δ + ΠSMI
Δ , (3.17)

ΠSMA
Δ = −2Csmρ̄Δ2|S̃|̃SijS̃ij, and ΠSMI

Δ = 2
3 CI ρ̄Δ2|S̃|2δijS̃ij. (3.18a,b)

In (3.17)–(3.18a,b), ΠSMA
Δ and ΠSMI

Δ are the anisotropic part and the isotropic part of
ΠSM

Δ , respectively. ΠΔ also has an anisotropic part ΠA
Δ and isotropic part Π I

Δ as

ΠA
Δ =

(
C0Δ

2
k ρ̄

∂ ũi

∂xk

∂ ũj

∂xk
− 2

3
δijρ̄ksgs

)
S̃ij, (3.19)

Π I
Δ = 2

3δijρ̄ksgsS̃ij. (3.20)
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To accomplish the second constraint, we let ΠA
Δ = ΠSMA

Δ and the model coefficient Csm
of the SM can be rewritten as

Csm = −

(
C0Δ

2
k ρ̄

∂ ũi

∂xk

∂ ũj

∂xk
− 2

3
δijρ̄ksgs

)
S̃ij

2ρ̄Δ2|S̃|̃SijS̃ij
. (3.21)

The isotropic part of SM is obtained directly from (2.12) instead of (2.15) in this paper.
For the other unclosed terms, their resolved forms could also be obtained from the

same infinite expansion of (3.8) (Pomraning & Rutland 2002). We know that the α of
the different expanded quantities should be the same when using the same filter on a
designated grid point in theory. Therefore, in practical simulations, we could assume that
C0 is the same for the different expanded quantities. In this study, we introduce the SGS
kinetic energy to obtain C0 of SGS stress. Therefore, the C0 of SGS stress could be suitable
for other SGS terms under the assumption.

To model the SGS heat flux, we can apply the expansion method of (3.8) to expand the
SGS heat flux as

Qj = C0Δ
2
k ρ̄

∂ ũj

∂xk

∂T̃
∂xk

. (3.22)

Adopt a similar quasi-dynamic procedure for the SGS stress model (set ∂Qmod
j /∂xj =

∂Qj/∂xj), and the SGS Prandtl number in (2.16) can be determined as

Prsgs = −
∂

(
νsgs

∂T̃
∂xj

)
/∂xj

∂

(
C0Δ

2
k
∂ ũj

∂xk

∂T̃
∂xk

)
/∂xj

, (3.23)

where νsgs = μsgs/ρ̄.
For the SGS turbulent diffusion term in (2.10), we can use the same strategy as Jj = τijũi

(Martín et al. 2000). Therefore, we have modelled all the unclosed quantities in the filtered
N–S equations.

For the unclosed quantities Πp, εs and εd in the SGS kinetic energy equation (3.1), we
still apply the same expansion method as (3.8) to model them.

The pressure diffusion Πp can be modelled as

Πp ≈ C0Δ
2
m

∂ p̄
∂xm

∂2ũk

∂xm∂xk
. (3.24)

The solenoidal dissipation εs can be modelled as

εs ≈ 2C0Δ
2
kμ(T̃)

∂S̃ij

∂xk

∂D̃ij

∂xk
. (3.25)

The dilatational dissipation εd can be modelled as

εd ≈ 5
3

∂

∂xj

[
C0Δ

2
l μ(T̃)

∂ ũj

∂xl

∂2ũk

∂xk∂xl

]
. (3.26)

Thus far, we have obtained all the unclosed quantities in the filtered N–S equations and
the SGS kinetic energy equation, and the QKM has been completely modelled. Next, we
will test and analyse the proposed model for different cases of compressible flows.
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Figure 1. Schematic diagram for the compressible turbulent channel flow.

4. Application tests and analyses

In this section, the new model will first be tested in fully developed compressible turbulent
channel flows at the Mach number being 1.5 and 3. Then it will be applied in LES of the
flow of the compressible flat-plate boundary layer. Finally, to see the performance of the
proposed model in a more complicated case, the new model will be tested in the flow of
spherical converging Richtmyer–Meshkov instability.

4.1. Application in compressible turbulent channel flow
In this part, a fully developed compressible turbulent channel flow (Coleman et al. 1995;
Morinishi, Tamano & Nakabayashi 2004) is selected as the first test case for QKM.
Regarding the compressible turbulent channel flow, the size of the computational domain
is Lx × Ly × Lz = 4π × 2 × 4π/3, the Mach number is Ma = 1.5, the bulk Reynolds
number Re is 3000, the friction Reynolds number Reτ = uτ δ/ν is 220 (uτ = √

τw/ρw
is the friction velocity, τw is the wall shear stress, ρw is the wall density, δ is the channel
half-width and ν is the kinematic viscosity; Reτ = 220 is the result of the simulations),
the friction Mach number Maτ = uτ /aw is approximately 0.0815 (aw is the sound speed
based on the wall temperature), the Prandtl number Pr = μCpκ is 0.7 (κ is the thermal
conductivity and Cp is the specific heat at constant pressure) and the ratio of specific
heats is γ = Cp/Cv = 1.4 (Cv is the specific heat at constant volume). The flow is driven
by a uniform body force. Periodic boundary conditions are applied in the streamwise
and spanwise directions. The no-slip boundary condition and isothermal-wall boundary
conditions are utilized on the walls. For LES, the filtered N–S equations are solved
using a high-precision non-dimensional finite difference solver in Cartesian coordinates.
In this solver, a sixth-order central difference scheme is applied to discretize both the
convective and viscous terms, and the third-order Runge–Kutta scheme is used for the
time advance. The dynamic Smagorinsky model (DSM) and the dk-equation model (Chai
& Mahesh 2012) are compared with the new model. A box filter is used for test filtering
for the Germano identity of the dynamic procedure, where the test-filter width is 2Δ

(Δ = (ΔxΔyΔz)
1/3). Tables 1 to 4 show the grid settings and main parameters for direct

numerical simulation (DNS) and LES in this case, respectively (uc, ρc and Tc are the
streamwise velocity, density and temperature at the midplane of the channel flow). Figure 1
shows a schematic diagram of the compressible turbulent channel flow.

First, using an a priori test, we will discuss the correlation of the different unclosed
quantities modelled by DSM, dk-equation model and QKM with the real values and a box
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Grids Δx+ Δy+
min Δy+

max Δz+

DNS 900 × 201 × 300 2.99 0.32 4.54 2.99
LES-grid1 64 × 87 × 64 42.2 0.76 10.3 14.08
LES-grid2 48 × 65 × 48 57.5 1.07 18.1 19.18
LES-grid3 48 × 49 × 48 57.5 1.41 18.8 19.18

Table 1. The grid settings and grid resolutions of the simulations in the compressible turbulent channel flow
(Ma = 1.5, Re = 3000).

Reτ Maτ −Bq uc/Um ρc/ρw Tc/Tw

DNS 220 0.0815 0.0445 1.156 0.717 1.388
DSM 213 0.0810 0.0434 1.157 0.719 1.382
dk-equation model 215 0.0812 0.0441 1.155 0.718 1.388
QKM 220 0.0817 0.0446 1.155 0.718 1.388

Table 2. The main parameters for the simulations in the compressible turbulent channel flow for DNS and
LES-grid1 (Ma = 1.5, Re = 3000).

Reτ Maτ −Bq uc/Um ρc/ρw Tc/Tw

DSM 208 0.0804 0.0429 1.158 0.719 1.373
dk-equation model 210 0.0805 0.0431 1.155 0.718 1.385
QKM 221 0.0817 0.0447 1.155 0.718 1.387

Table 3. The main parameters for the simulations in the compressible turbulent channel flow for LES-grid2
(Ma = 1.5, Re = 3000).

Reτ Maτ −Bq uc/Um ρc/ρw Tc/Tw

DSM 201 0.0791 0.0417 1.159 0.726 1.382
dk-equation model 208 0.0775 0.0423 1.152 0.719 1.383
QKM 218 0.0818 0.0427 1.155 0.718 1.385

Table 4. The main parameters for the simulations in the compressible turbulent channel flow for LES-grid3
(Ma = 1.5, Re = 3000).

filter is adopted in the streamwise and spanwise directions. The correlation coefficient is
defined as

β = 〈(M − 〈M〉)(R − 〈R〉)〉
[〈(M − 〈M〉)2〉〈(R − 〈R〉)2〉]1/2 , (4.1)

where 〈·〉 denotes the time averaging plus space averaging in the streamwise and the
spanwise directions in a priori tests on every plane of the turbulent channel flow.

Figure 2(a–d) shows the correlation coefficients of the KEF, the wall-normal SGS heat
flux, the components of SGS stress τ12 and τ22 obtained from the DSM, dk-equation model
and QKM using the a priori test at the scale of 6Δz. In figure 2(a,b), we can see that
all the modelled quantities from QKM have very high correlations with the real values
and all the correlation coefficients are almost higher than 0.95 along the wall-normal
direction. On the contrary, the correlation coefficients of these quantities from the DSM
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Figure 2. Correlation coefficients of different quantities from the DSM, dk-equation model and QKM obtained
a priori: (a) the KEF ΠΔ; (b) the wall-normal SGS heat flux Q2; (c) the component of SGS stress τ12; (d) the
component of SGS stress τ22.

and dk-equation model are much lower. Figure 2(c,d) shows that the modified gradient
model from QKM still has high correlations with the real SGS stress and the modified
SM has better correlations with the real values than the DSM and dk-equation model
do. We also give the correlation coefficients of the unclosed quantities in the SGS kinetic
energy equation in figure 3. The correlation coefficient of the SGS turbulent diffusion term
∂Jj/∂xj in figure 3(d) is nearly 1.0. The correlation coefficients of the other quantities (the
pressure diffusion Πp, the solenoidal dissipation εs and the dilatational dissipation εd) are
also relatively high. From all the results of the a priori test, we can estimate that the QKM
has high similarity with the unclosed quantities in the equations.

The real value of the coefficient C0 obtained from (3.15) and the C0 of the different
expanded terms τij, Qj, Πp, εs and εd using the a priori test are displayed in figure 4.
From the figure, we can see that all the profiles of C0 from the expanded terms have good
agreement with the profile of the real C0, including the trend and value. Therefore, the a
priori results further verify the validity of our assumption. Next, we will discuss the results
of the a posterior test in the channel flow of Ma = 1.5.

The profiles of the van Driest transformed mean velocity (Uvd = ∫ U
0

√〈ρ〉/ρw d〈U〉)
and the mean temperature T+

av = (Tw − 〈T〉)/Tτ obtained from DNS, the QKM, the
dk-equation model and the DSM are compared for three LES grid resolutions in figure 5.
Here, Tτ = BqTw is the friction temperature, Bq = qw/(ρwcpuτ Tw) is the non-dimensional
heat flux and qw is the wall-normal heat flux. For LES-grid1, shown in figure 5(a1,a2),
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Figure 3. Correlation coefficients of the different terms in the SGS kinetic equation from the QKM obtained a
priori: (a) the pressure diffusion term Πp; (b) the solenoidal dissipation term εs; (c) the dilatational dissipation
term εd; (d) the SGS turbulent diffusion term ∂Jj/∂xj.
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Figure 4. The coefficient C0 of the different expanded terms and the real value obtained a priori using the
DNS data.

we can see that all the SGS models can well predict the mean velocity and temperature,
and the QKM behaves a little better than the other SGS models. From figure 5(b1,b2), we
can see that the results from all the models on LES-grid2 and the DNS results present little
difference in the viscous sub-layer and the buffer regions. However, in the log-law region,
the QKM predicts the velocity profile perfectly and clearly performs better than the other
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Figure 5. The van Driest transformed mean velocity Uvd profiles and the profiles of the mean temperature
T+

av , which are predicted from the DSM, dk-equation model and QKM, are compared with those of DNS: (a1)
and (a2) show the case of LES-grid1; (b1) and (b2) show the case of LES-grid2; (c1) and (c2) show the case
of LES-grid3. The velocity and temperature profiles from Coleman, Kim & Moser (1995) are also given here.

two models. In figure 5(c1,c2), we can see that the results from QKM are still close to the
DNS results and are obviously better than those of the other two models. In short, as the
grid scale decreases, the QKM can maintain good predictive ability, which is significantly
better than those of the other two models, and the dk-equation model is better than the
DSM. These results show that the QKM has a certain characteristic of scale adaptivity.

Next, we will perform analyses according to the results of LES-grid2 for the case of
Ma = 1.5.
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Figure 6. The profiles of the total Reynolds stress normalized by ρw and uτ , and the total turbulent heat flux
normalized by ρw, uτ and Tw from DNS and different SGS models in the case of LES-grid2.

In compressible turbulence, if the property of ergodicity is assumed, the total Reynolds
stress could be expressed as

Rij = 〈ρ̄〉({ũiuj} − {̃ui}{̃uj}) = RLES
ij + 〈τij〉, (4.2)

where

RLES
ij = 〈ρ̄〉({̃uĩuj} − {̃ui}{̃uj}) (4.3)

is the resolved Reynolds stress, and {·} denotes the Favre averaging ({φ} = 〈ρφ〉/〈ρ〉).
Figure 6(a) displays the normalized total Reynolds stress Ruv/(ρwu2

τ ) from DNS and the
different models. In figure 6(a), the QKM shows better agreements than the other models
in almost all the regions.

Similar to the expression of the total Reynolds stress in (4.2), the turbulent heat flux
takes the form

RujT = 〈ρ̄〉({ũjT} − {̃uj}{T̃}) = RLES
ujT + 〈Qj〉, (4.4)

where

RLES
ujT = 〈ρ̄〉({̃ujT̃} − {̃uj}{T̃}) (4.5)

is the resolved turbulent heat flux. Figure 6(b) presents the profiles of the normalized
turbulent heat flux RvT/(ρwuτ Tw) from DNS, the DSM, the dk-equation model and
the QKM. From figure 6(b), we can see that the QKM yields a precise prediction compared
with the DNS, but the other models still have obvious deviations from the real value. And
we also show the resolved Reynolds stress and the resolved turbulent heat flux in figure 7.
From the figures, we see that the QKM can predict both the resolved part and the modelled
part well. The dk-equation model can also obtain better results than the DSM does.

In figure 8(a–c), we present the profiles of the normalized resolved turbulence intensities
ũrms

i /uτ = 〈(̃ui − 〈̃ui〉)2〉1/2/uτ obtained from the DNS and the compared SGS models.
From figure 8, the three components of the resolved turbulence intensity predicted by the
QKM are clearly much closer to the real values than those from the DSM and dk-equation
model in all regions. Figure 8(d) shows the turbulent kinetic energy from DNS and the
different models. From the figure, we see that the QKM can supply better results than the
other SGS models including the total turbulent kinetic energy and ρksgs.
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Figure 7. The profiles of the resolved Reynolds stress normalized by ρw and uτ , and the resolved turbulent
heat flux normalized by ρw, uτ and Tw from DNS and different SGS models in the case of LES-grid2.
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Figure 8. The profiles of the resolved turbulence intensities normalized by the friction velocity uτ and the
turbulent kinetic energy (TKE) from DNS and different SGS models in the case of LES-grid2: (a) streamwise
turbulence intensity; (b) wall-normal turbulence intensity; (c) spanwise turbulence intensity; (d) the TKE 1

2 Rii.

In compressible channel flows, density and temperature fluctuations also attract much
attention. The profiles of the normalized resolved density fluctuation ρrms/ρav and
temperature fluctuation Trms/Tav predicted from DNS and the different SGS models are
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Figure 9. The profiles of the resolved root-mean-square (r.m.s.) density fluctuations normalized by averaged
density ρav and the resolved r.m.s. temperature fluctuations normalized by averaged temperature Tav from DNS
and different SGS models in the case of LES-grid2: (a) density fluctuations; (b) temperature fluctuations.
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Figure 10. The profiles of C0 and Prsgs obtained a posteriori for the compressible turbulent channel flow in
the case of LES-grid2.

shown in figure 9, where ρav and Tav are the average density and temperature, respectively.
As expected, the density and temperature fluctuations obtained from the QKM tightly
match the profiles from DNS, which is a little better than the results of the other SGS
models.

Next, we show the profiles of C0 and Prsgs from the a posteriori test in figure 10.
The values of C0 and Prsgs have similar trends. Notably, the maximum value of C0 is
approximately 0.08 and the maximum value of Prsgs is approximately 0.8.

Then we compare the turbulent structure obtained from DNS and the different
SGS models. Figure 11 shows the instantaneous isosurface of Q (second invariant of
the strain-rate tensor, Q = 0.25) obtained from DNS, the QKM, the DSM and the
dk-equation model. From figure 11, we can see that the QKM can predict more abundant
structures, and in figure 11(b) there are many more small-scale vortexes than the results in
figure 11(c,d), especially in the near-wall regions. Therefore, we infer that the QKM has a
better ability to predict the turbulent structure.

To see the computational efficiency of the SGS models, we show the computing time
per time step using 112 CPUs from different SGS models in table 5. Obviously, the QKM
and dk-equation model take approximately the same time, slightly longer than the DSM.
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Figure 11. Instantaneous isosurface of Q (second invariant of the strain-rate tensor, Q = 0.25) obtained from
(a) DNS, (b) the QKM, (c) the DSM, (d) the dk-equation model of compressible turbulent channel flow in the
case of LES-grid2.

SGS model DSM dk-equation model QKM

Time 4.13 × 10−2 s 7.38 × 10−2 s 7.22 × 10−2 s

Table 5. The computing time per time step using 112 CPUs for different SGS models.

Grids Δx+ Δy+
min Δy+

max Δz+

LES-grid 86 × 97 × 86 66.4 1.44 19.5 22.14

Table 6. The grid settings and grid resolutions of the simulations in the compressible turbulent channel flow
(Ma = 3.0, Re = 4880).

To further test the new model in the case of a higher Mach number, we will discuss
the results for the case of Ma = 3.0 and Re = 4880 (Coleman et al. 1995; De Stefano,
Brown-Dymkoski & Vasilyev 2020). The size of the computational domain, the Prandtl
number Pr, the boundary conditions, the ratio of specific heats and the setting of LES
solver are the same with the case of Ma = 1.5 and Re = 3000. The grid resolutions and
the main parameters of this case are listed in tables 6 and 7, respectively.

Figure 12 shows the profiles of the van Driest transformed mean velocity Uvd and
mean temperature T+

av obtained from different SGS models and DNS. Figure 13 shows
the profiles of the total Reynolds stress and the turbulent heat flux normalized by ρw, uτ

and Tw from different SGS models and DNS. From the figures, we can see that the QKM
can yield obviously better behaviour than the other models even in the case of higher
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Reτ Maτ −Bq uc/Um ρc/ρw Tc/Tw

DSM 444 0.101 0.125 1.21 0.399 2.69
dk-equation model 448 0.108 0.129 1.18 0.395 2.65
QKM 452 0.112 0.135 1.14 0.38 2.59

Table 7. The main parameters for the simulations in the compressible turbulent channel flow (Ma = 3.0,
Re = 4880).
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Figure 12. The profiles of the van Driest transformed mean velocity Uvd and mean temperature T+
av obtained

from different SGS models and DNS. The DNS results are from Coleman et al. (1995).
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Figure 13. The profiles of the total Reynolds stress and the turbulent heat flux normalized by ρw, uτ and Tw
from different SGS models and DNS. The DNS results are from Coleman et al. (1995).

Mach number. At the same time, the dk-equation model can supply better predictions than
the DSM.

4.2. Application in compressible flat-plate boundary layer
In this part, the newly proposed model is tested in the flow of the compressible flat-plate
boundary layer. Unlike the channel flow, the compressible flat-plate boundary layer
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Figure 14. Sketch of the computational domain for the compressible flat-plate boundary layer.

Grids Δx+ Δy+
min Δy+

max Δz+

DNS 10 000 × 90 × 320 6.0 0.58 185.5 5.47
LES-gridA 1500 × 90 × 100 40.1 0.58 185.5 17.5
LES-gridB 1000 × 90 × 80 60.2 0.58 185.5 21.9
LES-gridC 1000 × 60 × 50 60.2 1.00 264.8 35.1

Table 8. The grid settings and main parameters of the simulations in compressible flat-plate boundary layer
(Ma = 2.25, Re/in. = 635 000).

flow contains laminar, transitional and fully turbulent regions. Here, a typical spatially
developing supersonic flat-plate boundary layer flow (Pirozzoli, Grasso & Gatski 2004)
is chosen as a standard example. The simulation results from the DSM and dk-equation
model are also selected for comparison. The computational domain is set to the same
in-flow and out-flow boundary conditions as the standard example, the no-slip condition
is used in the wall and the periodic condition is applied in the spanwise direction. Also, L
(one inch) is the non-dimensionalizing length scale. Blow and suction disturbances are
imposed near the wall at 4.5 < x/L < 5.0 to trigger the transition, which is the same
as the standard example except for the amplitude of the disturbances (0.02 is selected
here). The size of the computational domain is Lx × Ly × Lz = 6 × 0.3 × 0.175. The
sketch of the computational domain is shown in figure 14. The Mach number Ma = 2.25
and the free-stream unit Reynolds number Re/in. = 635 000 are selected for this case.
The grid resolution for DNS in this case is 10 000 × 90 × 320 with a spatial resolution
of Δx+ = 6.02, Δz+ = 5.47, and minimum grid spacing in the wall-normal direction
Δy+

w = 0.58. Three different LES grid settings are selected for testing the models and
the main parameters of the simulation in the compressible flat-plate boundary layer are
listed in table 8.

First, we test the rationality of our assumption regarding C0 in the compressible flat-plate
boundary layer using the a priori test with DNS data at the scale of 3Δz from the
compressible flat-plate boundary layer in figure 15. From the figure, we can see that the
values of C0 obtained from the different expanded terms (τij, Qj, Πp, εs and εd) still have
a similar trend and value as the real results. The results from the a priori test confirm the
validity of our assumption.

The distributions of the van Driest transformed mean velocity at x/L = 8.8 and the skin
friction coefficient along the flat plate obtained from the different SGS models in three
LES cases and DNS are displayed in figure 16. From figure 16(a1,a2) we can see that the
results from the QKM precisely accord with the real values. The DSM and dk-equation
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Figure 15. The profiles of C0 along the streamwise direction at y+ = 15 using the a priori test in the
compressible flat-plate boundary layer.

model can also supply passable prediction results, including the mean velocity profile, the
transition onset and the transition peak. For the case of grid-B, as seen from the simulation
results in figure 16(b1,b2), the QKM can still supply accurate prediction results that are
much better than those obtained from the DSM and dk-equation model. The results from
the dk-equation model are better than those from the DSM. In the case of grid-C, the
grid has the lowest resolution. Figure 16(c1,c2) shows that the QKM can still provide
fairly good results, while the other two models cannot yield acceptable simulation results.
Overall, from the results in figure 16, we could infer that the QKM can predict the mean
quantities in compressible flat-plate boundary layer flow properly and that it also has good
scale adaptivity.

Next, we will use the results from the case of grid-C to further explore the characteristics
of the QKM. To further observe the prediction of the transition, we supply the profiles
of the skin friction coefficient distribution vs Reθ (Reθ = ρ∞u∞θ/μ∞ is a momentum
thickness Reynolds number) from different SGS models and DNS in the case of grid-C
in figure 17. The QKM maintains the best performance in predicting the transition onset
and the transition peak, and the dk-equation model can also predict the transition process
except the transition peak, but the prediction results of the DSM deteriorate distinctly.

In figure 18, we show the profiles of the normalized resolved turbulence intensities and
the turbulent heat flux at x/L = 8.8 from the different SGS models and DNS in the case
of grid-C. We can see that the streamwise turbulence intensities from the QKM, DSM
and dk-equation model in figure 18(a) show no great difference, but the QKM shows
better performance at y+ < 10. The wall-normal and spanwise turbulence intensities in
figures 18(b) and 18(c) have different behaviours and the results from the QKM are better
than those from the other models. The dk-equation model behaves better than the DSM.
From figure 18(d), we can see that the QKM could predict the turbulent heat flux well and
that its results are better than those of the DSM and dk-equation model.

Figure 19 shows the a posteriori result of the KEF at y+ = 15 from the different SGS
models in the case of grid-C and the DNS value is displayed here for comparison (the
KEF in figure 19(a) is from (3.2), and τij is from (2.8)). From the figures, we can see
that the QKM is much more similar to the real KEF than to the KEF from the other two
models, including the distribution, the intensity, the sophisticated flow structure and even
the energy backscatters. Similar to the prediction results of the KEF, the wall-normal SGS
heat flux at y+ = 15 (figure 20) predicted by the QKM shows much better behaviour than
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Figure 16. The profiles of the van Driest transformed mean velocity at x/L = 8.8 and the skin friction
coefficient distribution along the flat plate from different SGS models and DNS: (a1) and (a2) show grid-A;
(b1) and (b2) show grid-B; (c1) and (c2) show grid-C. The velocity profile from Pirozzoli et al. (2004) is also
given here.

those of the other models compared with the real result (the SGS heat flux in figure 20(a)
is from (2.9)).

4.3. Application in spherical converging Richtmyer–Meshkov instability
In this section, we will test the proposed model in the flow of spherical converging
Richtmyer–Meshkov instability, which is a complicated time-developing case. As shown

947 A22-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.654


H. Qi, X. Li, R. Hu and C. Yu

0.003

0.002

0.001

1000 1500 2000

DNS

DSM

dk-equation

QKM

Reθ

2500 3000

Cf

Figure 17. Profiles of skin friction coefficient distribution versus Reθ from different SGS models and DNS in
the case of grid-C.
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Figure 18. Profiles of the resolved turbulence intensities normalized by Uav and the turbulent heat flux
normalized by ρwUavTav at x/L = 8.8 from different SGS models and DNS in the case of grid-C:
(a) streamwise turbulence intensity; (b) wall-normal turbulence intensity; (c) spanwise turbulence intensity;
(d) the turbulent heat flux.

in figure 21, the shock wave converges from the heavy fluid into the light fluid in
the flow. The heavy fluid is sulphur hexafluoride (SF6) and the light fluid is nitrogen
(N2). In this case, the Mach number is approximately 1.5, and the Atwood number is
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Figure 19. The a posteriori test of the KEF at y+ = 15 from different SGS models in the case of grid-C and
DNS results are displayed here for comparison: (a) DNS; (b) the DSM; (c) the dk-equation model; (d) the
QKM.
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Figure 20. The a posteriori test of the wall-normal SGS heat flux at y+ = 15 from different SGS models in the
case of grid-C and DNS results are displayed here for comparison: (a) DNS; (b) the DSM; (c) the dk-equation
model; (d) the QKM.
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Figure 21. The isosurface of YSF6 = 0.99 for the spherical converging Richtmyer–Meshkov instability, and
the shock wave and interface configuration diagram at the initial time: (a) isosurface of YSF6 = 0.99; (b) shock
wave and interface configuration diagram.

Pre-shock Post-shock

N2 SF6 SF6

P/pa 101 325 101 325 233435.425
ρ/(kg m−3) 1.145 5.971 12.748
Ur/(m s−1) 0 0 108.456
γ 1.4 1.09 1.09

Table 9. The main parameters at the initial time (Ur is radial velocity).

Case Grids

DNS 2048 × 2048 × 2048
LES 384 × 384 × 384

Table 10. The grid setting and the main parameters of the simulations in spherical converging
Richtmyer–Meshkov instability (the Mach number is approximately 1.5, and the Atwood number is 0.678).

A = (ρh − ρl)/(ρh + ρl) = 0.678, where ρh and ρl are the densities of SF6 and N2 at
the initial time, respectively. The main computational domain in the Cartesian coordinate
system is Lx = Ly = Lz = 20 mm. The total uniform and structured Cartesian grid is
applied in the main computational domain. To avoid the influence of boundary reflection, a
sufficiently long sponge layer with 50 non-uniform coarse grids is added for each direction.
To make sure that there is no singularity on the spherical surface, the spherical harmonic
function is used to generate the initial perturbation (Lombardini, Pullin & Meiron 2014).
The main parameters at the initial time and the grid setting of the simulations in
the spherical converging Richtmyer–Meshkov instability are listed in tables 9 and 10,
respectively.
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The N–S equations are solved by the finite difference method. The mixing scheme
combining the sixth-order monotonicity preserving optimized scheme (OMP6) (Li, Yan &
He 2013) and eighth-order central difference scheme is adopted to discretize the convective
terms. The eighth-order central difference scheme is employed for the viscous terms, and
the third-order Runge–Kutta approach is taken for the time integration (Hill, Pantano &
Pullin 2006; Bin et al. 2021).

The filtered N–S equations are the same as (2.1)–(2.3). For solving the spherical
converging Richtmyer–Meshkov instability, the filtered equation for the mass fraction of
species (Hill et al. 2006; Lombardini et al. 2011) is introduced as

∂ρ̄Ỹk

∂t
+ ∂ρ̄Ỹkũj

∂xj
= ∂

∂xj

(
ρ̄Dkm

∂Ỹk

∂xj
− Ysgs

j,k

)
, (4.6)

where Yk is the mass fraction of species k, Dkm denotes the mixture diffusion coefficients
of species k which are obtained from the Schmidt number Sck = μ(T̃)/ρ̄Dkm = 1, and the
SGS species flux Ysgs

j,k = ρ̄(Ỹkuj − Ỹk̃uj) is an unclosed term, which can be modelled as

Ysgs
j,k = − μsgs

Scsgs,k

∂Ỹk

∂xj
, (4.7)

where μsgs is the SGS eddy viscosity and Scsgs,k is the SGS Schmidt number.
Similar to the solution process of Prsgs, Scsgs,k for the newly proposed model can be

obtained as

Scsgs,k = −
∂

(
νsgs

∂Ỹk

∂xj

)
/∂xj

∂

(
C0Δ2

m
∂ ũj

∂xm

∂Ỹk

∂xm

)
/∂xj

. (4.8)

The constant-coefficient SM is also selected for comparison here. The model coefficient
of the SM is chosen as 0.1. Prsgs and Scsgs,k for the constant-coefficient model are set as
0.9 and 0.35, respectively.

Figure 22 shows the evolution of the inner and outer radii of the mixing layer with
the time obtained from different models and DNS. The inner radius r1 is the position
where the mass fraction of the heavy fluid is 0.01 and the outer radius r2 is the position
where the mass fraction of the light fluid is 0.01. For the inner radius, the QKM can
obtain proper results at almost time, DSM and dk-equation model show deviation from the
DNS result during 0.075 ms < t < 0.12 ms, and the SM shows worse prediction during
0.04 < t < 0.12 ms. For the outer radius, the QKM can accurately predict the evolution
profile and still perform better than the DSM, dk-equation model and SM. The DSM and
dk-equation model have better predictions than the SM in most of area.

Then, the evolution profiles of the heights of the bubble (where light fluid penetrates
heavy fluid) and spike (where heavy fluid penetrates light fluid) obtained from DNS and
the different SGS models are compared in figure 23. According to the inner and outer radii
of the mixing layer, the heights of the bubble and spike are given as

hb = r2 − r0.5, (4.9)

hs = r1 − r0.5, (4.10)

where r0.5 is the position where the mass fractions of light and heavy fluids are both 0.5.
The SM cannot predict the heights of the bubble and spike, and it grossly underestimates
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Figure 22. The evolution of the inner and outer radii of the mixing layer with the time obtained from
different SGS models and DNS.
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Figure 23. The evolution of the heights of the bubble and spike with the time obtained from different SGS
models and DNS.

their values, especially during 0.04 < t < 0.12 ms. In contrary, the QKM can still yield
passable results during the whole process.

From figures 22 and 23, we could infer that the turbulent mixing begins at t = 0.04 ms
and ends at 0.12 ms, which accords with the conclusion that the SM cannot successfully
predict the transition process (Piomelli & Zang 1991; Meneveau & Katz 2000; Sayadi &
Moin 2012; Zhou et al. 2019). At the same time, we can see that the results from the DSM
and dk-equation model show deviation from DNS results during 0.075 ms < t < 0.12 ms,
obviously. Perhaps, it is caused by strong anisotropy and inhomogeneity of the flow during
0.075 ms < t < 0.12 ms, which cannot meet the requirement of scale invariance for the
traditional dynamic procedure. And it also proves that the QKM can predict the turbulent
mixing process well.

Then, we select the results of the density distribution in the x–y plane and the isosurfaces
of the mass fraction of SF6 from DNS, QKM and the SM at two moments (t = 0.08 and
t = 0.12 ms), shown in figures 24 and 25. From figures 24 and 25, we can see that the
QKM is much more similar to DNS than the SM, including the spatial distributions of the
different species and the locations of the converging surfaces. We have seen again that the
QKM can provide sufficiently abundant turbulent structures.
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Figure 24. The density distribution in the x–y plane: (a1,b1,c1) are at t = 0.08 ms; (a2,b2,c2) are at
t = 0.2 ms; (a1,a2) are from DNS; (b1,b2) are from the QKM; (c1,c2) are from the SM.
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Figure 25. The isosurfaces of the mass fraction of SF6: (a1,b1,c1) are at t = 0.08 ms; (a2,b2,c2) are at t =
0.2 ms; (a1,a2) are from DNS; (b1,b2) are from the QKM; (c1,c2) are from the SM (Only one eighth of the
main computational domain is shown).

5. Conclusions

In this paper, we propose a QKM for LES of compressible flows. First, the SGS kinetic
energy equation is introduced to constrain the first term of the expanded SGS stress to
obtain a more accurate resolved SGS stress, and thus the coefficient of the first term
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can also be determined. Then, using the accurate resolved SGS stress, we obtain the
precise SGS KEF, which can be adopted to constrain the Smagorinsky model. With the
dual constraints of the SGS kinetic energy and KEF, a new SGS eddy-viscosity model
is confirmed. Similar to the expanded SGS stress, other unclosed quantities can be also
expanded by the same infinite series expansion, and their first terms are also reserved as
their approximate models. To obtain more exact models, the coefficients of these first terms
take the same values as those of the expanded SGS stress, which is proved by the a priori
test. Following the similar constraint criterion on the SGS stress model, the SGS heat flux
model and SGS species flux model can be also obtained precisely. All the coefficients
of these proposed models are resolved dynamically with no test filtering, and thus it can
be regarded as a quasi-dynamic process. In this study, each of the unclosed quantities
is modelled individually, and the newly proposed models combine the merits of strong
numerical robustness and high correlation with the real SGS stress together, which has
been proved by a priori and a posteriori tests.

The QKM is first employed to LES of the compressible turbulent channel flow.
Compared with DNS, the DSM and the dynamic k-equation model, the QKM shows
the good predictive power in the representative physical quantities, including the mean
velocity, the mean temperature, the turbulence intensities, the turbulent heat and the
Reynolds stress, etc. And the suggested model can also predict more abundant coherent
structures in the channel flow. For the case of a supersonic spatially developing flat-plate
flow, the QKM can well predict the transition process including the transition onset and
peak, the mean velocity profile in turbulent region, the KEF, etc. At the same time, the new
model also shows better scale adaptivity, as seen from the simulation results. When applied
to the simulation in the spherical converging Richtmyer–Meshkov instability, which is a
time-developing complex flow, the QKM can also show credible predictive power for the
inner and outer radii of the mixing layer, the width of the mixing layer, the heights of the
bubble and spike, etc.

In summary, the newly proposed QKM combines the merits of both the eddy-viscosity
model and the gradient model, and the local coefficients of the QKM are determined
dynamically. At same time, the QKM can predict the SGS KEF of the flow more precisely,
which means that the QKM can descript the turbulent cascade accurately, and it could be
regarded as the key factor for improving the prediction of turbulent flows. We anticipate
that this model could be easily applied to the simulation of engineering flows with
complex-geometry boundaries.
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