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The large-eddy simulation (LES) with the dynamic Smagorinsky model is used to predict the interior sound of an idealized vehi-
cle cabin under the excitation of the wall pressures from turbulent channel flows. In comparison with direct numerical simulation
(DNS), the LES results overpredict the sound pressure level (SPL) at low frequencies and underpredict the SPL at high frequen-
cies. The incorrect predictions result from the incorrect prediction of LES on surface pressures, where the LES over-estimates
the wavenumber and frequencies spectra of surface pressures at small wavenumbers and frequencies and under-estimates the
spectra at large wavenumbers and frequencies. However, the LES results are close to the filtered-DNS results, implying that
the unresolved scales are also important to surface pressures and interior sound. The Euler-Bernoulli beam under the excitation
of exterior pressures, which serves as a simple model for aero-vibro-acoustics in the case of hydrodynamical fast, is used to
explain the observed predictions and show that the Corcos model cannot represent the variation of turbulence pressure spectra
at wavenumbers and frequencies. Therefore, the new requirement for the LES method, when applied to fluid-structural-acoustic
interaction problems at high Reynolds numbers, is the correct prediction of wavenumber and frequency spectra of turbulence wall
pressure.
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1. Introduction

Turbulent flows as the sources of flow-induced vibration and
sound have been widely acknowledged as one of the most
significant issues in an extensive range of industrial applica-
tions, such as turbulent flows near the surfaces of aerials, au-
tomobiles, and underwater vehicles. We categorize the anal-
yses of those problems into two classes [1]: (1) the vibroa-
coustic analysis (VAA) [2] on the inward radiation from the
boundary to the interior of a vehicle cabin, and (2) the aero-
or hydroacoustic analysis [3,4] on the outward radiation from
the boundary to far flow fields. The scope of this work falls
into the combination of both analyses: aero-vibro-acoustics
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(AVA), where the external turbulent surface pressures are
transmitted to an interior sound field. The resultant vibroa-
coustic responses, including the sound pressure level (SPL)
of the noise within the cabin and the intensity of vibration
of structural components, are vital measurements in related
practices. In the civil aviation industry, the low-frequency
cabin noise of aircraft is closely related to the subjective
quantification of passengers’ comfortableness [5], and the
mid-range frequency noise that aligns with the human speech
and hearing range impedes verbal communication [6]. The
automobile industry employs a combined objective, namely,
noise, vibration, and harshness (NVH), to evaluate and, even-
tually, to optimize the design of cars and trucks [7]. In under-
water vehicles, it is critical to reduce the interior noise within
the sonar dome of the submarine to prevent the passive sonar

http://ams.cstam.org.cn
https://doi.org/10.1007/s10409-022-22019-8
https://doi.org/10.1007/s10409-022-22019-8
mailto:hgw@lnm.imech.ac.cn


L. Zhu, et al. Acta Mech. Sin., Vol. 38, 322019 (2022) 322019-2

from being contaminated by the self-noise induced by the op-
erations of the submarine itself [8]. In all the aforementioned
applications across various industries, the ideal methodology
for noise reduction is to satisfy the objective (i.e., functioning
of equipment) and subjective (i.e., acoustic comfort) require-
ments on safety and energy efficiency [5,6], without introduc-
ing additional costs. Consequently, the mechanism of exte-
rior turbulent-flow-induced excitation needs to be addressed
as the foundation of noise reduction design.

The inward radiation and propagation of surface pressure
fluctuation are commonly modeled as a coupled system that
comprises compressible fluids and structural components [2].
Graham [9] extended the classic modal analysis [1] to derive
the radiated sound power resulting from the flow-induced vi-
bration of the elastic rectangular plate to study the cabin noise
of aircraft. The modal analysis or wavenumber approach to
determine the vibroacoustic responses of an elastic plate ex-
cited by random excitation on the surface was well summa-
rized by Maury et al. [10], who also elaborates its applica-
tion to aircraft surface panels excited by modeled wall pres-
sure fluctuation of turbulent boundary layers (TBLs) [11].
To account for the stiffened or ribbed structures as standard
practices for reinforcement in the cabin design of automo-
biles, submarines, and aircraft, Mead and his coworkers pro-
posed the so-called space-harmonic method [12] as a semi-
analytical tool for the VAA involving structures with peri-
odicity. An exact solution for an elastic panel stiffened in
one dimension is later extracted by Lee and Kim [13]. Since
most of the geometries of an aerial and underwater vehi-
cle take the form of a revolving body, of which the cross-
section is nearly a perfect circle or ellipse, there are also
some studies on curved panels or cylinder hulls. Recently,
Maxit and his coworkers derived a semi-analytical method
using the wavenumber-point reciprocity principle for an un-
stiffened [14] and a stiffened cylinder shell [15].

Though the modal analysis and derivative semi-analytical
methods exhibit their capacities in the literature as a general
tool to obtain the vibroacoustic response of the fluid-structure
system under random forcing, it is inevitably bounded by
the accessibility of the analytical sensitivity function, which
is essentially the Green’s function of the fluid-structure
system. For the problems involving irregular geometries
and inhomogeneous material properties in realistic prac-
tices, where the analytical expression of the Green kernel of
the coupled system is not straightforwardly acquirable, the
modal/wavenumber analysis type method is no longer suit-
able. Another issue is that the resonant modes segregate rea-
sonably in the low-to-mid frequency range but congregate in
the high frequencies. Consequently, the separation of modal
responses becomes problematic in the high-frequency range.
An alternative approach to overcome these issues is the statis-

tical energy analysis (SEA) [2] to compute the mean vibroa-
coustic responses based on a priori knowledge of the energy
distribution between the different subsystems of components.
After determining the most effective internal and coupling
loss factors (CLF), Culla et al. [16] construct a surrogate
model via SEA for vibroacoustic optimization in a mid-to-
high frequency range. However, the SEA type approach re-
lies on assumptions of energy equipartition between modes
or diffusive fields between wavenumbers [17].

Another VAA approach is computational vibroacous-
tics. By well-established discretization methods (e.g., finite-
element methods (FEM) [18] and boundary-element meth-
ods (BEM) [19]), the representation of complex geometries
and inhomogeneous material properties turn out to be feasi-
ble in the discrete system, whereas no assumption or a priori
knowledge of the fluid-structure system is required other than
the governing equations. A robust computational framework
for VAA usually consists of three ingredients: (1) a solver
for structural analysis, (2) an acoustic solver for compress-
ible fluids, and (3) fluid-structural coupling strategies. The
FEM-based analysis of structural dynamics is mostly mature
for general industrial applications with various energy func-
tionals for distinct forms (e.g., membranes, shells/plates, and
solids) and materials (e.g., elasticity, plasticity, and poros-
ity). The pressure perturbation in a compressible fluid is
governed by the Helmholtz equation. Suleau et al. [20] re-
ported that the standard Galerkin weak form introduces non-
physical dispersion error to the solution. One remedy based
on tuning the discrete mass matrix is proposed by He and
his coworkers [21]. The last ingredient is essential to impose
the restriction of the balance of traction at the interface be-
tween the fluid and structure domains. However, due to the
different characteristic speeds of elastic and acoustic waves,
the mesh resolution in the structure domain is usually more
refined than that in the compressible fluid domain. To deal
with the incompatible meshes, Chen et al. [22] proposed a
method to locally estimate the penalty coefficient to enforce
the constraints without deteriorating the convergence rate.

The exterior random excitation that powers the interior
sound and vibration is the other key factor in VAAs of vehicle
cabins. Due to the reduced noise of modern engines, the fully
developed TBL around the cylinder shell of the fuselage be-
comes the primary cabin noise source in modern jet-powered
airplanes during the cruise stage [5]. Similarly, the parallel
middle body of an underwater vehicle can also be modeled
as a flat or curved plate excited by TBL, as shown in the
experimental work by Abshagena and Nejedl [23]. Given
the stochastic nature of the wall pressure fluctuation of TBL,
the wall pressure fluctuation model is provided in the form
of space-time correlation or wavenumber-frequency energy
spectrum. Amongst the considerable amount of related re-
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search on the modeling of wall pressure fluctuation of zero
pressure gradient TBL, the detailed descriptions and com-
parisons of classical empirical models can be found in the
work of Hwang et al. [24] and Miller et al. [25]. The Cor-
cos model [26], as one of the earliest studies on the form of
space-time correlation of wall pressure, has been widely used
in the VAAs for decades [27,28]. To address the dependency
of spatial separation to the boundary layer thickness in gen-
eral Corcos form and the range of Mach number that falls
in the interests of the aviation industry, the Efimtsov model
[29] is utilized in the study [9]. Maxit and his collaborators
[14, 15] recently utilized the Chase model [30] for VAAs of
idealized underwater vehicles. Smol’yakov [31] proposed a
new form of space-time correlation to take the effect of vis-
cosity into account. Apart from these semi-empirical models,
a different method follows along the lines in the derivation
of pressure Poisson equations (PPEs) from incompressible
Navier-Stokes equations and converts the modeling of wall
pressure to the modeling of velocity source term (i.e., rapid
and slow terms). The models belonging to this class are well
summarized by Slama et al. [32]. In general, a Reynolds-
averaged Navier-Stokes (RANS) simulation is a prerequisite
for these models to estimate the source terms for PPE.

For a more accurate VAA in modern industrial application,
the TBL, as though being effective in a preliminary analy-
sis, can not fully represent the flow fields and resulting wall
pressure fluctuation on the surfaces with a change of curva-
tures (e.g., fore and aft bodies in aerial and underwater vehi-
cles). For instance, via a wall-modeled large eddy simulation
(LES) of flows around a DARPA SUBOFF model, Shi et al.
[33] revealed that the flow separation is brought in due to the
change of geometry at the stern of the submarine. Li and
Yang [34] numerically studied the flow structure of the wake
after a propeller/turbine and concluded that the vortex shed-
ding from the blade and tip has a significant impact on the
wall pressure. Consequently, to obtain the wall pressure fluc-
tuation from a realistic application, the computational fluid
dynamics (CFD) tools emerge to be involved as the source
of excitation of industrial-strength VAAs. Through accessi-
ble high-performance computing facilities, researchers and
engineers can simulate the flow fields in decent resolutions
that preserve the stochastic nature of wall pressure fluctua-
tion in space and time without any assumptions on the flow
fields. Yao and Davidson [35] carried out a VAA on the in-
terior sound of an automobile vehicle cabin excited by flows
around a side mirror in an idealized setting. The exterior ex-
citation in this work, which is the wall pressure fluctuation
applied to the glass windows, is obtained from CFD simu-
lations. Furthermore, they also compared the vibroacoustic
responses resulting from different CFD methods (i.e., LES
and hybrid RANS-LES) [35], where the interior sound in-

duced by hybrid RANS-LES with coarser grids is reported
to be lower in the high-frequency range, as compared to that
induced by LES results with a more refined resolution. This
difference indicates the potential error in VAA incurred when
it is fed with the CFD simulated excitation, and the present
work aims to set a ground for the discussion regarding this
issue. In other words, we wish to figure out whether the error
in the CFD method would be picked up or even amplified by
the following VAA, and if there is any, what is the mechanism
and how to eliminate such errors in vibroacoustic responses?

Direct numerical simulations (DNS) avoid the modeling
error by resolving all the spatio-temporal scales up to the
Kolmogorov length scale and minimize the truncation error
through the high-order interpolation basis functions. Con-
sequently, the computational cost of DNS is estimated by
Yang and Griffin [36] as being proportional to Re2.91, which
prevents it from being used in any industrial-strength prob-
lems. Only large eddies that contribute to the dominating
momentum and energy transfers are resolved in the LES
method, whereas the effects of small-scale eddies on large-
scale eddies are modeled in phenomenological or structural
approaches [37]. To further reduce the computational cost
in LES, wall-modeling techniques [38] are proposed to relax
the grid resolution requirement in the near-wall region, which
leads to the so-called wall-model LES (WMLES) [39]. Hy-
brid RANS/LES methods can also be found in the literature,
where the RANS formulation is facilitated to model the near-
wall flows while the core flows are solved by the LES formu-
lation. The LES method and its derivatives that involve wall-
modeling techniques have been successfully utilized in many
applications to predict the mean profiles (e.g., drag and lift
coefficients) and low-order statistics (e.g., root-mean-square
(RMS) of velocity and pressure fluctuations). However, as
systematically delineated by He and his coworkers [40], the
energy-balanced-based sub-grid-scale (SGS) models could
lead to the incorrect prediction of space-time correlation of
resolved motions in LES, which affects the accuracy of pre-
diction on turbulence-generated sound. In particle-laden tur-
bulent flows, Zhou et al. [41] reported that the inaccurate La-
grangian time correlations of LES prediction yield incorrect
statistics of particle motion. In the studies of flow-induced vi-
broacoustic responses, to the authors’ best knowledge, there
are few discussions in the literature on the application of LES
to compute surface pressure fluctuations as the sources of
aero-vibro-acoustics (AVA). Aiming at this issue, we design a
model problem with turbulent surface pressures and carry out
VAAs on the excitations from DNS, filtered DNS (FDNS),
and LES to study the applicability of LES to the AVA.

In this paper, we will develop a framework for the appli-
cation of LES to AVA and evaluate the performance of LES
in terms of vibroacoustic responses. The overall setting of
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a fluid-structure-acoustic coupled problem is illustrated in
Sect. 2. The numerical approaches that we applied for LES
and VAA are described in Sects. 3 and 4 , respectively, where
both qualitative and quantitative results are also presented.
In Sect. 5, we compare the results on the vibroacoustic re-
sponses obtained from LES, DNS, and FDNS methods. Con-
clusions and some remarks are drawn in the last section.

2. Problem description

This work is aimed to investigate the potential errors in
the VAA that is introduced by CFD-simulated excitations.
Therefore, we design a model problem of a simplified win-
dowed vehicle cabin with an ideal turbulent excitation. Fig-
ure 1 presents a fluid-structure system that consists of a
clamped elastic plate (i.e., the model window) backed by
an enclosed cavity (i.e., the vehicle cabin) filled with com-
pressible fluids. As compared with other options like simply-
supported or free boundary conditions, the clamped edges are
more realistic for windows in aviation, automobile, and un-
derwater vehicles for the purpose of airtightness. Ideally, a
TBL would be a more realistic generator of excitation for a
model vehicle cabin. However, the computation cost is not
quite economical due to the non-confined boundary condi-
tions and laminar and transitional regions in the domain. As
a substitute, the turbulent channel flow serves as a more com-
putationally efficient excitation generator due to its confined
domain. Also, Monty et al. [42] compared the streamwise ve-
locity measurements from the TBL and the turbulent channel
flow with matched Reynolds numbers and concluded that at
least the mean statistics are akin to each other. Here, we put a
channel atop the plate-cavity system as shown in Fig. 1. The
plate-cavity system is excited by the wall pressure fluctuation
of a turbulent channel flow between two infinite planes.

In Fig. 1, Lx, Ly, and Lz denote the dimensions of the com-
putational domain in streamwise, wall-normal, and spanwise
directions, respectively. The superscripts (•)F, (•)P, and (•)C

refer to the various domains of the channel, the plate, and the
cavity. The selection of the domain dimension in this study
satisfies two criteria: (1) the flow motion that is sensible to

Figure 1 Schematic diagram of a plate-cavity system excited by the wall
pressure of a turbulent channel flow

the plate needs to be admissible to the computational domain
of the channel flow, and (2) the flow-induced vibration of the
plate should be negligible as compared to the characteristic
length scale of the turbulent channel flow. The former crite-
rion ensures that the excitement for the vibroacoustic analy-
sis is fully resolved even at the low-wavenumber range. In
other words, the wavelength of the mode shape of the vibroa-
coustic system corresponding to the lowest natural frequency
ought to be less than the dimensions of the channel. The lat-
ter one ensures the feasibility of a one-way coupling strategy
[43] between the turbulent channel flow and the plate-cavity
system. More specifically, as long as this criterion is met, we
can ignore the influence of the plate lateral displacement on
the fluid motion in the channel flow. The RMS of the plate’s
wall-normal displacement obtained in Sect. 4 is much less
than 1 unit in the viscous length scale, which justifies the
adopted one-way coupling strategy between CFD and VAA.

Given the nature of the one-way coupling between the
turbulent channel flow and the plate-cavity system, we first
carry out CFD simulations with various numerical methods
(i.e., DNS, FDNS, and LES) to obtain the pressure history at
the wall p(x, z, t). Next, we attain the wall pressure fluctu-
ation p′(x, z, t) by eliminating the ensemble-averaged mean
pressure, and then convert the pressure fluctuation from the
time domain to the frequency domain p̂′(x, z, t) with appro-
priate segmentation and processing to generate sample exci-
tation. After the CFD simulations and signal processing, we
import the processed wall pressure fluctuations to VAA and
extract the vibroacoustic responses, including the lateral dis-
placement w on the plate and the interior sound pin within the
cavity.

3. Computational fluid dynamics: turbulent
channel flow

This section introduces the numerical procedures to com-
pute the wall pressure fluctuations of a turbulent channel flow
through various methods with different resolutions and mod-
eling strategies. The governing equations of incompressible
Newtonian flows are

∂tu + u · ∇u = −∇p + Re−1
b ∇2u − dP

dx
ê1, (1)

∇ · u = 0, (2)

where Eqs. (1) and (2) are the conservation laws of momen-
tum and mass, respectively; and dP/dx is a constant pres-
sure gradient acting streamwisely that powers the flow. As
shown in Fig. 1, the computational domain ΩF of the turbu-
lent channel flow is a rectangular box. The channel width LF

y

is set as 2δ, while the streamwise and spanwise dimensions
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are LF
x = 4πδ and LF

z = 2πδ, respectively. The computa-
tional domain is periodic in streamwise and spanwise direc-
tions, while no-slip and no-penetration boundary conditions,
namely u = 0, are applied on top and bottom planes (i.e.,
Γ = ∂Ω = {x|y = ±δ}). To analyze the source of error of
LES in wall pressure, Li et al. [44] conducted a filter process
on the DNS results to segregate the spatial truncation error
and modeling error. Following along this line of thought, we
first introduce the numerical method for DNS, and the FDNS
results are then obtained from a filtering process. Next, we
present the turbulence models that are applied in the LES. Fi-
nally, before moving into the sections regarding the VAA, we
preliminarily compare the CFD results via different methods.

3.1 DNS

By substituting the identity u · ∇u = −u ×ω + 1
2∇(u · u) into

Eq. (1), we attain the so-called rotational form of the Navier-
Stokes equation as follows:

∂tu − u × ω = −∇Π + Re−1
b ∇2u − dP

dx
ê1, (3)

where ω is the vorticity ω = ∇×u and Π is the total pressure
or Bernoulli pressure defined as Π = p+ 1

2 u · u. Layton et al.
[45] suggested that the rotational form has superior features
in stability and conservation. The velocity and pressure fields
are expanded via Fourier series in streamwise and spanwise
directions, while they are expanded via Chebyshev series in
wall-normal direction to accommodate for the wall bound-
ary conditions. This spatial interpolation for a general field
ϕ(x, y, z; t) owns the following explicit form:

ϕ(x, y, z; t) =

N1
2 −1∑

m=− N1
2

N3
2 −1∑

n=− N3
2

N2∑
p=0

ϕ̂(m, n, p; t)

· exp
[
i
(

2πm
LF

x
x +

2πn
LF

z
z
)]

Tp(y), (4)

where N1, N2, and N3 are the total number of collocation
points in streamwise, wall-normal, and spanwise directions,
respectively; Tp(y) is the p-th order Chebyshev polynomial.
The spatial derivatives of the discretized field can be eas-
ily derived by the attributes of Fourier and Chebyshev se-
ries. It is worth noticing that the nonlinear convection term
u×ω is evaluated in physical space rather than spectral space
to avoid the convolution operations, which yields a pseudo-
spectral method (de-aliased by the 3/2 rule). A stiffly stable
scheme with third-order accuracy [46] is employed for time
integration. The in-house pseudo-spectral solver for the in-
compressible flows is extensively validated through the pub-
lished DNS results on turbulent channel flow across a wide

range of settings of physics (e.g., different Reynolds num-
bers [47] and rotation numbers [48] for the interested read-
ers). In particular, we prescribe the target flux integrated
within a wall-normal plane in the turbulent channel flow by
tuning the additional streamwise pressure gradient at every
time-step. Consequently, the bulk Reynolds number is fixed
as Reb = 10150, and the resulting friction Reynolds number
derived from the ensemble-averaged flow fields is approxi-
mately Reτ = 550. The number of collocation points and
the size of grid cells in physical space in each direction are
presented in Table 1.

3.2 FDNS

The filtered velocity fields ũ is obtained via the truncation of
the Fourier-Chebyshev series, which are given by

ũ(x, y, z; t) =

Ñ1
2 −1∑

m=− Ñ1
2

Ñ3
2 −1∑

n=− Ñ3
2

Ñ2∑
p=0

û(m, n, p; t)

· exp
[
i
(

2πm
LF

x
x +

2πn
LF

z
z
)]

Tp(y), (5)

where Ñ(•) denotes the number of collocation points after
spectral truncation. The spectral resolution and grid size of
the FDNS are also listed in Table 1. Once the instantaneous
filtered velocity field is obtained, we substitute them into the
PPE for pressure field:

∇2 p̃ = ∇ũ : ∇ũ. (6)

The boundary condition and divergence-free constraint ap-
plied on velocity field are adopted in PPE in the form of the
Neumann boundary condition, namely ∇p̃ = Re−1

b ũ2,yy at the
top and bottom plates of channel flow. We wish to point out
that the filtered pressure field is resolved from the PPE in
Eq. (6) with the source term constructed from the filtered ve-
locity field rather than the direct truncation of pressure field.
The truncated pressure field is actually the solution from the
PPE driven by the filtered source term ˜∇u : ∇u, which is not
equivalent to the source ∇ũ : ∇ũ in Eq. (6). As we have
mentioned earlier, the FDNS results are used to isolate the
truncation error and set an intermediate solution serving as
the “ideal” LES results. For a standard LES method, it is
impossible to retain the filtered PPE source term due to the
lack of information

Table 1 Number of collocation points and grid resolution of DNS, FDNS
and LES for turbulent channel flows at Reτ = 550

Type Reτ Nx Ny ∆x+ ∆y+ ∆z+

DNS 555.16 576 257 12 0.0414 − 6.75 6

FDNS 556.94 96 65 72 0.662 − 26.99 36

LES 582.28 96 65 72 0.662 − 26.99 36
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on the SGS velocity field. Therefore, we construct the filtered
pressure field from filtered velocity field.

3.3 LES

The governing equations for LES of incompressible flows in
the rotational form are given by

∂tū − ū × ω̄ = −∇Π̄ + Re−1
b ∇2ū − ∇ · τ − dP

dx
ê1, (7)

∇ · ū = 0, (8)

where (•) indicates the spatially filtered field in the context of
LES and τ = u ⊗ u − ū ⊗ ū represents the SGS stresses. The
dynamic Smagorinsky model [49-51] is used in the present
work: the deviatoric part of the SGS stress τd is modeled by
the eddy viscosity hypothesis as τd = −2νtS̄, whereas the
volumetric part is absorbed by the pressure p (or total pres-
sure Π). The eddy viscosity is determined by νt = CS ∆̄

2S̄ ,
where S̄ =

√
2tr(S̄S̄T) is the resolved rate-of-strain, ∆̄ is the

local filter length scale, and CS is the so-called Smagorinksy
coefficient. The dynamic scheme is used to determine the
Smagorinsky coefficient, which yields

CS =

⟨
tr(Ld MT)

⟩
⟨
tr(MMT)

⟩ , (9)

where L = ¯̃u · ∇ū − ˜̄u · ∇ ˜̄u and M = 2∆̄2 ˜̄S S̄ − 2∆̃2 ˜̄S ˜̄S.
In particular, the second filter (̃•) takes the same form as

the first filter (•) but with twice of the filter length scale. The
SGS stress τd is calculated in physical space and transformed
to spectral forms used in Eq. (7). The computation details in
the LES are listed in Table 1.

3.4 Summary of numerical results

We carry out the comparison amongst the preliminary nu-
merical results via DNS, FDNS, and LES in this section. For
clarity, u and p denote the velocity and pressure fields re-
solved via DNS solver, p̃ denotes the pressure field from the
PPE solver with FDNS velocity ũ as the source, and ū and p̄
denote the velocity and pressure fields from the LES solver.
Figure 2 presents the instantaneous velocity fields of DNS
and FDNS results at the same time-spot. In Fig. 2, the trans-
parency of the color that linearly depends on the magnitude
of the velocity exhibit the details of flow structures around
the bottom boundary layer, while the transparency is turned
off on the left and back surface to illustrate the velocity field
on cross sections. As we expected, the FDNS velocity field,
though it replicates the general flow structures of the DNS
results at the same time-spot, inevitably misses the small-
scale structures due to spatial truncation. To quantitatively

validate CFD results, we present the ensemble-averaged sta-
tistical profiles along the wall-normal direction in Fig. 3. The
ensemble averaging is carried out on the x-z plane and time.
In Fig. 3a, the mean streamwise velocity profile of FDNS
overlaps with the DNS profile, while the LES result slightly
deviates from that of DNS. Figure 3b and c shows the profiles
of SGS stress components, where the statistics obtained from
both FDNS and LES approaches closely match with DNS re-
sults. However, unlike the mean velocity file in Fig. 3a, the
profiles of SGS components obtained in the LES show a con-
sistent trend of being higher than that in the FDNS. Also, we
present the profile of pressure fluctuation in Fig. 3d. Though
the statistics related to velocity components illustrate accu-
rate prediction of velocity fields in LES, we observe the de-
viation in the pressure fluctuations of LES and FDNS from
the DNS results. In particular, the differences of RMS of
pressure fluctuation on the wall amongst DNS, FDNS, and
LES results are nontrivial in Fig. 3d, and we will study the
effect of errors in the CFD methods on the VAAs.

4. Vibroacoustic analysis: a plate-cavity system

4.1 Numerical methods in VAA

The vibroacoustic analysis often involves a coupled fluid-
structure system. In our model problem, the structure domain
ΩP is a thin elastic plate, and the fluid domain ΩC is an en-
closed cavity. As shown in Fig. 1, the plate is firmly attached
to the cavity, which results in the coupled system. We delib-
erately choose the bounded acoustic domain to avoid mod-
eling infinite or semi-infinite media. This plate-cavity sys-
tem is also a widely-considered test case in Refs. [35, 52] as
a simplified analog of a typical windowed cabin. Some re-
cent studies [43] discretized a thin elastic plate with solid el-
ements. However, higher-order elements are required to pre-
vent the so-called shear-locking phenomenon, and the regu-
larity of the elements increases the number of elements due
to the small thickness. Therefore, we model the thin elastic
plate as an isotropic Kirchhoff-Love plate, which largely re-
duces the number of degree-of-freedoms (DOFs), while the
accuracy of VAAs is not compensated. The sound propa-
gation within the cavity is modeled as a linearized acoustic
wave equation. The governing system is

ρP ∂
2w
∂t2 + rP ∂w

∂t
+ D∇4w = p′(x, z, t) − pC in ΩP, (10)

1
ρCC2

A

∂2 pC

∂t2 −
1
ρC∇

2 pC = 0 in ΩC, (11)

∇pC · n = −ρC ∂
2w
∂t2 on ΓI = Ω

P ∩ ΩC, (12)
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a b

Figure 2 Visualization of instantaneous flow field: volume-rendered velocity magnitude near the bottom, and velocity distribution at the left and back planes.
a DNS; b FDNS.
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Figure 3 Ensemble-averaged statistics in wall units of turbulent channel flow with DNS, FDNS, and LES approaches. a Mean streamwise velocity: U+; b
Reynolds stress diagonal components: u+rms and v+rms; c Reynolds stress off-diagonal components: ⟨u+v+⟩; d pressure fluctuation: p+rms.

where ρ is the density; D = h3E/[12(1 − µ2)] is the bending
stiffness, which is determined by Young’s modulus E, Pois-
son ratio ν and the thickness of the plate h; rP is the damping
coefficient of the plate; CA is the acoustic speed of the media
within the cavity; w is the lateral displacement (normal to the
x-z plane) and pC is the interior pressure within the cavity;
and ∇4 is the biharmonic operator and ∇2 is the Laplace oper-
ator. Equation (10) is the governing equation of a Kirchhoff-
Love plate ΩP, where the source terms on the right-hand
side (RHS) include the excitation p′(x, y, t) from the turbu-

lent channel flow and the reaction from the backed cavity pC.
Equation (11) is the acoustic wave equation that governs the
acoustic propagation in the cavity ΩC. The boundary condi-
tions of the air cavity are rigid walls (∇pC · n = 0) except for
the top surface where the balance of the traction Eq. (12) is
applied.

We use the weighted residual method to derive the
Galekrin weak form corresponding to the coupled system
defined in Eqs. (10)-(12). Standard Lagrange shape func-
tions are employed to discretize the weak form and the bal-
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ance of traction, namely Eq. (12), on the coupling surface
ΓI between the plate and the cavity is absorbed by applying
the divergence theorem on the acoustic wave equation (11),
which leads to the coupling terms. The matrix form of the
discretized weak form is as follows:

KPW + DP∂tW + MP∂2
t2W + CPC PC = P′, (13)

CT
PC∂

2
t2W + KC PC + DC∂t PC + MC∂2

t2 PC = 0, (14)

where W is the spatially discretized lateral displacement vec-
tor and PC is the spatially discretized interior pressure field;
K, D and M are the stiffness, damping and mass matrices,
respectively; and C is the coupling matrix derived from Eq.
(12). Next, we carry out the Fourier transform of the un-
known fields W and PC to convert the linear system defined
in Eqs. (13) and (14) from the time domain to frequency do-
main, that is

KP + iωDP

−ω2 MP

 CPC

ω2CT
PC

KC + iωDC

−ω2 MC




Ŵ

P̂C

 =
P̂′

0

 , (15)

where Ŵ(x, z, ω) represents the lateral displacement of the
plate in the spectral space and P̂C(x, y, z, ω) represents the
interior sound of the cavity.

The solution process is conducted in Actran [53]—a FEM-
based software for VAAs, where the assembled linear sys-
tem is solved by MUMPS [54]. We wish to clarify that,
although there are other more efficient discretization strate-
gies for regular domains like the proposed model problem,
the computational VAA method described here is suitable
for general problems with complex geometries and material
properties, which serves a better purpose for analyzing the
error introduced by CFD simulations. The discrete vibroa-
coustic system defined in Eq. (15) is solved across all inter-
ested frequencies, and, in each resolved frequency, we obtain
the spatially-distributed vibroacoustic responses of the plate
ŵ(x, z, f ) and the cavity for each frequency p̂C(x, y, z, f ). Two
major ingredients of the solution process, including the trans-
formation of the exterior excitation from the time domain
to the frequency domain and the computation of the fluid-
structural coupled system, are validated in Appendices A and
B, respectively.

4.2 Numerical settings in VAA

Table 2 lists the material parameters of the plate and the fluid
within the cavity, which are normalized to the characteristic
scales of the turbulent channel flow, including half channel

Table 2 Non-dimensionalized material parameters of the plate-cavity sys-
tem

Young’s modulus E/ρFu2
b 6 × 109

Poisson ratio µ 0.23

Plate density ρP/ρF 2500

Acoustic speed in cavity CA/ub 30

Cavity fluid density ρC/ρF 1

width δ, flow density ρF, and bulk velocity ub. The dimen-
sions of the plate and the cavity are listed in Table 3. The
lengths of the plate-cavity system in streamwise and span-
wise directions are exactly a quarter of those of the turbu-
lent channel flow, and the depth of the cavity is the same
as its width. Naturally, the mesh resolution of the plate is
bounded by that of the turbulent channel flow. We further
discretize the domain of the cavity with a coarser mesh for
the VAA with DNS inputs to reduce the computational cost,
since the acoustic speed is usually much slower than the elas-
tic bending waves on the plate. The wall pressure fluctuation
is sampled from 40000 steps in every 20 time-steps, which
means that the total duration of sampling time is 40. There-
fore, the frequency resolution of the sampled pressure fluctu-
ation is 0.025 Hz, and the highest resolvable frequency is 25
Hz. The wavenumber kb of the plate bending wave given by
Kirchhoff-Love plate theory is as follows:

kb( f ) =
[
12ρ(1 − µ2)

Eh2

] 1
4

(2π f )
1
2 . (16)

At 25 Hz (i.e., the highest resolvable frequency), the wave-
length of the bending wave is approximately 0.7, which is
still being interpolated by nearly six elements in the stream-
wise direction at the resolutions of the case with FDNS/LES
inputs. In other words, the mesh resolution that we applied
for the computational VAA can fully represent the inward
propagation and radiation from flow-induced vibration to the
plate-cavity system. All four edges around the plate are
clamped edges, which prevents any lateral displacements and
rotations at the boundary. This setting is consistent with most
of plate-cavity systems considered in Refs. [35, 52].

4.3 Modal extraction of the plate and the cavity

Before moving into the VAA, we extract the characteristic
modes of the plate and the cavity to estimate the potential
resonant peaks in vibroacoustic analysis. By neglecting the
damping effect (i.e., DP = 0 and DC = 0) and the coupling
components (CPC) arising from the compatibility condition
in Eq. (15), the left-hand side (LHS) matrix in Eq. (15) be-
comes a decoupled discrete eigenvalue problems for the plate

https://www.sciengine.com/doi/10.1007/s10409-022-22019-8
https://www.sciengine.com/doi/10.1007/s10409-022-22019-8
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Table 3 Mesh resolutions in vibroacoustic analysis for the plate-cavity
system

Type LP
x (LC

x ) LP
z (LC

z ) LP
y NP

x (Nc
x) NP

z (NC
z )

DNS π π/2 π/2 144 (72) 72 (36)

FDNS/LES π π/2 π/2 24 (12) 12 (9)

and the cavity separately. Table 4 presents the first ten natural
frequencies (i.e., eigenvalues) extracted from the eigenvalue
problem for both plate and cavity. The first natural frequency
of the cavity is higher than that of the plate. Thus we would
expect the plate is more responsive at lower frequencies. We
visualize the modal displacement of the plate at the first 6
natural frequencies in Fig. 4a-f to depict the characteristic
deformation of the plate. In particular, the first natural mode
shows approximately a half wave in both streamwise and
spanwise directions in Fig. 4a. The lengths of the channel
are four times of the plate in both streamwise and spanwise
directions (i.e., LF

x = 4LP
x and LF

z = 4LP
z ). In other words, the

wavelengths of the mode shape corresponding to plate’s first
natural frequency are only the half of the lengths of the chan-
nel, which is fully resolvable in our numerical setting. The
mode shapes only exhibit the spanwise deformation after the
fourth natural mode as shown in Fig. 4e and f. Also, the cav-
ity mode shapes of the first six natural frequencies are also
visualized by their iso-contours in Fig. 4g-l. Since the cavity
is a regular three-dimensional (3D) geometry with multiple
axes of symmetries, Fig. 4h-j corresponds to the same natu-

ral frequency. So are the cases in Fig. 4k and l.

4.4 Summary of vibroacoustic responses

Once the wall pressure fluctuation of the turbulent channel
flow is processed, we import the wall pressure in space-
frequency domain (i.e., p̂′(x, z, f )) into the RHS of the dis-
crete vibroacoustic system in Eq. (15) and solve for the lateral
displacement ŵ(x, z, f ) and interior pressure, namely, sound
within the cavity p̂C(x, y, z, f ). For ensemble-averaging, we
take different areas within the bottom plane of the turbu-
lent channel as the realizations of the excitation of the plate-
cavity system. Given LF

x = 4LP
x and LF

z = 4LP
z , 16 non-

overlapping realizations are employed, and their ensemble
averaging helps reduce the fluctuation in the vibroacoustic re-
sponses. The ensemble-averaged frequency spectra of wall-
normal displacement w on the plate and interior noise (i.e.,
pressure p) within the cavity are denoted with ϕww and ϕpp,
respectively.

We first present the vibroacoustic responses of the DNS
case. The spatial distributions of the lateral displacement on
the plate at various frequencies are shown in Fig. 5. The vi-
broacoustic responses on the plate follow the pattern of the
closest characteristic natural modes at each frequency. For
example, the spatial distribution of the imaginary part of the
lateral displacement at 7.5 Hz depicted in Fig. 5e follows the
plate mode shape of the fourth natural frequency shown in

Table 4 The first ten characteristic modes of plate and cavity

Mode# 1 2 3 4 5 6 7 8 9 10

Plate 2.914 3.773 5.308 7.511 7.592 8.431 9.876 10.35 11.95 13.81

Cavity 4.775 9.552 9.552 9.552 10.68 10.68 13.51 13.51 14.328 14.334

a b c d

e f g h

i j k l

Figure 4 Vibroacoustic modes at first 6 natural frequencies. Vibroacoustic modes at first 6 natural frequencies: plate (a-f) and cavity (g-l).
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Fig. 4d, while the real part in Fig. 5b follows the pattern of
the fifth plate mode (see Fig. 4e). Both fourth and fifth nat-
ural frequencies of the plate are around 7.5 Hz, where there
is no cavity mode nearby. Figure 6 shows the spatial distri-
bution of the interior pressure within the cavity at the same
three frequencies as Fig. 5. The interior pressure distribution
on the top surface of the cavity follows the distribution of the
lateral displacement at the plate in both real and imaginary
parts due to the enforcement of the traction-balance condi-
tion in Eq. (12). The interior distribution, particularly the
regions away from the top surface, exhibits the characteristic
modes of the cavity itself, as shown in Fig. 6b and e at 7.5
Hz and Fig. 6c and f at 15 Hz.

Following the illustration of the spatial distribution of the
vibroacoustic responses, we then present them in frequency
spectra. Regarding the plate’s responses, we pick the cen-
ter of the plate and present the frequency spectra of lateral
displacement in Fig. 7a, where all cases with the excitation
from DNS, FDNS, and LES are reported. All the peaks in the
spectra locate around the natural frequencies of the plate or
the cavity as marked in Fig. 7a. The structural response of the
DNS excitement in the high-frequency range (i.e., f > 5 Hz)
is uniformly larger than that of the FDNS or LES, while the
frequency spectra of FDNS and LES in Fig. 7a indicate larger
intensity of vibration than that of DNS in the low-frequency
range (i.e., f < 5Hz). In particular, at the first local peak of
the plate-center displacement spectra, which corresponds to
plate’s first natural frequency (see Fig. 4), we observe a much
larger peak in the spectra of FDNS and LES as compared to
the peak of DNS. The difference is even approaching 15 dB.

To further identify the differences between DNS, FDNS,
and LES, we present the pressure spectra from three loca-
tions in the cavity domain (i.e., near a corner away from the
plate [π/18,π/18,π/18], at the center [π/2,π/4,π/4], and
near a corner next to the plate [17π/18, 4π/9, 4π/9]) in Fig.
7b, c, and d. Similarly, we observe the high acoustic response
of FDNS and LES in the low-frequency range. These devi-
ations suggest that either the SGS model of LES or the un-
resolved scales in FDNS result in a nontrivial error in the
vibroacoustic analysis.

5. Effects of the LES wall pressures on vibra-
tion responses

This section is devoted to investigating how the wall pres-
sures obtained from FDNS and LES affect the vibration re-
sponse of the plate-cavity system. In the case of hydrody-
namically fast elastic bending waves, the vibration responses
are mainly determined by the sub-convection contents of wall

pressures at small frequencies. In fact, the LES overpredicts
the pressure spectra at low frequencies and underpredicts the
ones at high frequencies. Therefore, the LES results on vi-
bration responses are relatively larger than the DNS results
at low frequencies and significantly smaller than the DNS re-
sults at high frequencies. The basic conceptions and prin-
ciples of flow-induced vibrations are well summarized by
Blake [1].

5.1 Fluid-structural coupling: a 1D model problem

The setting of the beam vibration excited by the flows over
a TBL is shown in Fig. 8, where a simply supported slen-
der beam with length l is excited by the wall pressure p(x, t)
of a TBL with a free stream velocity U0. The cross correla-
tion of the beam lateral deformation w(x, t) in space and time
is denoted as Φww(x1, ω1; x2, ω2), and that of the wall pres-
sure p(x, t) is denoted as Φpp(y1, ω1; y2, ω2). In the context of
TBL, due to the flow homogeneity in time, the cross corre-
lation of frequency modes depends on the space separations.
With the stationary hypothesis, the cross correlation of beam
deformation and TBL wall pressure holds the following rela-
tion:

Φww(x1, x2;ω) ="
Φpp(y1, y2;ω)H(x1, y1;ω)H∗(x2, y2;ω)dy1dy2, (17)

where H(x, y, ω) is the structural admittance [1] that repre-
sents the beam response at one location x under a Dirac delta
excitation (i.e., an impulse) at another location y, which is
essentially the Green’s function of the governing equation of
Euler-Bernoulli beam theory in the frequency domain. It is
worth noticing that the Euler-Bernoulli beam is inherently
the 1D version of a Kirchhoff-Love plate that is adopted in
the aforementioned fluid-structure-acoustic coupling prob-
lem. In modal analysis, the structural admittance is decom-
posed into the combination of a series of modal admittance
with corresponding shape functions as follows:

H(x, y;ω) =
∞∑
j=1

N j(x)N j(y)h j(ω), (18)

N j(x) = sin
(

jπ
x
l

)
, (19)

h j(ω) =
2
l

[
EI

( jπ
l

)4

− ω2m + icω
]−1

, (20)

where h j(ω) and N j(x) are the modal admittance and modal
shape function of jth mode, respectively. The modal decom-
position shown in Eq. (19) is determined by solving a contin-
uous eigenvalue problem of the free vibration of the simply
supported beam [2]. Specifically, due to the sinusoidal wave-
form of the shape functions, the wavenumber at jth mode
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a b c

d e f

Figure 5 Lateral displacement of the plate in the frequency domain (DNS): 3Hz (a and d), 7.5Hz (b and e), and 15Hz (c and f).

a b c

d e f

Figure 6 Interior pressure of the cavity in the frequency domain (DNS). a 3 Hz: real part; b 7.5 Hz: real part; c 15.0 Hz: real part; d 3 Hz: imaginary part; e
7.5 Hz: imaginary part; f 15.0 Hz: imaginary part.

is k = j/2. To better illustrate the modal admittance h j(ω),
its distribution in the wavenumber-frequency domain is plot-
ted in Fig. 9. The 3D-rendered modal admittance in Fig. 9
in wavenumber-frequency space exhibits a single peak at the
origin and two ridges with parabolic distribution.

The spatial cross correlation of the TBL wall pressure
at frequency Φpp(y1, y2;ω) in Eq. (17) consists of a model
single-point frequency spectra Ap and a spatial cross correla-
tion Ψpp, viz.

Φpp(y1, y2;ω) = Ap(ω)Ψpp(y1 − y2;ω). (21)

We employ the Skudrzyk and Haddle model [55] for Ap—a
piecewise linear function that depends on the frequency only.
Ψpp takes the form of the celebrated Corcos model [26] for
the brevity of the analytical expressions:

Ap(ω) =

A, ω ≤ 1.932Uc/δ
∗,

2A(ωδ∗/Uc)−3, ω > 1.932Uc/δ
∗,

(22)

Ψpp(y1 − y2;ω) = exp
[
−α ω

Uc
|y1 − y2|

]
exp

[
i
ω

Uc
(y1 − y2)

]
,

(23)

where A and α are model coefficients, Uc = 0.65U0 is the
convection velocity, and δ∗ is the displacement thickness of
the boundary layer. The corresponding space-time energy
spectra to the Corcos model in Eq. (23) is attained via Fourier
transform as

Ψpp(k, ω) =
1
π

αωUc

(1 + α)2ω2 − 2kωUc + k2U2
c

=
1
π

αω/Uc

(k − ω/Uc)2 + (αω/Uc)2 , (24)

where k is the spatial wavenumber. By observing the denom-
inator in Eq. (24), the peak at a given frequency ω locates in
the wavenumber k = ω/Uc, as shown in Fig. 10.

By substituting the structural admittance defined in Eq.
(18) and wall pressure cross correlation Eq. (21) into Eq.
(17), the cross correlation of the beam deformation becomes,
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Figure 7 Frequency spectra of vibroacoustic responses in the plate-cavity system. a Plate displacement at the center; b cavity sound near the top corner; c
cavity sound at the center of the cavitys; d cavity sound near the bottom corner.

Figure 8 Schematic diagram of the 1D model problem
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Figure 9 Modal admittance h j(ω) in the wavenumber-frequency space: a
3D representation (mesh frame) and 2D contours (colored).
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representation (mesh frame) and 2D contours (colored)

Φww(x1, x2;ω)

=

∞∑
j1=1

∞∑
j2=1

N j1 (x1)N j2 (x2)h j1 (ω)h∗j2 (ω)I j1 j2 (ω), (25)

where I j1 j2 is the generalized force [2] applied on the modes
j1 and j2, which is obtained by integration of the wall pres-
sure cross correlation Φpp multiplied by the modal shape
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functions N j1 and N j2 over the structural domain.

I j1 j2 (ω) =
∫ L

0

∫ L

0
Φpp(y1, y2;ω)N j1 (y1)N j2 (y2)dy1dy2. (26)

The modal generalized force is further applied on the modal
structural admittance in Eq. (25).

It is critical to elucidate the contributions from the struc-
tural admittance h j(ω) and the space-time energy spectra of
wall pressure Ψpp(k, ω) to the spatial cross correlation of the
lateral displacement Φww. In other words, we need to fig-
ure out how h j(ω) and Ψpp(k, ω) affect Φww, following the
derived analytical expression in Eqs. (25) and (26).

In a given wavenumber k (i.e., the mode number j = 2k),
the magnitude of h j(ω) peaks at the corresponding resonant
frequency ωr(k) ≡ vbk, which is determined by the denomi-
nator in Eq. (20). vb =

√
EI/m(4kπ2/l2) is the phase veloc-

ity of the beam bending wave, which linearly depends on the
wavenumber k. As shown in Fig. 9, the modal admittance pri-
marily affects the structural responses Φww in a narrow band
around the resonant frequency ωr.

The spatial cross correlation of the wall pressure Φpp con-
tributes to the structural responses via the generalized force
I j1 j2 (ω). In a given wavenumber k, the peak of the space-time
energy spectra Φpp(k, ω) locates at the frequency ω = Uck,
where Uc is the convection velocity. In the wavenumber-
frequency domain, Φpp(k, ω) shows a mountain-like distri-
bution and its ridge rests in the line ω = Uck with a rapid
decay rate on both sides, as illustrated in Fig. 10.

From another perspective, namely, fixing the frequency ω,
the distinct locations of peaks in modal admittance of the
beam and energy spectra of TBL wall pressure can be classi-
fied into three categories via the characteristic velocities:

(1) Hydrodynamic coincidence (i.e., vb ≈ Uc) [1]: the
convection velocity in the TBL is approximately around the
bending wave phase velocity in the beam. Consequently, the
peak of modal admittance rests in the wavenumber that cor-
responds to the peak of energy spectra. In this scenario, the
flow-induced vibration of the beam is substantial since the
energy transfer between fluids and structures is extremely ef-
ficient.

(2) Hydrodynamically slow (i.e., vb < Uc): the bending
wave propagates slower as compared to the convection in the
turbulent boundary layer. The peak of modal admittance sits
in a higher wavenumber than that of the wall pressure energy
spectra.

(3) Hydrodynamically fast (i.e., vb > Uc): the bend-
ing wave phase velocity is larger than the convection speed,
which falls into the scope of this work regarding a stiff plate
excited by a low-Mach number flow. In this case, the peak
wavenumber of modal admittance is much smaller than that
of wall pressure energy spectra, as shown in Fig. 11. The

energy spectra Φpp(k, ω) in the convection peak and super-
convective zone miss the resonant peak of the modal admit-
tance. In contrast, in the sub-convective zone, especially near
k = ω/vb, the wall pressure energy spectra resonate with
the mode. Therefore, the sub-convective zone of the wall
pressure is the primary source of energy input in the fluid-
structural coupling.

To further validate this observation, we adjust the convec-
tion peak and super-convective region in the wall pressure
spectra by tweaking the decay rate α in Eq. (24). As shown
in Fig. 12, the spatial energy spectra of wall pressure at a
particular frequency mode show distinct distributions in the
convection peak and super-convective region with the differ-
ent decay rates α. The beam responses excited by the mod-
eled TBL with different decay rates are obtained from the
Eqs. (17) and (26), of which the analytical expression is pre-
sented in Appendix C. Following the experimental settings
of an elastic plate excited by a low-Mach number flow sug-
gested by Strawderman and Brand [28], the frequency spectra
of lateral deformations at the center of the beam in two cases,
however, remain almost identical as shown in Fig. 13.
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Figure 11 2D contours of modal admittance and pressure energy spectra:
hydrodynamic fast

10
0

10
1

10
2

Normalized wavenumber: kl

10
− 4

10
− 3

10
− 2

10
− 1

Ψ
p
p
(
k
l,
ω
l/
U
c
=
5
π
)
π
/
l

α = 0 .2

α = 5

Figure 12 Spatial energy spectra at certain frequency mode of Corcos
model with varying decay rates
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5.2 Space-time characteristics of wall pressures

For evaluating the accuracy of the wall pressure fluctuation
obtained from FDNS and LES in Sect. 3, we compute the
space-averaged one-sided spectra Ψpp( f ) of the wall pressure
fluctuation atop the elastic plate as follows:

ΨF
pp( f ) =

1
LF

x LF
z

∫ LF
z

0

∫ LF
x

0

∣∣∣p̂′(x, z, f )
∣∣∣2 dxdz. (27)

The space-averaged one-sided spectra of the wall pressure
fluctuation obtained from DNS, FDNS and LES are plotted
in Fig. 14. The DNS spectrum is uniformly higher than the
FDNS spectrum in the high-frequency range. The stream-
wise spatial resolution for both LES and FDNS, as shown
in Table 1, is ∆x = LP

x/96. Therefore, the truncation fre-
quency corresponding to the FDNS and LES spatial resolu-
tion is f = ub/2∆x ≈ 3.8 Hz. This estimation is consistent
with the observation from the zoomed-in plots in Fig. 14. In
the frequencies lower than the truncation frequency, the wall
pressure spectra from FDNS and DNS results are nearly iden-
tical. With these observations, one can easily deduce that the
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area beneath the space-averaged spectrum of FDNS, which
is the integration of the space-averaged spectra, is smaller
than that of DNS. The integration of the space-averaged spec-
trum of the wall pressure fluctuation is essentially its RMS at
the wall (i.e., y = 0). The trend of the differences between
DNS and FDNS spectra is consistent in the frequency spectra
of space-averaged wall pressure (i.e., input) and vibroacous-
tic responses (i.e., output). The LES spectrum of the wall
pressure fluctuation also shows the temporal truncation ef-
fect caused by the spatial truncation due to space-time cor-
relation, as seen in Fig. 14. Therefore, we conclude that the
under-prediction in the high-frequency region of frequency
spectra of VAA with LES- or FDNS-based results from the
spatial filtering.

Unlike the high-frequency region, the space-averaged wall
pressure fluctuation of FDNS in the low-frequency region
matches well with that of DNS, as shown in Fig. 14. The
space-averaged wall pressure spectrum of LES in Fig. 14 is
also very close to DNS. These observations from frequency
spectra of the space-averaged wall pressure are inconsistent
with the over-prediction in the low-frequency region of the
vibroacoustic responses presented in Fig. 7. Following the
line in the analysis of fluid-structural coupling in Sect. 5.1,
we extract the spatial spectra of wall pressure at the first nat-
ural frequency of the plate. The Kraichnan-Phillips theorem
states that the pressure energy spectrum Φpp(k, ω) at a rigid
wall of an incompressible, homogeneous turbulent flow con-
verges to zero with k approaching zero when ω is nonzero.
Hu et al. [56] noticed that Φpp(k, ω , 0) only converged to
a limited value instead of zero. In DNS study, a valley re-
gion near k = 0 is clearly observed in Fig. 15a, where the
wavenumber pressure spectrum at the first natural frequency
of the plate is 3D visualized. Such valley-like region shows
the decay predicted by the celestial Kraichnan-Phillips the-
orem but converges to a non-zero value as observed by Hu
et al. [56].

On the contrary, both wall pressure spectra from FDNS
and LES present a local peak rather than a local valley around
the origin in Fig. 15b and c. We also project the wavenumber
spectra to the streamwise wavenumber space (kx) in all three
subplots of Fig. 15. The projected spectra show a valley near
kx = 0 in DNS but a peak in FDNS/LES cases. To better il-
lustrate the differences, we also draw the iso-contours of the
wall pressure in Fig. 16a, where a valley near the origin in
DNS is depicted via the iso-contours but peaks near the ori-
gin in both FDNS and LES are observed. Finally, we take
the cross sections at zero spanwise wavenumber (kz = 0)
from the spatial spectra in Fig. 15 and present them in Fig.
16b, where the spectrum of DNS remains decaying as kx ap-
proaching zero while the spectra of DNS and LES exhibit
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Figure 15 Wavenumber energy spectra of wall pressure at the 1st natural frequency. a DNS; b FDNS; c LES.
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Figure 16 Comparison of wall pressure spatial spectra at the 1st natural frequency. a Contours of the spatial spectra; b spatial spectra along kz = 0.

peaks near kx = 0.
As we have elaborated in Sect. 5.1, the plate-cavity sys-

tem mostly takes the energy from the sub-convective region
in the space-time spectra of wall pressure within the hydro-
dynamically fast context. At the first natural frequency of
the plate, the corresponding vibration mode is redrawn in the
wavenumber space in Fig. 17. The resonant wavenumber of
the plate modal admittance at the first natural frequency is
very close to the origin and deviated from the convection
peak since the bending wave speed is much larger than the
convection speed. Consequently, the distinctions between
wall pressure energy spectra near the origin obtained from

DNS, FDNS, and LES resonate with the modal admittance,
resulting in the overprediction in the low frequencies. There-
fore, we conclude that the vibroacoustic over-prediction in
the low-frequency region of LES comes from the inaccura-
cies of the wall pressure wavenumber-frequency spectra in
the low-wavenumber region.

6. Conclusions

The objective of the present paper is to develop a framework
of LES for AVA under the excitation of turbulent flows: the
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transmission of turbulent pressures on exterior surfaces to an
interior sound field. The framework has two parts: the first
part is the LES of exterior flows at high Reynolds numbers,
especially the effects of unresolved-scale eddies and the SGS
models on the resultant interior sound. The second part is
the numerical simulation of the transmission of exterior sur-
face pressures to interior sound by using modal analysis and
sound radiation. In this paper, the targeting fluid-structure-
acoustic coupled system consists of a turbulent channel flow
as the excitation and a plate-cavity system as an idealized
window-cabin system. DNS, FDNS, and LES studies are
carried out on the turbulent channel flows, from which the
surface pressure is imported to the computational framework
of vibroacoustic responses to obtain the interior sound. The
main observations and conclusions are summarized as fol-
lows.

The LES with computational vibroacoustics analysis over-
predicts the SPL of cavity interior sound compared to the
DNS results at low frequencies, while it largely underpre-
dicts the SPL at high frequencies. However, the LES results
are close to the FDNS results. This observation implies that
the unresolved scales in the LES play a critical role in the
vibroacoustic analysis. The incorrect prediction of the inte-
rior sound from the LES excitation mainly results from the
LES results on pressure fluctuations. It is shown that the
LES results on pressure frequency spectra are significantly
smaller than DNS results at high frequencies and moderately
larger than the DNS results at low frequencies. Those obser-
vations also hold for pressure wavenumber spectra, where the
LES results are larger than the DNS results at low wavenum-
bers and smaller than the DNS results at high wavenumbers.
However, the LES results on pressure spectra in wavenumber
and frequency are closed to the FDNS results. Those obser-
vations are in contrast to the common beliefs in the com-
munity that LES can correctly predict the wavenumber and
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Figure 17 Vibration mode of plate at the 1st natural frequency in wavenum-
ber space.

frequency spectra of pressure fluctuations at low wavenum-
bers and frequencies. In the present paper, we investigate the
performance of the dynamic Smagorinsky model, which im-
plies that the family of the eddy viscosity SGS models under-
predicts the vibroacoustic responses at high frequencies and
over-predicts those at low frequencies. However, the perfor-
mance of other SGS models in the aero-vibro-acoustic analy-
ses is needed to be investigated, which is a new topic in future
work.

In the hydrodynamically fast case, where the convec-
tion speed of turbulent flows is much slower than the flex-
ural bending wave speed, the peaks of the frequency re-
sponse function of the elastic plate are located in the low
wavenumber ranges of surface pressure spectra. However,
the LES with the eddy-viscosity SGS models overpredicts the
wavenumber-frequency spectra of surface pressures at low
wavenumbers. Consequently, the correct prediction of sur-
face pressure spectra in wavenumber and frequency is critical
to the prediction of interior sound. We use a one-dimensional
analytical model—an Euler-Bernoulli beam excited by ex-
terior pressures, to show that the Corcos model for turbu-
lent surface pressures does not change the amplitude of pres-
sure spectra at low wavenumbers by adjusting its empirical
parameters. Therefore, it is necessary to develop the SGS
models in LES for the correct prediction of the wavenumber-
frequency spectra of surface pressures in turbulent flows.
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高高高雷雷雷诺诺诺数数数流流流固固固声声声耦耦耦合合合的的的大大大涡涡涡模模模拟拟拟

朱力行,吴霆,何国威
摘要 高雷诺数流固声耦合的大涡模拟是湍流和计算流体力学的前沿领域.它可以用于飞机、潜艇和新能源汽车的舱内噪声预测.

本文设计了槽道湍流激励下的平板 -空腔系统作为典型案例,研究了大涡模拟方法用于高雷诺数流固声耦合系统的可能性. 我们的数

值结果表明,基于动态 Smagorinsky模型的大涡模拟方法得到的振动声学响应与直接数值模拟接近,但是在高频部分低估了振动声学

响应,并在低频部分高估响应.其主要原因在于大涡模拟未能准确预测壁面压力时空能谱,而时空能谱决定了流固声耦合系统的振动

声学响应.通过 Corcos模型激励的 Euler-Bernoulli梁的理论分析,我们确认了不准确壁面压力时空能谱影响振动声学响应的机制.最

后,本文工作表明了有必要通过发展新型的亚格子项模型,提升壁面压力时空能谱的预测精度,最终实现大涡模拟方法对高雷诺数流

固声耦合系统的准确预测.
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