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Abstract: Topological acoustic insulators enable sound waves to transmit along the surface without
backscattering, which builds a new pathway towards sound wave control. However, a large share
of topological acoustic insulators are realized based on special point group symmetry and Bragg
scattering mechanism. This method not only exerts a restriction on the unit cell design but also
requires the lattice constant to be comparable with the wavelength. In this paper, the chiral spiral
acoustic metamaterials are constructed based on an Archimedean spiral structure. This structure
enjoys subwavelength characteristics and is easy to construct. Taking advantage of the chirality of
the spiral structure topological phases with opposite energy flow direction can be constructed. The
edge state is formed at the interface composed of the spiral units sharing different chirality, which
does not depend on point group symmetry. The topological transportation on the interfaces shows
strong robustness despite sharp corners verified by straight and zigzag waveguides. The topological
acoustic insulator with a chiral spiral structure provides a novel strategy for small acoustic devices
with robust sound transmission.

Keywords: chiral spiral structure; acoustic metamaterials; topological transportation

1. Introduction

Inspired by the topological insulators [1,2] in condensed matter physics, the analogous
topological insulators in acoustic realm have received significant interest. The edge state
characterized by the one-way transmission without backscattering lays a new pathway
for acoustic wave guiding, which enables the acoustic wave to propagate robustly along
the surface or edge being immune to the defects. By emulating the quantum Hall ef-
fect (QHE) [3,4], quantum spin Hall effect (QSHE) [5,6], and quantum Valley Hall effect
(QVHE) [7,8] in electronic systems, similar topological transmission is also realized in
classical acoustic systems [9–15]. The researchers [16–18] introduced the circulating fluid
into the ring resonator, mimicking the magnetic field in an electronic system, and realized
the analogue QHE. Some topological acoustic systems [19–21] realize the analogue QSHE
by adjusting the filling ratio within the hexagonal honeycomb lattice to realize inversion of
the acoustic energy band at a double Dirac cone. In addition, researchers [22–26] also broke
the inversion symmetry of the structure by rotating the scatterer, making the Dirac point
at the K point in the Brillouin zone split, giving rise to different Valley hall phases, thus
realizing the analogue QVHE.

Although these topological acoustic systems have achieved a great milestone, most of
them depend on the special point group symmetry. In this way, a Dirac cone forms at the
high symmetry point in the Brillouin zone, and then the reduced symmetry of the unit cell
contributes to the Dirac cone split through rotation, scaling and other operations, giving
rise to different topological phases. Thus, the interfaces composed of different topological
phases hold the one-way transmission edge states. Furthermore, a large share of these
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schemes are based on the Bragg scattering mechanism, which requires the unit cell size to be
comparable with the wavelength, so it is difficult to bring the benefit to the miniaturization
of a topological acoustic system. Although some systems at deep-subwavelength scale
have been reported based on local resonance [27,28], the structures of this are relatively
complicated. On the other hand, the topological transmission of these systems also depends
on special point group symmetry, which exerts some restrictions on the unit cell design.

In acoustic metamaterials, the spiral structure [29–32] featuring space-coiling creates
a lengthy sound channel within a small space resulting in low-frequency resonant mode,
and the whole structure possesses subwavelength characteristics. Compared with the
labyrinthine space-coiling structure, the spiral structure is much simpler, and can meet
the requirement of the subwavelength topological system. In addition, the topological
interfaces in the valley Hall system are formed by distinct valley phases with opposite
energy flow chirality. Therefore, opposite chiral structural units can be used to artificially
generate topological phases with opposite energy flow chirality, and the interface composed
of opposite chiral structural units will hold the edge states. In view of this, particular point
group symmetry is not necessary for the generation of edge states [33,34].

In this work, we design a topological acoustic system based on a subwavelength chiral
spiral acoustic metamaterial. Due to the space folding scheme, the lengthy sound channel
contributes to the subwavelength characteristics. The band gap can be reduced to the
subwavelength frequency range. Furthermore, the whole system is composed of a chiral
spiral structure, which does not rely on special point group symmetry. Compared with
other topological systems based on QVHE, in this paper the whole system depends on the
chiral symmetry. In addition, the unit cell is designed based on the Archimedean spiral,
which is simpler than the space-folding structure. The length of the sound channel within
the spiral unit cell can be changed by adjusting the number of turns of the spiral, so that
the eigenfrequency of the unit cell can be lowered down and the subwavelength property
is realized. Furthermore, since the spiral structure shares left-handed and right-handed
chirality, opposite chiral structural units can be used to artificially generate topological
phases with opposite energy flow chirality. The interfaces composed of opposite chiral
structural units will hold the edge state. The topological edge state protected by chiral
symmetry is also robust to defects, which provides a new pathway towards the design of
acoustic devices.

2. Structure Design

The left-handed Archimedean spiral structure is shown in Figure 1a. The spiral equa-
tion is r(s) = R− (R− r)s, φ(s) = 2πns, where R is the outer radius of the Archimedean
spiral, r is the inner radius of the spiral, n is the number of turns of the spiral, and s ∈ [0; 1],
and w is the width of the spiral. The whole spiral structure is considered as the scatterer
distributed in the honeycomb unit cell filled with air, shown in Figure 1b. The geometric
parameters of the spiral are: the inner radius of the spiral r = 0.3 cm, the outer radius
R = 1.2 cm, the number of turns of the spiral n = 2, the width of the spiral w = 0.1 cm, and
the lattice constant a = 4 cm. The material parameters are as follows: steel spiral structure
(mass density ρ1 = 7700 kg/m3, sound velocity c1 = 5400 m/s), and the gray air area (mass
density ρ0 = 1.29 kg/m3, sound velocity c0 = 340 m/s).
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Figure 1. (a) Schematic of an Archimedean spiral with its geometric parameters. (b) The left-handed
spiral distributed in honeycomb unit cell.

3. Results
3.1. Band Structure

Employing the finite element software COMSOL Multiphysics to calculate the band
structure of spiral metamaterials. Note that the whole metamaterial is a periodic structure,
and the Floquet Bloch periodic conditions are imposed on the boundaries of the unit cell.
Along the boundary of the first Brillouin zone, M-Γ-K-M scanning wave vector is adopted
to obtain the energy band of the whole structure. The band structure is shown in Figure 2a,
where fc = c0/a. There exist three band gaps during the normalized frequency range of
0–0.6: the first band gap (0.117–0.141), the second band gap (0.354–0.371), and the third
band gap (0.498–0.528). Among them, the first and the second band gaps are the local
resonant band gap thanks to the lengthy spiral design, whose normalized frequency is
less than 0.5. The third band gap is the Bragg scattering band gap owing to the symmetry-
broken, which forms the band gap at the high symmetry point K. To better understand
these three band gaps, the eigenmodes of the four energy bands corresponding to the
K point in the Brillouin region are analyzed. These four eigenmodes are labeled as 1, 2,
3, and 4, respectively, and the corresponding normalized frequencies are 0.117 (994 Hz),
0.35 (2975 Hz), 0.496 (4218 Hz), and 0.535 (4545 Hz), respectively. Figure 2b shows the
eigenmodes of each energy band. It suggests that the first and the second eigenmodes
are excited by the local resonance effect since the resonance part is mainly distributed
in the spiral structure. The third and the fourth eigenmodes are excited by the Bragg
scattering effect since the resonance part is mainly distributed outside the spiral structure.
The eigenmodes of the left-handed and right-handed structures corresponding to each
band are mirror symmetric. It can be concluded that the spiral structure can effectively
lower the whole system frequency, which possesses the subwavelength characteristics.

Next, we investigated the effect of the geometric parameters on the band gaps. First,
we rotated the spiral structure around the center of the unit cell, which can be characterized
by θ. Figure 3a shows the variation of the first, second and third band gap widths with the
rotation angle θ, marked by grey, blue, and orange areas, respectively. It can be derived
from the figure that the rotation angle θ hardly affects the first and second band gaps, but
has a certain effect on the third band gap. This is because the first and second band gaps
are formed by the local resonance effect of the spiral structure which is bound to the length
of the spiral, and the change of the rotation angle hardly affects their eigenfrequency. The
third band gap is formed by the Bragg scattering effect. Therefore, the variation of rotation
angle will change the unit cell symmetry, and the eigenfrequency will be influenced by
the rotation angle. It can be seen that when the rotation angle is 70◦, the third band gap is
the narrowest.
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Figure 3. The first, second and third band gap varies with geometric parameters marked by grey,
blue, and orange areas, respectively. (a) Rotation angle θ ranging from 0◦to 120◦. (b) Width of spiral
w ranging from 0.05 cm to 0.5 cm.

To explore the effect of width of spiral w on the band gaps, the rotation angle is set to
θ = 0◦. Figure 3b shows the variation of the first, second and third band gap widths with
the width of spiral w ranging from 0.05 cm to 0.5 cm, marked by grey, blue, and orange
areas, respectively. From the diagram, with the increase of the width of the spiral, the
frequency of the first, second and third band gap decreases gradually, indicating that the
local resonance effect is enhanced. Furthermore, the width of the first and second band
gaps decreases with the increase of the spiral width, and the width of the third band gap is
less affected by the spiral width.

Then, the number of turns of the spiral n is changed to explore its effect on the energy
band. Figure 4 shows the energy band of the spiral structure with a different number of
turns n, where the n = 1, 1.5, and 2, respectively. It can be derived that the frequency of
the first band gap decreases with the increase of the number of turns, which is owing to
the length extension of the spiral structure. In this way, the frequency of the first resonant
mode decreases. Moreover, with the increase of n, the number of local resonant modes
increases, which generates new energy bands and band gaps. When n = 2, there are two
dispersion curves and two local resonant band gaps below 0.5 the normalized frequency.
In the band diagram, there always exists tiny gaps around the reduced frequency 0.55 at K
point, whatever the value of n. It reveals that the tiny gap is owed to the Bragg Scattering
mechanism, which doesn’t show the subwavelength property.
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For the spiral structure with n = 2, we explore the topological characteristics of the
first, second and third band gaps by calculating the Berry curvature of the first, second,
third and fourth energy bands in the first Brillouin zone. The topological properties of
the band gap can be characterized by the topological properties of the upper and lower
band of the band gap. We calculate the Berry curvature Ω =

∫
i∇k × u(k)|∇k|u(k)dk2

through the numerical method [35]. The calculated Berry curvature of the first, second,
third and fourth energy bands is shown in Figure 5. From the Berry curvature distribution,
the first and second energy bands are topological trivial since the Berry curvature across
the whole Brillouin zone is 0. The third and fourth energy bands are topological non-trivial
since there exist extrema near the K, K′ point in the Berry curvature distribution, which is
protected by the valley topology. Therefore, the first band gap between the first and second
energy bands is the topological trivial band gap, indicating no topological edge state. The
second band gap between the second and third energy bands is a topological non-trivial
local resonant band gap, which promises the existence of a topological edge state. The third
band gap between the third and fourth energy bands is a topological non-trivial Bragg
scattering band gap, which also holds the topological edge state.
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To construct the topological edge state with different chiral spiral units, we have
calculated the Valley Chern numbers for different chirality. The Valley Chern numbers
of the third band are calculated by integrating the Berry curvature over a finite square
around the K point. The side length of the finite square is π

a , kx ranges from 5π
6a to 11π

6a and
ky ranges from − π

2a to π
2a . Figure 6 shows the Valley Chern numbers of the left-handed and

right-handed spiral, respectively. The Valley Chern number of a left-handed spiral is 0.2,
shown in Figure 6a, and the right-handed spiral is −0.2, shown in Figure 6b.
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3.2. Topological Edge States

In order to verify the existence of topological edge states, a ribbon-shaped superlattice
in 14a × a is constructed, as shown in Figure 7a. The superlattice is composed of seven
left-handed spiral units and seven right-handed spiral units, and an interface between them
is marked by red lines. The right-handed spiral structure is located above the interface, and
the left-handed spiral structure is situated below the interface. In calculation, the periodic
boundary condition is imposed along the left and right boundary of the superlattice.
The projected energy band of the superlattice in kx direction is shown in Figure 7b. The
grey and red curve is the energy diagram representing the bulk state and the edge state,
respectively. The edge states only exist in the second and third band gap, which don’t
own the subwavelength property. Figure 7c shows the pressure and intensity field on the
interface for the edge mode located in the second band gap when kx = 0.6 π/a. We can find
that the sound pressure field is mainly confined at the interface and decays exponentially
towards the bulk lattice. From the direction of energy flow, it can be derived that the
energy flow propagates to the right along the interface, which is in the same direction as
the wave vector.

In addition, the existence of topological edge states in the ky direction is also verified
by a ribbon-shaped superlattice in 14a × a, shown in Figure 8a. The projected energy band
of the superlattice in ky direction is shown in Figure 8b. The grey and red curve in the
energy diagram represent the bulk state and the edge state, respectively. Figure 8c shows
the pressure and intensity field on the interface for the edge mode located in the second
band gap when ky = π/(

√
3a). We can also find that the edge states exist in the ky direction.

According to the above analysis, the interfaces composed of spiral units sharing
different chirality support the edge state. In order to show the transportation of the edge
state, a straight waveguide in 18a × 20a lattice composed of left-handed and right-handed
spiral units is constructed, as shown in Figure 9a. Sound waves are emitted from the left
side. It can be seen from Figure 9a that the sound waves propagate to the right side along
the straight interface at 3130 Hz within the second band gap and decays exponentially
towards the bulk of the metamaterial. Next, to test the robustness of the edge states, defects
are introduced into the interface. In Figure 9b, a sharp corner is introduced in the zigzag
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interface. It also shows that the edge states can propagate stably along the zigzag interface,
which confirms the robustness of the edge states protected by the chirality.
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intensity field on the interface for the edge states of the second band gap with kx = 0.6π/a. The purple
arrow represents the direction of the energy flow.
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Figure 8. (a) The ribbon-shaped superlattice in a×14a composed of left-handed and right-handed
spiral units. (b) The projected band structure of the superlattice in the ky direction, the edge state
and bulk state are represented by the red curve and gray curve, respectively. (c) The pressure and
intensity field on the interface for the edge states of the second band gap with ky = π/(

√
3a). The

green arrow represents the direction of the energy flow.
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4. Conclusions

In this paper, a chiral spiral acoustic topological insulator based on the Archimedean
spiral scheme is proposed. The topological system does not depend on point group sym-
metry, and the spiral unit cell enjoys subwavelength characteristics which can effectively
lower down the eigenfrequency of the system. The effect of geometric parameters of the
spiral structure on the band gap is studied. It suggests that the rotation angle θ only affects
the third band gap and has little effect on the first and second band gaps. The frequency of
the band gap decreases with the increase of spiral width w, and the first and second band
gaps gradually become narrow. The increase of the number of turns n will not only lower
the frequency of the first resonant mode, but also introduce more eigenmodes, giving rise
to new dispersion curves in band structure. According to the calculated Berry curvature, it
is found that the first band gap is a topological trivial local resonant band gap, the second
band gap is a topological non-trivial local resonant band gap, and the third band gap is a
topological non-trivial Bragg scattering topological band gap. The interfaces composed of
left-handed and right-handed spiral units confirm the existence of the edge state protected
by chirality. Based on this, the straight and zigzag waveguide is constructed, and the edge
states show strong robustness for the propagation at the topological interfaces. Our study
reveals that the valley states do not strongly rely on the point group symmetry, since the
chiral scheme can also generate a topological transition. This strategy lays a new pathway
for the design of topological systems.
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