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Flow-induced vibration of the tube bundles subjected to cross-flow and loose support is an important
issue in the security of a steam generator. In the operation of nuclear power station, the flow-induced
vibration of the tube bundles may lead to crack initiation and propagation, which can affect the natural
frequency and the dynamic response of the tube. However, there is seldom theoretical analysis to study
the dynamic characteristics of cracked tube bundles subjected to cross-flow. Therefore, a mathematical
model of a single cracked tube in a rotated triangular tube array subjected to cross-flow and loose support
was presented in this paper. The model takes into account the variations of the tube natural frequency
and mode of vibration owing to the crack damage. The effect of the crack damage on the dynamic char-
acteristics of a flexible tube in tube bundles subject to cross-flow and loose support was investigated, and
the dynamic responses of the cracked tube for three flow pitch velocity conditions were calculated.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Flow-induced vibration of the tube bundles of a steam genera-
tor is a significant problem in nuclear industry. The vibration char-
acteristics of the tubes may become very complicated, when the
cross-flow velocity closes to the threshold of the fluidelastic insta-
bility of the tube array. Several experimental and theoretical stud-
ies were carried out to investigate the dynamic characteristics of
the tube bundles for the past decades.

Tanaka and Takahara (1981) carried out several experiments to
obtain the unsteady fluid force acting on a cylinder in cross-flow.
By using the measured unsteady fluid force, the critical velocity
of fluidelastic instability was calculated. Some experiments were
performed to investigate the vibration behavior of a flexible tube
within otherwise fixed tube bundles with different geometries by
Austermann and Popp (1995). The experimental results indicated
that the array pattern and tube distance had an obvious effect on
the threshold of fluidelastic instability. Series of experiments were
carried out to measure the motion-dependent fluid force coeffi-
cients by Chen and Srikantiah (2001). Based on the unsteady flow
theory, the fluid damping and stiffness coefficients were obtained
as a function of excitation amplitude, reduced flow velocity, and
Reynolds number.

The existence of gaps between the tube and support structure
has a great influence on the flow-induced vibration of the heat
exchanger tube bundles. Thus, Hassan and Hayder (2008) pre-
sented a time-domain model to study the fluidelastic instability
of tube bundles with loose support. By using this model, the critical
velocity, dynamic response, and impact force between the tube and
support, which were sensitive to both the gap size and turbulence
level, were calculated. Wang and Ni (2010) used an analytic model
to investigate the Hopf bifurcation and chaotic motions of a can-
tilever tube impacting on a loose support. They found that the
vibration amplitude of the tube grows with increasing of the flow
velocity. The collision between the tube and support may lead to
some complex motions, such as chaos and quasi-periodic motions
for a high flow velocity. Zhao et al. used a fully coupled model to
calculate the dynamic responses of tube bundles subjected to
cross-flow. Then, the time trace, power spectral density, phase-
plane plot and Poincaré map were used to analyze the tube motion
(Zhao et al., 2014). Zhang et al. (2016) carried out an experiment to
study the fluidelastic instability of a rigid parallel triangular tube
array considering the effects of increasing and decreasing flow
velocities. The nonlinear hysteresis phenomenon was observed in
the experiment. Li and Mureithi presented a new time delay for-
mulation for the quasi-steady model, which is dependent on the
Reynolds number, to predict the threshold of the fluidelastic insta-
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Fig. 1. The schematic of tube bundles with a crack subject to cross-flow and loose support.
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bility of tube bundles. The numerical results indicated a significant
improvement over the constant time delay quasi-steady model the
quasi-unsteady model (Li and Mureithi, 2017).

Some CFD calculations have be carried out to obtain the fluid
force acting the tube bundles. Based on the RANS formulation with
aid of Spalart-Allmaras turbulentce model, Sadek et al. (2018) pre-
sented a numerical model to obtain the unsteady fluid forces of
two-phase flow acting on a parallel triangular tube array. The com-
parison between the numerical and experimental results showed a
good agreement. de Pedro Palomar and Meskell (2018) presented a
steady RANS simulation to obtain the static fluid forces acting on a
normal triangular tube array. With these fluid forces, the critical
velocity of tube bundle was obtained. Piteau et al. (2019) carried
out several experiments to obtain the fluidelastic coupling forces
on a flexible tube in a rigid square bundle subjected to single-
phase cross-flow. Their experimental results indicated that the for-
mulations for coefficient reduction may be improved. Xu et al.
(2019) performed a series of experimental studies on flow-
induced vibration of two identical elastically mounted circular
cylinders in tandem arrangement in a low turbulence surface
water channel.

In our previously reported papers, a series of experiments were
carried out to obtain the thresholds of the fluidelastic instability of
a rotated triangular tube array subjected to two-phase flow both in
the transverse and parallel directions (Lai et al., 2019; Lai, 2019; Lai
et al., 2020). Considering the effect of two-phase flow, two theoret-
ical models (Lai et al., 2019; Lai et al., 2020) of the tube bundles to
predict the critical velocity of the fluidelastic instability of tube
bundles in the transverse and parallel direction were presented,
respectively. Based on these theoretical models, the two-phase
flow-induced instability and nonlinear dynamics of the tube bun-
dles subjected to two-phase flow and loose support were investi-
gated (Lai et al., 2019; Lai et al., 2020; Lai et al., 2020). These
Fig. 2. The comparison of the RMS of dimensionless displacements the tube: (a) Flow pitc
2.399 m/s.
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investigations demonstrate that the natural frequency of the tube
is a significant parameter to the fluidelastic instability and
dynamic response of the tube bundles.

As mentioned above, several experimental and numerical stud-
ies of the fluidelastic instability and dynamic response of the tube
bundles subjected to cross-flow have been performed with intact
tube bundles models. However, in the operation of nuclear power
station, the flow-induced vibration of the tube bundles in the
steam generator may lead to crack initiation and propagation. It
is important to note that the presence of a crack cannot only
change the natural frequency of the structure, but it can affect
the dynamic response of the structure (Ostachowicz and
Krawczuk, 1991; Chati et al., 1997). Thus, after considering the
effects of a crack, how the dynamic response of the tube bundles
will change, which is worthy of further study.

In the present work, a theoretical model of a flexible tube with a
crack in tube bundles was presented. Based on this model, the
dynamic responses of the cracked tube were obtained, and the
dynamic characteristics of the cracked tube were also investigated.
In the work, we have focused on the study of dynamic characteris-
tics of the cracked tube in the transverse direction.

2. Theoretical analysis

A model of a single flexible tube in tube bundles subject to
cross-flow considering the effect of tube support plate was illus-
trated in Fig. 1. The motion equation for the flexible tube can be
expressed as:

EI
@4w y; tð Þ

@y4
þ ct

@w y; tð Þ
@t

þmt
@2w y; tð Þ

@t2

¼ d y� yað ÞFstiffness wð Þ þ Funsteady w; _w; €wð Þ ð1Þ
h velocity is 1.476 m/s; (b) Flow pitch velocity is 1.938 m/s; (c) Flow pitch velocity is



Fig. 3. The comparison of the dimensionless displacements, limit cycles and dimensionless frequency spectrum of the tube when the flow pitch velocity is 1.476 m/s: (a)(b)
(c) Node 5; (d)(e)(f) Node 10; (g) (h)(i) Node 30; (j)(k)(l) Node 60.
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where EI is the rigidity modulus of the tube, w is lateral dis-
placement of the tube, ct, mt and ma is the damping coefficient,
the mass and the added mass of the tube per unit length, d(y-ya)
is the Dirac delta function, Fstiffness(w) is the impact force between
the tube and support structure, Funsteady (w, _w, €w) is the fluid force
of the cross-flow, where dot and double dot indicate the velocity
and acceleration of the tube, respectively.

An unsteady fluid force model can be used to predict the thresh-
old of fluidelastic instability of a rotated triangular tube array in
cross-flow. And, Funsteady (w, _w) can be expressed as:

Funsteady w; _w; €wð Þ ¼ ma
@2w y; tð Þ

@t2
þ ca

@w y; tð Þ
@t

þ kaw y; tð Þ ð2Þ

where, the added mass, ma, added damping, ca, and added stiff-
ness, ka, can be written as:
3

ma ¼ p
4
qD2 De=Dð Þ2 þ 1

De=Dð Þ2 � 1

" #

ca ¼ qU2
1CFcosUF

2

ka ¼ qU2
1CFsinUF

2x
�x2ma

ð3Þ

where q is the cross-flow density, respectively, D, De is the tube
diameter and pitch between tube bundles, respectively, U1 is the
free stream velocity, x is the angular frequency of the tube, CF,
UF is the unsteady fluid force coefficient magnitude and phase
which can be obtained from the experimental study presented by
Sawadogo and Mureithi (2014).

The flow pitch velocity in the tube bundles can be calculated
from the free stream velocity, U1, as:

Up ¼ P
P � D

U1 ð4Þ



Fig. 4. The comparison of the dimensionless displacements, limit cycles and dimensionless frequency spectrum of the tube when the flow pitch velocity is 1.938 m/s: (a)(b)
(c) Node 5; (d)(e)(f) Node 10; (g)(h)(i) Node 30; (j)(k)(l) Node 60.
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Moving the flow force of the cross-flow to the left-hand side in
equation as forms of contribution to the mass, damping, and stiff-
ness, the general form of the coupling equation can be obtained.

Introducing the following non-dimensional quantities:

g ¼ w
D
; n ¼ y

L
; s ¼ k21

ffiffiffiffiffiffiffiffiffiffiffi
EI

mtL
4

s
t ¼ Xt; 1 ¼ ct

Xmt
;

m� ¼ mt

qD2 ; U� ¼ 2pU1
DX

;

a ¼ 1
1þ 4m�=ðpCmaÞ ; x� ¼ x

X

ð5Þ

where L is the tube length, k1 is the dimensionless eigenvalue of
the first-order mode for a cantilever tube.

Substituting these dimensionless quantities into equation (1),
the partial differential equation of the motion of the tube bundles
subject to cross-flow and loose support can be rewritten as:
4

1
1�a

@2g
@s2 n; sð Þ þ f� U�2CF sinUF

8p2m�x�

h i
@g
@s n; sð Þ þ 1

k41

@4g
@f4

n; sð Þ

� U�2CFcosUF
8p2m� � ax�2

1�a

h i
g n; sð Þ þ d n� nbð Þf � gð Þ ¼ 0

ð6Þ

With a crack damage, the tube was divided into two parts with
the same section properties, as shown in Fig. 1. Thus, the dimen-
sionless displacement of the tube with a crack can be expressed as:

g n; sð Þ ¼
PN1

i¼1u1i nð Þqi sð Þ � L1 6 x < 0�PN2
i¼1u2i nð Þqi sð Þ 0þ 6 x < L2

(

ð7Þ

The mode shape function of each part can be written as:

u1i xð Þ ¼ C11coshkixþ C12sinhkixþ C13coskixþ C14sinkixL1 6 x < 0�

u2i xð Þ ¼ C21coshkixþ C22sinhkixþ C23coskixþ C24sinkix0
þ 6 x < L2

ð8Þ



Fig. 5. The comparison of the dimensionless displacements and limit cycles of the tube when the flow pitch velocity is 2.399 m/s: (a) (b) (c) Node 5; (d) (e) (f) Node 10; (g) (h)
(i) Node 30; (j)(k)(l) Node 60.

Fig. 6. The comparison of the RMS of dimensionless displacements the tube: (a) The flow pitch velocity is 1.476 m/s; (b) The flow pitch velocity is 1.938 m/s; (c) The flow
pitch velocity is 2.399 m/s.
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Fig. 7. The comparison of the dimensionless displacements and limit cycles of the node 5 of the tube when the flow pitch velocity is 1.476 m/s.
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The corresponding boundary conditions of the two parts are as
follows:

x ¼ �L1 :
u1i �L1ð Þ ¼ 0
u0

1i �L1ð Þ ¼ 0

�

x ¼ L2 :
u00

2i L2ð Þ ¼ 0
u000

2i L2ð Þ ¼ 0

�

x ¼ 0 :

u1i 0
�ð Þ ¼ u2i 0

þ� �
u00

1i 0
�ð Þ ¼ u00

2i 0
þ� �

u000
1i 0

�ð Þ ¼ u000
2i 0

þ� �
�EIu00

1i 0
�ð Þ ¼ KT u0

1i 0
�ð Þ �u0

2i 0
þ� �� �

8>>>><
>>>>:

ð9Þ
Fig. 8. The comparison of the dimensionless displacements and limit cycles
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where L1 is the length of the left part of the tube, L2 is the length
of the right part of the tube, KT is the rigidity modulus of the tube at
the crack damage position which can be obtained from reference
(Bamnios and Trochides, 1995).

Substituting equation into equation, the frequency equation of
the tube with a crack can be obtained as follows:

2
KT

EIki
þ 2

KT

EIki
coski L1 þ L2ð Þ � coshki L1 þ L2ð Þ þ coshkiL1 � sinkiL1

� coshkiL2 � sinkiL2 � sinki L1 þ L2ð Þ � coshkiL1 � coshkiL2
� coskiL1 � sinhkiL1 þ coskiL2 � sinhkiL2 þ sinhki L1 þ L2ð Þ
� coskiL1 � coskiL2 ¼ 0

ð10Þ
of the node 10 of the tube when the flow pitch velocity is 1.476 m/s.



Fig. 9. The comparison of the dimensionless displacements and limit cycles of the node 30 of the tube when the flow pitch velocity is 1.476 m/s.
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The mode shape functions of the tube with a crack, determined
by boundary conditions, can be expressed as:

u1i xð Þ ¼ coshkixþ C12
C11

sinhkixþ C13
C11

coskixþ C14
C11

sinkix

u2i xð Þ ¼ coshkixþ C22
C11

sinhkixþ C13
C11

coskixþ C24
C11

sinkix
ð11Þ

where, C12
C11

, C13
C11

, C14
C11

, C22
C11

, C24
C11

can be expressed as:

C12

C11
¼ � a3b4 þ a4b3ð Þ a1a3 � a2a4ð Þ � a1b4 � a4b1ð Þ a3a3 þ a4a4ð Þ

a3b4 þ a4b3ð Þ a1a4 � a2a3ð Þ þ a2b4 þ a4b2ð Þ a3a3 þ a4a4ð Þ
C13

C11
¼ � a1a3 � a2a4ð Þ a2b4 þ a4b2ð Þ þ a1a4 � a2a3ð Þ a1b4 � a4b1ð Þ

a3a3 þ a4a4ð Þ a2b4 þ a4b2ð Þ þ a1a4 � a2a3ð Þ a3b4 þ a4b3ð Þ
C14

C11
¼ a1a4 þ a3a2ð Þ a3b2 � a2b3ð Þ þ a2a4 þ a3a1ð Þ a1b3 þ a3b1ð Þ

a4a4 þ a3a3ð Þ a3b2 � a2b3ð Þ þ a2a4 þ a3a1ð Þ a4b3 þ a3b4ð Þ
C22

C11
¼ C12

C11
þ EIki
2KT

1� C13

C11

� 	
C24

C11
¼ C14

C11
þ EIki
2KT

1� C13

C11

� 	
ð12Þ
Fig. 10. The comparison of the dimensionless displacements and limit cycle
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where,

a1 ¼ coshkiL1; a2 ¼ sinhkiL1; a3 ¼ coskiL1; a4 ¼ sinkiL1
b1 ¼ coshkiL2 þ EIki

2KT
sinhkiL2 � EIk

2KT
sinkiL2; b2 ¼ sinhkiL2

b3 ¼ coskiL2 þ EIki
2KT

sinhkiL2 � EIki
2KT

sinkiL2; b4 ¼ sinkiL2

d1 ¼ sinhkiL2 þ EIki
2KT

coshkiL2 � EIki
2KT

coskiL2;d2 ¼ coshkiL2

d3 ¼ sinkiL2 � EIki
2KT

coshkiL2 þ EIki
2KT

coskiL2;d4 ¼ coskiL2

ð13Þ

It is known that the dynamic response of a tube is dominated by
the first low modes. Thus, the first five order modes were chosen in
present study.

Then, a set of ordinary differential equations can be deduced
from the partial differential equation, as follows:

€qi

1� a
þ f� U�2CFsinUF

8p2m�x�

 !
_qi þ

k4i
k41

� U�2CFcosUF

8p2m� þ ax�2

1� a

 !
qi

þ f � gað Þui nað Þ ¼ 0 i ¼ 1;2;3;4;5ð Þ
ð14Þ
s of the node 60 of the tube when the flow pitch velocity is 1.476 m/s.



Fig. 11. The comparison of the dimensionless displacements and limit cycles of the node 5 of the tube when the flow pitch velocity is 1.938 m/s.
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where ga is the displacement at n = na.
Notice that the coupling term is the impact force between the

tube and tube support plate f*(ga) due to the constraint at the loose
support, which can be calculated from the mathematical model
presented by Paidoussis et al. (Païdoussis et al., 1989; Païdoussis
and Li, 1992) as follows:

f � gað Þ ¼ jg3
a ð15Þ

where j is the nondimensional stiffness of the cubic spring. In
this paper, j is chosen to be 1000 in accordance with reference.

3. Dynamic responses of cracked tube subject to cross-flow and
loose support

In this section, we take a tube damaged at node 10 with extent
10% as an example to study the dynamic responses of the cracked
tube subject to cross-flow and loose support for three flow pitch
Fig. 12. The comparison of the dimensionless displacements and limit cycle

8

velocity conditions (Up = 1.476 m/s, Up = 1.938 m/s, and
Up = 2.399 m/s, respectively). According to the dynamic model of
tube with a crack subject to cross-flow and loose support pre-
sented above, the finite difference solution was adopted to divide
the cracked tube into 59 elements with 60 nodes. Then, using a
fourth-order Runge-Kutta integration algorithm, the nonlinear
dynamic responses of a tube damaged at node 10 with extent
10% when the flow pitch velocity is 1.476 m/s, 1.938 m/s, and
2.399 m/s were calculated, respectively. To investigate the effects
of the crack on the dynamic characteristics of the tube subjected
to cross-flow and loose support more detailly, a comparison
between the intact tube and the cracked tube was made. The
RMS (root-mean-square) of the dimensionless displacements of
the intact and cracked tube when the flow pitch velocity is
1.476 m/s, 1.938 m/s, and 2.399 m/s were illustrated in Fig. 2(a)–
(c), separately. (When the flow pitch velocity is 1.476 m/s,
1.938 m/s, and 2.399 m/s, the RMS (root-mean-square) of the
s of the node 10 of the tube when the flow pitch velocity is 1.938 m/s.



Fig. 13. The comparison of the dimensionless displacements and limit cycles of the node 30 of the tube when the flow pitch velocity is 1.938 m/s.
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dimensionless displacements of the intact and cracked tube were
illustrated in Fig. 2(a)–(c).) It can be clearly seen that when the
flow pitch velocity is 1.476 m/s, the difference between the RMS
of the dimensionless displacements of the intact and cracked tube
is generally small. With the increasing of the flow pitch velocity,
the influences of the crack on the RMS dimensionless displace-
ments of the tube are significantly increased. It is interesting to
note that for the high flow pitch velocity conditions, such as the
example considered in this study, Up = 1.938 m/s and
Up = 2.399 m/s, the dynamic characteristics of the cracked tube
are different from those of the intact tube. In other word, the dam-
age of the tube may change the mode of the vibration. When the
flow pitch velocity is 1.476 m/s, the tube support plates do not pro-
vide effective supports, the 1st flexural vibration mode of a can-
tilever beam can be observed in Fig. 2(a). This type of mode can
be called ‘‘support-inactive”. With increasing of the flow pitch
velocity, the cracked tube responds as a cantilever beam supported
Fig. 14. The comparison of the dimensionless displacements and limit cycle
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by the tube support plate, the 2nd flexural vibration mode has
been observed, which can be called ‘‘support-active”, as shown in
Fig. 2(b)–(c), while the vibration modes of the intact tube are still
support-inactive mode. It is also important to note that, for the
damaged tube, the higher vibration mode of the tube may become
instability firstly than the fundamental vibration mode, which is
different from the phenomenon of the undamaged tube observed
in our previous studies.

As shown in Fig. 2, the dynamic responses of the different nodes
of the tube are quite different. Thus, to further study the influences
of the dynamic characteristics of the cracked tube, four nodes of
the tube are chosen from the clamped end to the free end in the
comparison in this study, which are node 5, node 10, node 30,
and node 60. To have a clear picture of the dynamics of the intact
and cracked tube, the time histories of the dimensionless displace-
ment, limit cycles, and dimensionless frequency spectra of the four
nodes of intact and cracked tube when the flow pitch velocity is
s of the node 60 of the tube when the flow pitch velocity is 1.938 m/s.



Fig. 15. The comparison of the dimensionless displacements and limit cycles of the node 5 of the tube when the flow pitch velocity is 2.399 m/s.
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1.476 m/s were illustrated in Fig. 3(a)–(l), respectively. It can be
obviously seen from Fig. 3 that the vibration amplitudes of the four
nodes of the cracked tube are equal to those of the intact tube
when the flow pitch velocity is 1.476 m/s. The periodic motions
of the intact and cracked tubes can also be observed and the trajec-
tories of the four nodes are all toward stable limit cycles. Moreover,
with the effects of the loose support, the fundamental frequency of
the periodic motion for the cracked tube is larger than the funda-
mental frequency for the intact tube, and when the periodic
motion occurs, the odd frequencies appear in addition to the fun-
damental frequency, X and X’, for both intact and cracked tubes
at Up = 1.476 m/s, as shown in Fig. 3(c)(f)(i)(l). In addition, it is also
important to note that the dynamic characteristics of the left part
of the cracked tube are much more different from those of the right
part. The high frequency vibrations of the left part of the cracked
Fig. 16. The comparison of the dimensionless displacements and limit cycle

10
tube (node 5 and node 10), such as 11X and 13X, can be observed.
Furthermore, the vibration of the cracked tube at node 60 is much
more complicated as shown in Fig. 3(j), possibly indicating that the
collision behavior, such as the collision force and collision fre-
quency, between the tube and loose support, such as anti-
vibration bar and tube support plate, may be affected by the crack.
It can be clearly seen in Fig. 3(j) that, during one oscillation cycle,
one collision between the tube without damage and loose support
occurred, while for the cracked tube, there was not just one colli-
sion, but two.

The time histories of the dimensionless displacement, limit
cycles, and dimensionless frequency spectra of the four nodes of
intact and cracked tube when the flow pitch velocity is 1.938 m/
s were illustrated in Fig. 4(a)–(l), respectively. As mentioned above,
when the flow pitch velocity increases to 1.938 m/s, the vibration
s of the node 10 of the tube when the flow pitch velocity is 2.399 m/s.



Fig. 17. The comparison of the dimensionless displacements and limit cycles of the node 30 of the tube when the flow pitch velocity is 2.399 m/s.
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mode of the cracked tube changes into the support-active mode,
the vibration amplitudes of the tube with damage become much
larger than those of the intact tube. And, the limit cycle motions
of the cracked tube are much more complicated, especially for
the left part of the cracked tube. With increasing of the flow pitch
velocity, the effects of the loose support on both the fundamental
frequency and high frequency of the cracked tube become more
visible than those of the intact tube, as shown in Fig. 4(c), (f), (i)
and (l). The high order vibration frequency vibrations of the
cracked tube, such as 11 X, 13 X, 15 X and 17 X, can be observed
for both the left and right part of the cracked tube. It can be seen
from Fig. 4(j) that the collision behaviors of the intact and cracked
tube at Up = 1.938 m/s are also more complicated than those at
Up = 1.476 m/s. For the intact tube, during one oscillation cycle,
two impacts between the tube and support structure take place.
For the cracked tube, the typical impact and sliding behavior can
be observed, which may cause more serious damage of the
fretting-wear due to the tube vibration.

The time histories of the dimensionless displacement, limit
cycles, and dimensionless frequency spectra of the four nodes of
intact and cracked tube when the flow pitch velocity is 2.399 m/
s were illustrated in Fig. 5(a)–(l), respectively. It can be clearly seen
that when the flow pitch velocity increases to 2.399 m/s, the vibra-
tion amplitudes of the tube with damage are also larger than those
of the intact tube. The trajectory of the cracked tube is toward a
stable limit cycle, the odd frequency can also be observed besides
the fundamental frequency. However, the limit cycle motions of
the intact tube are much more complicated than those of the
cracked tube. It is important to note that the dimensionless fre-
quency spectrum of the intact tube has peaks at X-X’, X-2 X’, X,
X+X’, X+2 X’, X+3 X’, et al. as shown in Fig. 5(c)(f)(i)(l). Besides,
the odd frequency and high frequency can also be observed. In
addition, the collision behavior of the cracked tube becomes much
more complicated, several impacts between the tube and support
structure occur, during one oscillation cycle, as shown in Fig. 5(j).
4. The influence of the crack position on tube dynamic
responses

In this section, the influences of the crack position on the tube
dynamic responses have been investigated in three cases (case 1:
11
tube damaged at node 10 with extent 10%, case 2: tube damaged
at node 30 with extent 10%, and case 3: tube damaged at note 50
with extent 10%, respectively). Each calculation was conducted
for the three flow pitch velocity conditions, as in preceding
sections.

The RMS of the dimensionless displacements of the three
cracked tubes when the flow pitch velocity is 1.476 m/s,
1.938 m/s, and 2.399 m/s were illustrated in Fig. 6(a)–(c), individ-
ually. It is obvious that the vibration mode of the three cracked
tubes is support-inactive mode at Up = 1.476 m/s, as shown in
Fig. 6(a). With the increasing of the flow pitch velocity, the influ-
ences of the position of the damage on the RMS dimensionless dis-
placements of the tube are significantly increased. It should be
noted that when the flow pitch velocity is 1.938 m/s, the vibration
modes of the tube damaged at note 10 and the tube damaged at
note 30 have changed to the support-active mode, while the vibra-
tion mode of the tube damaged at note 50 is still the support-
inactive mode. For the higher flow pitch velocity, such as the exam-
ple considered in this study, Up = 2.399 m/s, the vibration mode of
the tube damaged at node 50 also changed to the support-active
mode.

Similarly, to further investigate the effects of the position of the
damage on the dynamic characteristics of the cracked tube, four
nodes of the tube are chosen from the clamped end to the free
end in the comparison in this study, which are node 5, node 10,
node 30, and node 60. The time histories of the dimensionless dis-
placement, limit cycles, and dimensionless frequency spectra of
the four nodes of the three cracked tube when the flow pitch veloc-
ity is 1.476 m/s were illustrated in Figs. 7–10, respectively. It can
be clearly seen that the position of the damage has a smaller effect
on the dynamic responses and limit cycles of the node 5, node 10,
and node 30 at Up = 1.476 m/s. Nevertheless, the dynamic
responses, limit cycle motions, and dimensionless frequency spec-
tra of the node 60 of the three cracked tubes are obvious different.
For the tube damaged at node 10 with extent 10% two impacts
between the tube and support structure take place. And, for the
tubes damaged at node 30 and 50 with extent 10%, the impact
and sliding behavior occurs.

The time histories of the dimensionless displacement, limit
cycles, and dimensionless frequency spectra of the four nodes of
the three cracked tube when the flow pitch velocity is 1.938 m/s
were illustrated in Figs. 11–14, respectively. With increasing of



Fig. 18. The comparison of the dimensionless displacements and limit cycles of the node 60 of the tube when the flow pitch velocity is 2.399 m/s.
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the flow pitch velocity, the high-frequency vibrations of the
cracked tubes become obviously, and the vibrations of the cracked
tubes are much more complicated than those of the cracked tubes
at Up = 1.476 m/s. It is interesting to note that, for the tube dam-
aged at node 10, besides the fundamental frequency the odd fre-
quency can be observed. For the tube damaged at node 30, both
the even and odd frequency can be observed. For the tube damaged
at node 50, the dimensionless frequency spectrum has a peak at X
+X’, besides the odd frequency and high frequency.

The time histories of the dimensionless displacement, limit
cycles, and dimensionless frequency spectra of the four nodes of
the three cracked tube when the flow pitch velocity is 2.399 m/s
were illustrated in Figs. 15–18, respectively. It is important to note
that at Up = 2.399 m/s the quasi-periodic motion of the tube dam-
aged at node 30 with extent 10% occurs, and the dimensionless fre-
quency spectrum has peaks at X/3, 5 X/3, and 7 X/3, besides the
odd frequency and high frequency, which is different from the phe-
nomenon observed in other cases. For the tube damaged at node 10
and node 50 with extent 10%, the periodic motions can also be
observed and the trajectories of the four nodes are all toward
stable limit cycles.

5. Conclusion

The dynamic characteristics of a flexible tube with a crack in a
rotated triangular tube array considering the effects of cross-flow
and loose support were investigated by building a mathematical
model in present study. The model takes into account the varia-
tions of the tube natural frequency and mode of vibration owing
to the crack damage. To analyze the effect of the crack damage
on the dynamic characteristics of a flexible tube in tube bundles
subject to cross-flow and loose support, the dynamic responses
of the cracked tube were calculated for three flow pitch velocity
conditions. From these analyses, we have drawn the following
conclusions:

1. For all the flow pitch velocity conditions concerned in this
study, the crack damage can change the vibration characteris-
tics of the tube. For the intact tube, the tube support plates do
not provide effective supports, called as ‘‘support inactive”, at
the three flow pitch velocity conditions concerned in present
12
study. For the cracked tube, the support inactive vibration mode
also be observed at Up = 1.476 m/s. With increasing of the flow
pitch velocity, the vibration mode of the cracked tube, called as
‘‘support active”, was observed, which is different from the phe-
nomenon of the undamaged tube.

2. The limit cycle motions of the cracked tube are much more
complicated. As the flow pitch velocity increases, the effects
of the loose support on both the fundamental frequency and
high frequency of the cracked tube become more visible than
those of the intact tube.

3. The collision behavior of the cracked tube becomes much more
complicated, the impact-sliding and several impacts between
the tube and support structure occur, during one oscillation
cycle, which may cause more serious damage of the fretting-
wear due to the tube vibration.

4. The influences of the crack position on the dynamic character-
istics of the tube are significant. For the tube damaged at node
10 and node 50 with extent 10%, the periodic motions were
observed for the three flow pitch velocity conditions. While
for the tube damaged at node 30 with extent 10%, the quasi-
periodic motion of the cracked tube occurs at Up = 2.399 m/s.
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