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A B S T R A C T   

In this study, the nonlinear mechanical behavior and corresponding damage mechanisms of C/SiC composites 
during cyclic loading/unloading tensile tests were studied. Besides, based on the composite microstructure and 
damage mechanisms, the damage evolution model and single fiber unit model are proposed to explain the 
stiffness degradation, inelastic deformation accumulation, and elastic deformation. According to the stiffness 
degradation law, the damage evolution model based on Weibull failure probability is established, which can fit 
damage-strain curves well. Additionally, the single fiber unit model considering the microscopic mechanisms of 
matrix cracking, interfacial debonding, and sliding is established. In the model, the stress distributions before and 
after loading and unloading are analyzed to obtain the elastic strain and inelastic strain formulas of the com-
posite that can perfectly fit the experimental results (R2 > 99.9%). Because the model reflects the deformation 
mechanisms of the composites in a much more simplified way, the deformation and damage law of the composite 
can be well predicted with basic macroscopic parameters such as the composition of the composite, the elastic 
modulus of the fiber, matrix, and composite, the strength of the matrix and the residual thermal stress of the 
matrix.   

1. Introduction 

Carbon fiber reinforced silicon carbide (C/SiC) composites have low 
density, favorable high-temperature mechanical properties, high resis-
tance to corrosion and oxidation, and excellent thermal shock resistance 
[1–3]. As a new type of high-temperature structural material that can 
survive environmental temperatures of up to 1650 ◦C, it has become an 
indispensable material for aerospace components such as aircraft 
brakes, thermal protection systems for space shuttles, and nozzle-throats 
for aerospace engines, etc. 

C/SiC composites overcome the brittleness of monolithic SiC ce-
ramics due to the fiber reinforcement and controlled microstructure. 
Specifically, the introduction of carbon fibers makes the fracture process 
show characteristics of pseudo-plasticity by various mechanisms such as 
fiber debonding, pull out and crack bridging, which greatly improves the 
damage tolerance and reliability of these materials [4]. However, when 
the load exceeds the elastic limit that is far lower than the fracture limit, 

irreversible damage occurs in the form of matrix cracking, interfacial 
debonding, interfacial slip, single fiber, and fiber bundle fracture 
causing a decrease in mechanical properties [5]. As this irreversible 
damage accumulates to the damage tolerance of the material, fatigue 
fracture occurs. 

Due to the generally low elastic limit of C/SiC composites (20 MPa), 
C/SiC composites inevitably suffer different degrees of damage under 
working conditions. Therefore, a damage constitutive model that can 
reflect its nonlinear behavior and damage mechanics is necessary for 
reliability of design and application of C/SiC composites [6–7]. Up to 
now, the damage behaviors and mechanisms of ceramic matrix com-
posites (CMCs) have been widely studied via different methods such as 
in-situ observation, acoustic emission, and X-ray CT imaging [8–10]. 
According to the damage behaviors and mechanisms, a variety of 
constitutive models have been proposed, such as continuum damage 
model (CDM) based on continuum damage mechanics and thermody-
namics [11–12] and micromechanics damage models (MDM) based on 
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mechanical interaction of different components [13–15]. For micro-
mechanics damage models, the single fiber unit model is widely used in 
the mechanical analysis of fiber-reinforced brittle matrix composites, 
because it can reflect those damage mechanisms in a simplified way. For 
example, in the study of Rypl et al., the local equilibrium equation 
reflecting the functional dependence between the random variables such 
as mechanical properties, geometric properties and bonding properties 
of individual fiber and the fiber stress is derived from the single fiber 
unit model, which can well predict the response of composite material 
under uniaxial tensile load by averaging the fiber stress contributions 
[16]. On this basis, the elastic matrix deformations and boundary con-
ditions restricting fiber debonding are considered in Vořechovský’s 
model [17] and this extended single fiber model creates a link between 
the micromechanical formulation of a single fiber bridging action and 
the response of a multiply cracked composite specimen subjected to 
tensile loading [18]. 

These approaches have been able to simulate and predict strain 
response and limit state of composites under uniaxial loading [7,16–17]. 
However, due to the complex microstructure responses and interaction 
of CMCs during the damage process, many parameters in the existing 
models are hard to be determined, which increases the difficulty of 
performance prediction and design optimization [15–19]. Therefore, 
current models need to be simplified on the basis of ensuring accuracy 
via seizing the dominant mechanism, which has been realized in this 
work. 

In this work, C/SiC composites were prepared via repeated impreg-
nation of carbon fiber preforms with polycarbosilane followed by 

pyrolysis. The nonlinear mechanical behavior and corresponding dam-
age mechanisms of the C/SiC composites during the cyclical loading- 
unloading tensile tests were investigated. Based on the damage pro-
cess and its micro-mechanisms, a damage constitutive model for stiffness 
degradation and single fiber unit model for inelastic and elastic strain 
are proposed and exhibit a good correlation with the experimental re-
sults. The single fiber unit model can determine the deformation 
behavior according to basic macroscopic parameters such as the 
composition of the composite, the modulus of the fiber, matrix, and 
composite, the strength of the matrix and the residual thermal stress of 
the matrix, which is beneficial to engineering applications. 

2. Materials and method 

2.1. Raw materials 

The reinforcement used to prepare the 2D C/SiC composites was 
plain carbon cloth of 1 K PAN-based carbon fibers (Toray T300B). The 
tensile strength and elastic modulus of the fibers are about 3000 MPa 
and 200 GPa, respectively. Polycarbosilane, the precursor of SiC matrix, 
with molecular weight ~1300 and softening point ~210 ◦C, was syn-
thesized in our laboratory. The PCS/Xylene solution with a mass ratio of 
1:1 was used to prepare the C/SiC composites. 

2.2. Preparation of 2D-C/SiC composite 

The basic preparation process of the 2D C/SiC composite is shown in 

Fig. 1. Schematic diagram of preparation process of 2D-C/SiC composite. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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Fig. 1. Firstly, the carbon fiber cloth was cut into 200 mm × 200 mm 
pieces, and then twenty pieces cloths were stacked and stitched in Z 
direction with two needles per centimeter. Finally, the preform was 
infiltrated in vacuum and pyrolyzed under inert gas at 1200 ◦C repeat-
edly seven times and the density of C/SiC composites increases to ~1.93 
g/cm3. The detailed preparation parameters were described in Ref. [3]. 

2.3. Test and characterization 

In this work, all PIP C/SiC composite specimens were ground and 
polished. Dog-bone-shaped specimens with geometry as shown in Fig. 2 
were prepared. Both monotonic tensile and cyclical loading-unloading 
tensile tests were performed on a servo-hydraulic testing machine 
Roell-Amsler System Rel 2100 manufactured by Zwick Roell Group, 
Ulm, Germany. The strain of specimens was measured by using an axial 
extensometer 632.27F-30 (MTS Systems, Eden Prairie, MN, USA) Three 
samples per condition were tested with a loading rate of 0.5 mm/min. 
The cyclic loading–unloading tests were performed with a load incre-
ment of 20 MPa per cycle up to final rupture of specimen. More details 
concerning the test machine and test procedure were reported in pre-
vious work [8]. The microstructure and damage morphology of the 
composite were characterized by scanning electron microscope (SEM, 
JSM-6390, JEOL, Tokyo, Japan) and back-scattered electron image 
(BSE). 

3. Results and discussion 

3.1. Microstructure and damage morphology of the C/SiC composite 

Fig. 3(a) shows photographs of the C/SiC composites before and after 
tensile tests and the tensile direction is parallel to x-axis. The micro-
structure of the C/SiC composite is shown in Fig. 3(b). After the pre-
cursor infiltration pyrolysis (PIP) process, the C/SiC composite has a 
dense structure: silicon carbide fills most of fiber bundles and pores 
between fiber bundles and leaves a small number of pores in the inter-
layer area. Fiber bundles are mainly distributed in the horizontal (xy) 
plane. The 90◦ fiber layers are perpendicular to tensile stress and the 
0◦ fiber layers are parallel to tensile stress. There are fewer fibers in the 
vertical (z) direction. The interface between carbon fibers and SiC ma-
trix in the fiber bundles is well bonded. The larger pores between the 
crossing fiber bundles are also well filled with SiC matrix, showing only 
little residual pores. Moreover, due to the low preparation temperature 
and repeated impregnation cycles, possible micro-cracks caused by py-
rolysis shrinkage of precursor and the mismatch of thermal expansion 
coefficient are less present. 

Fig. 3(c-d) show the fracture morphology of the C/SiC composites 
observed from the vertical and horizontal directions and Fig. 3(e) shows 
a higher magnification of the fracture morphology of the 0◦ fiber layers. 
As shown in Fig. 3(c-d), the fracture surface of the C/SiC composite 
shows a stepped morphology, which is mainly caused by the different 
stress states and failure behaviors in the 90◦ and 0◦ fiber layers. 

Different fracture morphologies of the 0◦ fiber layers and 90◦ fiber 
layers indicate different fracture processes and failure mechanisms. As 

shown in Fig. 3(c-d), the fracture morphology of 90◦ fiber layers consists 
of a large number of exposed transverse fibers, and there is no obvious 
fiber debonding or pull-out. Due to the direction of the applied load, the 
fibers in the 90◦ fiber layers are not effectively loaded. In this case, the 
fiber/matrix interface is the weak link of stress transfer due to the much 
lower interface bonding strength (tensile strength) in comparison to the 
tensile strength of the matrix and fiber. Hence, micro-cracks preferen-
tially propagate along the fiber/matrix interface in the 90◦ fiber layers 
and converge with each other to form the fracture surface. It is worth 
noting that although the fiber/matrix interface tensile strength is much 
weaker than the tensile strength of matrix or fiber, the interface is still in 
a strong bonding state, causing the high efficiency of transfer load of 
interfacial shear stress and short pull-out length of fiber in fracture 
morphology (see in Fig. 3(e)). 

As shown in Fig. 3(e), 0◦ fiber layers shows the phenomenon of fiber 
debonding and pull-out, although the pull-out length of the fiber is 
small. Because the fiber/matrix interface without fiber coating cannot 
alleviate the stress concentration through shear deformation, the stress 
in the end of the fibers quickly reaches the strength of the fibers, causing 
fracture of the fibers. As a result, the pull-out length of the fibers is short. 
Overall, the 0◦ fiber layer presents mixed fracture morphology of brittle 
and ductile fracture. 

Obviously, crack propagation and failure occurred in 90◦ fiber layer 
prior to 0◦ fiber layer, showing the characteristics of stratified fracture. 
Moreover, as shown in Fig. 3(d), the crack preferentially propagates 
from the horizontal direction in the interlayer region, forming the 
stepped platforms between layers. This is because some pores in inter-
layer region are hard to be completely filled, leading to residual 
porosity. Due to higher stress concentration, the residual pores facilitate 
crack generation and propagation. 

3.2. Stress–strain curve of C/SiC composites in monotonic and cyclical 
loading/unloading tensile tests 

The tensile stress–strain curves of the specimens in the monotonic 
tensile test and cyclical loading/unloading tensile test are shown in 
Fig. 4(a) and (b), respectively. As shown in Fig. 4(a), the tensile strength 
and elongation of the C/SiC composite are about 215 MPa and 0.48% in 
the monotonic tensile test and the composite exhibits significant 
nonlinear behavior due to the damage evolution process. The tensile 
stress–strain curve can be divided into linear elastic response stage and 
nonlinear elastic response stage. Specifically, below the elastic limit, 
namely matrix cracking stress (σmc = 48.8 MPa), stress increases linearly 
with strain (R2 = 99.9%), whereas above the elastic limit, non-linearity 
with stiffness degradation is observed. 

Fig. 5 shows a schematic diagram of the tensile loading–unloading 
stress–strain curve, illustrating the loading curve, unloading curve, 
elastic modulus, elastic strain (εe), inelastic strain (εp) and hysteresis 
loop of the composite. As shown in Fig. 4(b) and Fig. 5, every time the 
composite is reloaded to higher stresses, new irreversible deformation 
(inelastic strain) happens, and the reloading and unloading curves form 
a hysteresis loop during the unloading–reloading process. The width of 
the hysteresis loop and the new inelastic strain increases with the 
applied stress. 

In the linear elastic response stage, due to the low load, the shear 
stress in the fiber/matrix interface is lower than interfacial bonding 
strength and cannot cause the debonding and pull-out of fibers. Because 
the fiber/matrix interface has not been destroyed, fibers and matrix 
present synergetic linear elastic deformation. Therefore, C/SiC com-
posite shows linear-elastic behavior and constant elastic modulus in the 
initial stage. As shown in Fig. 4(b) however, the loading and unloading 
curves are still not completely overlapped in linear elastic response 
stage, indicating that a small extent of irreversible deformation still 
occurs in this stage. Due to the shrinkage during pyrolysis and thermal 
expansion mismatch during cooling to room temperature, there are 
many inherent defects such as micro-cracks and pores in the matrix. 

Fig. 2. Geometry of the tensile specimen. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Under the action of external stress, the higher stress concentration in 
these defects can cause initiation and propagation cracks, leading to 
irreversible deformation. 

As the tensile stress exceeds matrix cracking stress (48.8 MPa), the 
growing micro-cracks begin to coalesce and form macro-cracks in the 
matrix. With the cracks propagating in the matrix, the stress is more 

borne by the fibers. As the cracks in matrix gradually reach saturation, a 
series of fiber-connected matrix blocks are formed and stress is 
completely borne by the fibers, eventually causing the complete fracture 
of the composite. During this period, the gradual increase of interfacial 
stress causes interface debonding, sliding, pull-out and fracture of fibers. 
All of these damage mechanisms lead to the decrease of effective bearing 

Fig. 3. (a) Photographs of the C/SiC composites before and after tensile tests; (b) microstructure of the C/SiC composite; (c-e) fracture morphology of the C/SiC 
composite after cyclical loading–unloading tensile test. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Z.B. Niu et al.                                                                                                                                                                                                                                   



Composites Part A 161 (2022) 107072

5

area, so the elastic modulus (E) decreases continuously, and the 
stress–strain curve shows nonlinear characteristics. Despite of the 
decrease of elastic modulus, the elastic limit (damage threshold stress) 
will increase, every time the composite is reloaded to the higher stress, 
due to the developed damage. After the composite is further damaged, 
the more stress is transmitted to the fiber through interface bonding and 
interface sliding, leading to the decrease in the load proportion of the 
matrix, so the further cracking of matrix needs more stress. During the 
loading–unloading process, unloading stress–strain curves do not coin-
cide with the loading curves, forming irreversible deformation. Specif-
ically, after loading process, there is more interface debonding, fiber 
fracture, fiber sliding than before. The interface debonding and fiber 
fracture cause the stress release and the fiber sliding causes the frictional 
resistance during deformation. Therefore, the matrix cracks are unable 
to heal during the unloading process. Moreover, the unloading–reload-
ing hysteresis loop width also increases with the applied tensile strength. 
This is a result of the friction resistance caused by the interface sliding 
that delays the strain. The closed area of the hysteresis loop represents 
the work of the friction force. The amount of debonded fibers gradually 
increases with the applied stress, leading to higher friction, which results 
in the gradual increase of the hysteresis loop width. 

In summary, damage in CMCs causes stiffness degradation and in-
elastic strain accumulation, which are the direct reasons for the 
nonlinearity of the tensile stress–strain curve of the composite. There-
fore, in order to characterize the nonlinear mechanical behavior of C/ 

SiC composites, the mechanisms of stiffness degradation and inelastic 
strain accumulation should be analyzed. Thus, the models for their 
quantitative calculation are presented below. 

3.3. Damage evolution model of the C/SiC composite based on stiffness 
degradation 

In the comparison of Fig. 4(a) and (b), it can be seen that the 
monotonic loading curve forms an approximate envelope of the loa-
ding–unloading curve, indicating that there is no obvious new damage 
in the process of unloading and reloading to the original loading point. 
Hence, the damage is function of the strain and applied stress. Consti-
tutive equations of damage and strain can be constructed to characterize 
the damage evolution, which provides a theoretical basis for predicting 
the actual performance and service life of these composites under 
complex loads. 

Based on Lemaitre’s theory of CDMs that ignores the effect of hys-
teresis during unloading and reloading, damage value (d) is defined by 
the decrease of the material’s stiffness [20–23]. As shown in Fig. 4(b), 
the linear-elastic portion remains unchanged when the stress is reloaded 
to the original unloading point, indicating that the elastic modulus is 
also dependent on the strain. Therefore, damage of the composite can be 
calculated by measuring the elastic modulus during the loa-
ding–unloading-reloading cycle. According to Fig. 5, the elastic modulus 
(E) of the damaged composite takes the slope of the connection (A1B1) 
between the unloading point (A1) and intersection point of unloading 
curve and coordinate axis (B1). The tensile damage value (d) can be 
defined as: 

d = 1 −
E
E0 (1)  

where “E” is the instant elastic modulus and “E0” is the initial elastic 
modulus of the composite. 

Fig. 6(a) shows the change of the modulus and corresponding dam-
age value in relation to the strain (ε) during the cyclical loading/ 
unloading tensile test. As shown in Fig. 6(a), with the strain increasing 
from 0.024% to 0.523%, the elastic modulus of the composite decreases 
from 95 GPa to 60 GPa and its damage value increases from 0.002 to 
0.366. According to the trend of the d-ε curve, it can also be divided into 
three stages, corresponding to the linear elastic response stage and 
nonlinear elastic response stage indicating different damage 
mechanisms. 

The damage value starts to increase near the end of the linear elastic 
response stage (<0.057%). During this stage, the damage development 
is mainly associated with matrix cracking. Prior loading, the fibers are in 
a compression state due to thermal stresses during processing. 

Fig. 4. (a): stress–strain curve of the composite in monotonic tensile test (b): tensile stress–strain curve of the composite in cyclical loading–unloading tensile test. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Schematic diagram of the cyclical loading–unloading tensile stress–-
strain curve. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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Therefore, although the damage value is lower, it accelerates to increase 
as the cracks propagate through the matrix, resulting in the observed 
concave d-ε curve in this stage. 

In the nonlinear elastic response stage (0.057%-0.523%), the convex 
d-ε curve indicate the speed of damage accumulation gradually slows 
down. As the matrix cracks propagate, the fibers play a bigger role on 
sustaining the load. This leads to other damage mechanisms like fiber 
debonding, pullout and fracture. As these crack deflection mechanisms 
take place, part of the mechanical energy is dissipated. Therefore, the 
damage development rate reduces until reaching a constant value. In the 
latter part of this stage (0.311%-0.523%), damage value increases lin-
early with strain indicating constant speed of damage accumulation. The 
cracks in matrix have reached saturation and stress is completely borne 
by the fibers until the complete fracture of the composite, in accordance 
to previous observations. 

Fracture-statistics-based approaches are appropriate for modeling 
the defect-induced failure of brittle materials. In this sense, the Weibull 
distribution provides a satisfactory approximation for damage evolution 
of elastic brittle material under uniaxial stress state [21–23]. In the 
model, the defects in composite are randomly distributed in the matrix 
and fiber bundles, and the fracture failure presents the feature of random 
brittle failure. The failure probability of a representative volume 
element containing fibers can be calculated as: 

PFL = 1 − exp
{

−

(
σu

σw

)m }

(2)  

where “σu” is the stress of the composite under tensile load, “σw” is scale 
parameter and “m” is Weibull modulus [23]. 

For the structure of woven CMCs with the number of representative 
volume elements of “n”, it is assumed that the number of failed volume 
elements is “nPFL”, and then the number of intact volume elements is “n 
(1-PFL)”. It is assumed that elastic modulus of the representative volume 
element containing fibers in woven CMCs is “E0”. The load applied on 
the specimen is calculated as: 

F =
∑

i
σiA0 (3)  

where “σi” is the stress in the volume element; “A0” is the area of volume 
element. 

Since the failed volume elements do not bear the load (σi = 0), the 
stress borne by the volume elements with intact fibers is 

σi = εE0 (4)  

where E0 is elastic modulus of volume element; “ε” is the elastic strain of 

volume element. 
Therefore, the load borne by entire composite is 

F = E0εA0(1 − PFL)n = E0εA(1 − PFL) (5)  

where “A” is the total bearing area of the specimen. 
Therefore, the apparent stress applied to the composite is 

σ̄ =
F
A
= E0ε(1 − PFL) (6) 

According to Eq. (1), (2) and (6), the damage value (d) can be 
calculated as 

d = 1 −
E
E0

= 1 −
σ̄/ε
E0

= 1 − PFL = 1 - exp
{

−

(
σu

σw

)m }

= 1 - exp
{

−

(
E0ε
σw

)m }

(7) 

In order to reflect the microscopic damage mechanisms of the com-
posite (see Section 3.2), initial damage and elastic response stage 
without damage should be considered in the damage evolution model by 
introducing initial damage value d0 and location parameter εth. The 
initial damage is normally related to the amount of damage caused by 
pyrolysis shrinkage and thermal stress mismatch during the preparation 
of C/SiC composite. However, due to the difficulty in measuring the 
initial damage in the original composites, this parameter is usually 
assumed as zero. Hence, the damage expression Eq. (5) can be modified 
as 

d = 1 - exp
[

−

(
E0〈ε - εth〉

σw

)m ]

(8)  

where〈〉 is the operator of Macauley brackets: if x ≥ 0, then 〈x〉=x; “εth” is 
the location parameter, if the tensile strain is less than εth, the composite 
only has elastic deformation and do not form damage. 

Because the damage evolution is determined by the strain, Eq. (8) 
can be applied to cyclic loading–unloading tensile process. As shown in 
Fig. 6(b), the “ε-d” curve obtained from the cyclic loading–unloading 
tensile test can be fitted well by Eq. (8), with goodness of fitting of 
99.95%. This shows that the model can reflect the damage evolution law 
of the composites from initial state to fracture failure state. The 
parameter values of location parameter (εth), Weibull modulus (m), and 
scale parameters (σw) reflect the intrinsic properties of the composite 
and can coincide with the damage evolution process of the composite, 
which is analyzed below. 

The location parameter (εth) of the fitting curve is around 0.04% and 
close to the elastic limit (0.056%) indicating that there is no failure of 

Fig. 6. The change of elastic modulus and damage value of C/SiC with strain in cyclical loading–unloading tensile test. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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volume element in elastic response stage. The location parameter 
(0.04%) obtained by fitting the damage-strain curve is slightly lower 
than the elastic limit (0.056%) obtained by stress–strain curve, due to 
the neglect of initial damage in the model. According to the stress–strain 
curve of cyclic tensile, with the increase of maximum strain and damage, 
the elastic limit gradually increases, which is similar to the plastic 
deformation of metal. The increase in elastic strain is mainly due to the 
stress release caused by fiber debonding. In the preparation process, the 
thermal expansion mismatch between fiber and matrix will lead to a 
certain degree of damage in C/SiC composites, so the elastic limit ob-
tained by the fitting model that ignores initial damage is slightly lower 
than the actual value. The value of Weibull modulus (m) and scale 
parameter (σw), obtained by fitting the experimental data, is around 0.81 
and 2662 MPa, respectively. According to the signification of Weibull 
distribution, the value of Weibull modulus reflects the variation trend of 
failure rate of volume element with strain: as the Weibull modulus (m =
0.81) is less than 1, the failure rate decreases with the increase of strain, 
which is consistent with the above analysis on the nonlinear elastic 
response stage: with the strain increasing, damage accumulation grad-
ually slows down and tends to be constant because fibers bear more load 
and suppress crack propagation through debonding, fracture and pull-
out. The scale parameter (2662 MPa) is an order of magnitude higher 
than the tensile strength of the composite material (215 MPa) because 
the composite will fail when reaching the damage tolerance (dcr =

0.366) rather than damage saturation (d = 1). Specifically, when the 
damage value approaches the damage tolerance, the cracks in matrix 
have reached saturation and the stress is mainly borne by fibers. Further 
increasing the load, the inelastic strain of the composites will not occur 
while the rapid spread of matrix cracks and brittle fracture of the fibers 
lead to the failure of composite. 

3.4. Single fiber unit model for the strain of C/SiC composite 

The accumulation of inelastic strain with total strain and the change 
of inelastic strain, elastic strain and total strain with tensile stress are 
shown in Fig. 7(a) and (b), respectively. As shown in Fig. 7(a), inelastic 
strain increases linearly with strain (R2 = 100.0%), indicating that the 
ratio of inelastic strain and total strain is a constant (0.33). Besides, the 
fitting line intersects the positive half axis of the x-axis, coinciding with 
the previous analysis, because there is no inelastic strain at relatively 
lower stress (0.021%). 

To describe the failure process of the composites in Section 3.2, a 
single fiber unit model can be constructed, as shown in Fig. 8. In the 
model, the diameter of the fiber is “df”, which is coated by the matrix 

with a thickness of “(D-df)/2”. The axial direction of the fiber is parallel 
to the applied tensile stress (x-axis). The elastic strain and inelastic strain 
of the composite can be estimated by analyzing the stress distribution in 
fiber, matrix and fiber/matrix interface, before and after loading and 
unloading. 

3.4.1. Construction of single fiber unit model 
Single fiber unit model is a shear-lag model of matrix crack bridging 

by single fiber, which can reflect the stress state and interaction between 
fiber and matrix in the damage process of fiber toughening brittle matrix 
composites. In fact, due to the heterogeneity of fiber reinforcement, the 
properties of fiber, matrix, and interface are random variables related to 
microstructure [16–18]. However, in order to simplify the analysis, the 
basic parameters in the composites are the average values in their sta-
tistical significance which do not affect their physical meaning and 
calculation process.  

(1) Crack spacing in the model 

In the preparation process, due to the mismatch of thermal expan-
sion, residual tensile stress accumulates in the matrix leading to matrix 
transverse cracks. For the model, it is assumed that the cracks are uni-
formly distributed with a spacing of “L” that is the statistical average of 
crack spacing. A very narrow fragment (x0, x0 + dx) of the unit is taken 
for the analysis (see Fig. 8(b)). Assuming that the axial tensile stress 
σm(x) at one end of the matrix (x = x0) is σ0, the corresponding tensile 
force is F1 = πσ0(D2 − d2

f )/4. The tensile force at the other end of the 

matrix (x = x0 + dx) is F2 = π
(

∂σm(x0)
∂x dx+ σ0

)(
D2 − d2

f )/4. The total 

shear force on the fiber/matrix interface is F3 = πdf dxτm where “τm” is 
the shear strength of the interface. According to the force balance of the 
matrix (F2 = F1 + F3), the equation can be simplified as 

∂σm(x)
∂x

=
4df τm

D2 − d2
f

(9) 

Integrating both sides of Eq. (9), stress distribution function of matrix 
can be obtained as: 

σm(x) − σm(x0) =

∫ x1

x0

4df τm(
D2 − d2

f

) dx =
4df τm(

D2 − d2
f

) (x − x0) (10) 

Let x0 and σ(x0) be equal to 0 (σm(0) = 0). When the “x” value is equal 
to the “L”, matrix stress reaches the yield limit (σm(L) = σRu). According 
to Eq. (10), the crack spacing (L) can be calculated as: 

Fig. 7. (a) Change of inelastic strain with tensile strain; (b) change of inelastic strain, elastic strain and total strain with tensile stress. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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L =
D2 − d2

f

4d
×

σRu

τm
(11)  

where “σRu” is yield limit of the matrix.  

(2) Length of the interfacial debonding region in the model 

As the crack propagates, the interaction between the cracks will 
affect the boundary conditions limiting the fiber debonding at crack 
bridge boundaries, and then affect the debonding length [17]. However, 
in order to simplify the model and highlight the main factors, the model 
assumes that the matrix cracks around the infinite fiber are parallel and 
uniformly distributed, so the interaction between the cracks offsets each 
other. 

When the applied tensile stress is “σ”, at the matrix cracks (x = 0 or x 
= L), the normal stress in the matrix is zero (σm(0) = 0), and the applied 
stress is only sustained by the fibers (σf (0) = σD2/df

2). Due to the strain 
mismatch between matrix and fiber, the interfacial shear stress reaches 
the interfacial shear strength (τm), causing interfacial debonding with 
the length of “lc”. According to Eq. (9) and σm(0) = 0, the tensile stress 
distribution of matrix in the debonding region (x∈(0, lc)) is obtained as 
(see Fig. 8(c)) 

σm′ (x) =
4df τm

D2 − d2
f

x (12) 

At the boundary of the debonding region (x = lc), the fiber and the 
matrix keep synergetic elastic deformation and the elastic strain (ε) can 
be calculated as: 

ε =
D2σ

Ef d2 − Em(D2 − d2
f )

(13)  

where “Ef” and “Em” are elastic modulus of fibers and matrix, 
respectively. 

Therefore, at the boundary of the debonding region (x = lc), the 
normal stresses in matrix and fiber are 

σm′ (lc) =
EmD2σ

Ef d2 − Em(D2 − d2
f )

=
Emσ
E0

E0 =
Ef d2 − Em(D2 − d2

f )

D2 (14)  

σf ′ (lc) =
Ef σ
E0

(15) 

By introducing Eq. (14) into Eq. (12), debonding length can be ob-
tained as 

lc =
D2 − d2

f

4d
×

Em

E0
×

σ
τm

= kσ; k =
(D2 − d2

f )Em

4dE0τm
(16)  

3.4.2. Elastic strain function compared with experimental results  

(3) Stress distribution function in matrix and fibers under loading 

Fig. 8. Diagram of single fiber unit model: (a) single fiber unit; (b) the narrow fragment (x0, x0 + dx) of the unit; (c) the stress distribution in the unit after loading; 
(d) the stress distribution in the unit before loading (e) the stress distribution in the unit after unloading. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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When the interface is not completely debonded (L > 2lc), the single 
fiber unit can be divided into the debonding region (0, lc) and the syn-
ergistic elastic region (lc, L-lc). According to the force balance of the 
fiber, the equation of static equilibrium can be simplified as 

∂σf ′ (x)
∂x

=
4τm

df
x ∈ (0, lc) (17) 

Integrating both sides of Eq. (17), the stress distribution function of 
fiber (σf’ (x)) in the debonding region (0, lc) can be obtained as. 

σf ′ (x) − σf ′ (x0) =

∫ x

x0

4τm

df
dx =

4τm

df
(x − x0) x ∈ (0, lc) (18) 

By introducing the initial condition (σf (0) = σD2/d2) into Eq. (18), 
the stress distribution function of fiber in the debonding section can be 
written as (see Fig. 8(c)) 

σf ′ (x) =
σD2

d2
f
−

(
4τm

df

)

x x ∈ (0, lc) (19)    

(4) Elastic strain function under loading 

According to the stress distribution function of matrix (Eq. (12)) and 
fiber (Eq. (19)) in the debonding region, the elastic deformation amount 
of fiber and matrix are calculated as: 

Δlf ′ (lc) =

∫ lc

0

σf ′ (x)
Ef

dx =
σD2

d2
f Ef

x −

(
2τm

df Ef

)

x2

⃒
⃒
⃒
⃒
⃒

lc

0

=

(
D2

d2
f
−

2τmk
df

)
kσ2

λEf
(20)  

Δlm′ (lc) =

∫ lc

0

σm′ (x)
Em

dx =
2dτm

(D2 − d2
f )λEm

x2

⃒
⃒
⃒
⃒
⃒

lc

0

=
2dτm

(D2 − d2
f )λEm

k2σ2 (21) 

The stress of fiber and matrix in the synergistic elastic region are 
equal to that at the boundary of the debonding region, so according to 
Eq. (14) and (15), the elastic deformation of fiber and matrix in the 
synergistic elastic region (lc, L-lc) is calculated as: 

Δlf ′ ′ = Δlm′ ′ =

∫ L− lc

lc

σ
E

dx =
σ
E0

(L - 2kσ) (22) 

In the single fiber unit, the elastic strain of the fiber represents the 
total elastic strain of the unit because the fiber maintains an elastic 
continuum. However, due to the existence of transverse fibers (parallel 
to y-axis direction) and pores, the actual modulus of the composite 
should be “λE0” where “λ” is the apparent coefficient, and the corre-
sponding apparent modulus of the fiber and the matrix are “λEf” and 
“λEm”, respectively. Therefore, the elastic strain function of the com-
posite is 

εe(σ) = Δle

/

L =
(
2Δlf ′ (lc) + Δlf ′ ′

)
/

L =
1

λE0
σ +

E2
m

E2
0Ef λ

×
D2 − d2

f

d2
f

×
σ2

σRu

(23)    

(5) Comparison of elastic strain function with experimental results 

Fig. 7(b) shows the elastic strain–stress curve fitted by the elastic 
strain function. It can be found that the elastic strain function can fit the 
elastic strain–stress curve well (R2 = 100.0%) and the coefficients of the 
quadratic term and the first term in the function are 3.689 × 10-8 MPa-2 

and 8.292 × 10-6 MPa-1, respectively. The elastic modulus of T300 fibers 
and SiC matrix is about 200 GPa and 400 GPa, respectively [22]. Ac-
cording to the density of the fiber preform (ρ = 0.75 g/cm3), the volume 
fraction of fibers is 42%. According to the weight gain of composites 
during PIP process and the density of pyrolysis products of poly-
carbosilane (ρ = 2.7 g/cm3), the volume fraction of SiC matrix is around 
44 % and the residual porosity is about 14%. The diameter of fiber (df) is 

7 μm. According to the volume ratio of fiber and matrix, the diameter of 
single fiber unit (D) is about 10 μm. Based on Eq. (15), the modulus of 
single fiber unit in synergistic elastic region can be calculated as E0 =

302.3 GPa. 
A large number of studies have shown that the elastic modulus of 

dense C/SiC composites is in the range of 90–130 GPa [4–5,9,11]. Ac-
cording to Eq. (23), the actual modulus of the undamaged C/SiC com-
posite should be 120.6 GPa with the apparent coefficient of 0.4, which 
falls within the usual elastic modulus range of C/SiC composites. 
Substituting Ef = 2 × 105 MPa, Em = 4 × 105 MPa, E0 = 3.01 × 105 MPa, 
λ = 0.4, D = 10 μm and d = 7 μm into the quadratic term of elastic strain 
function (εe(σ)), the yield strength of SiC matrix can be obtained as σRu 
= 631 MPa. According to C. Chateau’s study, the strength of SiC is 
around 600–700 MPa proving the single fiber unit model is reasonable 
for C/SiC composites without interface phase [15]. 

According to the Eq. (2) and (3), only when the applied tensile stress 
reaches 299 MPa, the fiber will be completely debonded (2lc = L). Since 
the strength of the composite is only 216 MPa, the composite fails before 
the complete debonding of the fibers (lc < L/2). This can be seen in the 
fracture morphology of Fig. 2 (d). Therefore, the model does not need to 
consider the different stress distribution function after the interface is 
completely debonded (L-2lc < 0). 

3.4.3. Inelastic strain function compared with experimental results 
Using the model, the inelastic deformation after unloading can be 

determined by the stress distribution before loading and after unloading, 
which is analyzed as follows. The mismatch of thermal expansion co-
efficient between fiber and matrix results in the internal stress in the 
preparation process, which determines the stress distribution in the 
composite before loading. When the composite is cooled from the 
preparation temperature to room temperature, the fibers and the matrix 
show different degrees of shrinkage (αmΔT > αfΔT) due to the different 
thermal expansion coefficient (αm > αf). However, due to the mutual 
constraint of the fiber and the matrix through the interface, the fiber and 
matrix actually have the same degree of deformation (e), that is the 
synergistic elastic deformation (αmΔT > e > αf). 

Due to the mutual constraint, the compressive stress in the fibers is: 

Ff =
π
4

d2
f

(
e - αf ΔT

)
Ef (24) 

The tensile stress in the matrix is 

Fm =
π
4

(
D2 − d2

f

)
(αmΔT − e)Em (25) 

Since “Ff” and “Fm” are mutual reaction forces (Ff = Fm), the strain of 
the single fiber unit (e) can be calculated as: 

e =
αf Ef d2

f + αmEm

(
D2 − d2

f

)
ΔT

E0D2 (26)    

(6) Stress distribution function in matrix and fibers before loading 

By combining Eq. (26) and Eq. (25), the tensile stress in the matrix 
can be calculated as: 

σm =

⎛

⎝αm −
αf Ef d2

f + αmEm

(
D2 − d2

f

)

E0D2

⎞

⎠EmΔT (27) 

When the composite is cooled to a certain temperature, that is the 
matrix cracking temperature (Tmc), the tensile stress in the matrix (σm) 
exceeds the yield strength (σRu) of the matrix, causing transverse micro- 
cracks and release of thermal stress. Therefore, the value of “Tmc” can be 
calculated as 

Tmc = Tp −
E0D2σRu

EmEf d2
f (αm − αf )

(28) 
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According to existing reports, the average thermal expansion coef-
ficient (αm) of SiC at 0-1200℃ is around 5.93 × 10-6/K [20–21], and by 
comparison the axial thermal expansion coefficient of carbon fiber can 
be neglected. Therefore, considering the values of “Ef”, “Em”, “E0”, “σRu”, 
“D”, “df”, and “αm” for the composite, the matrix cracking temperature 
(Tmc) is calculated as around 373℃. In fact, due to the stress concen-
tration caused by the inherent defects, micro-cracks will occur when the 
temperature is much higher than 373 ◦C. However, with the temperature 
dropping below 373 ℃, the transverse micro-cracks at the interface will 
reach saturation and be distributed uniformly with the crack spacing of 
“L”. It can be considered that, at matrix cracking temperature, most of 
the thermal stress can be released by the formation of micro-cracks. With 
the temperature further decreasing, the number of cracks will not in-
crease, and the matrix will only release the stress through the growth of 
micro-cracks and interface debonding. Therefore, after the composite is 
cooled to room temperature, a certain degree of residual tensile thermal 
stress (σpre) will still be accumulated in the matrix. Therefore, the stress 
distribution function in matrix and fibers before loading are obtained as 
(see Fig. 8(d)) 

σm(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4df τm

D2 − d2
f

x

⎛

⎝0 < x < l0, l0 =

(
D2 − d2

f

)
σpre

4τmdf

⎞

⎠

σpre (l0 < x < L − l0)

4df τm

D2 − d2
f
(L − x) (L − l0 < x < l0)

(29)  

σf (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4τm

df
x

(

0 < x < l0, l0 =
D2 − d2

f σpre

4τmdf

)

(
D2 − d2

f

)
σpre

d2
f

(l0 < x < L − l0)

4τm

df
(L − x) (L − l0 < x < l0)

(30)    

(7) Stress distribution function in matrix and fibers after loading 

Due to the undamaged interface, the synergistic elastic region (lc < x 
< L-lc) can be restored to the original state (σf = σpre(D2-d2)/d2, σm = σpre) 
after unloading and shows no irreversible deformation. The stress at 
both ends of the debonding region (x = 0 and x = lc) can be determined 
as: 
⎧
⎨

⎩

σf (0) = σm(0) = 0
σm(lc) = σpre

σf (lc) = σpre(D2 − d2)
/

d2
(31) 

Theoretically, if there is no shear interaction between the fiber and 
matrix in the debonding region, then after the external stress is removed, 
the fiber and matrix would recover to their original state. The extended 
fiber segments would shrink back to the matrix, causing the micro- 
cracks to heal. In fact the shear strength of the fiber/matrix interface 
in the debonding section of the model is “τm” as previously mentioned. 
Because the two ends of the debonding region (x = 0 and x = lc) are 
considered as free ends and the fiber has much lower elastic modulus 
than the SiC matrix, both fiber and matrix of the debonding region 
shrink in the direction from the ends to the center during unloading. 
However, the strain of the fiber is larger than that of the matrix, causing 
interface shear stress. Therefore, the stress distribution functions of fiber 
and matrix in the debonding section are (see Fig. 8(e)): 

σm(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−
4df τm

D2 − d2
f

x

⎛

⎝0 < x < lc

/

2 −

(
D2 − d2

f

)
σpre

8τmdf
l0

⎞

⎠

4df τm

D2 − d2
f
(x − lc) + σpre

⎛

⎝lc

/

2 −

(
D2 − d2

f

)
σpre

8τmdf
l0 < x < lc

⎞

⎠

(32)  

σf (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4τm

df
x (0 < x < lc

/

2 −
(D2 − d2

f )σpre

8τmdf
l0)

4τm

df
(lc - x) +

(D2 − d2
f )σpre

d2
f

(lc

/

2 −
(D2 − d2

f )σpre

8τmdf
l0 < x < lc)

(33)    

(8) Inelastic strain function in the model 

According to the difference between the stress distributions before 
loading Eq. (29)–(30) and after unloading Eq. (32)–(33), the deforma-
tion amount of the fiber and matrix in the debonding section are: 

Δlf (lc) =
τm

df λEf
k2
(

σ +
Em

E0
σpre

)

σ (34)  

Δlm(lc) = -
τmd

(D2 − d2
f )λEm

k2(σ +
Em

E0
σpre)σ (35) 

The relative displacement between the fiber and matrix is the crack 
width of the matrix, namely the irreversible deformation of the com-
posite after unloading. Since there is no irreversible deformation in the 
synergistic elastic region, the total irreversible deformation is equal to 
the difference between the deformation amount of fiber and matrix in in 
the debonding section: 

Δlp = 2 × (Δlf (lc) - Δlm(lc)) =
2E0D2k2τm(σ + Em

E0
σpre)σ

λEmEf (D2 − d2
f )df

(36) 

Therefore, the inelastic strain of the composite is 

εp = Δlp

/

L =
Em

λEf E0
×

D2

2d2
f
×

(
σ +

Em

E0
σpre

)

σ

σRu
= α(σ + σ′

pre)σ

α =
EmD2

2λEf E0d2
f σRu

σ′

pre =
Em

E0
σpre

(37)    

(9) Comparison of inelastic strain function with experimental results 

As shown in the Fig. 7(b), the inelastic strain function Eq. (37) can 
accurately fit the inelastic strain–stress curve with R2 of 99.9% and the 
value of “α” and “σpre” are obtained as 2.66 × 10-8 MPa-2 and 54.99 MPa. 
By Substituting Ef = 2 × 105 MPa, Em = 4 × 105 MPa, E0 = 3.01 × 105 

MPa, λ = 0.4, D = 10 μm, d = 7 μm, and σRu = 631 MPa into the 
expression of “α”, the value of “α” is equal to 2.70 × 10-8 MPa-2, which is 
very close to the “α” value obtained by the fitting curve (2.66 × 10-8 

MPa-2), proving the reliability of the single fiber unit model for the C/ 
SiC composite. 

In Broda’s study, the residual stress state of C/SiC composites was 
analyzed by X-ray diffraction [22]. A relation between the bonding 
strength and the residual thermal stresses in C/SiC was observed. After 
cooling down, the residual stress of C/SiC composites with pitch coated 
fibers (ca. 50 MPa) that have stronger interface bonding is much lower 
than that of C/SiC composite with pyrolytic carbon (PyC) coated fiber 
(ca. 110 MPa). In general, strong interface bonding causes more release 
of thermal load by further crack formation during the cooling down of 
the composite. The residual stress in matrix (σpre) obtained by fitting the 
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inelastic strain–stress curve is equal to 54.99 MPa that is close to that of 
the C/SiC composites with pitch coated fibers in M. Broda’s study. This 
is in good accordance with our study since the C/SiC composites in our 
study have no fiber coating, meaning a relatively strong interface 
bonding. According Eq. (23) and (36), compared with fiber, the higher 
volume content and modulus of the matrix mean the lower the ratio of 
inelastic deformation and elastic deformation, which can be proved by 
the comparison with the C/SiC composite prepared by CVI. The C/SiC 
composites in Wang and Mei studies have the same carbon fiber type 
(Toray T300), similar fiber content (40%, 40 ± 2%) and matrix content 
to our study, but the ratio of inelastic deformation to elastic deformation 
is significantly lower (0.34, 0.38) than that in our study (0.5) [4,14]. 
Because the SiC matrix in their C/SiC composites are prepared by CVI 
rather than PIP process and CVI-SiC has the much higher density and 
elastic modulus than that of PIP-SiC, causing the lower ratio. 

In summary, this model considers the influence of fiber debonding, 
interface sliding and matrix cracking on stress and strain and has a good 
fitting effect on the mechanical properties of the C/SiC composites 
without interface phase, reflecting the damage and failure mechanism of 
composites. 

4. Conclusions 

In this study, the nonlinear mechanical behavior and damage 
mechanisms of C/SiC composites prepared by PIP process were inves-
tigated. Based on the damage mechanisms, models for stiffness degra-
dation and elastic and inelastic deformation were proposed. The main 
results are as follows:  

(1) The fracture surface of the C/SiC composite shows a stepped 
morphology with interlayer fracture, which is mainly caused by 
the different stress states and failure behaviors in the 90◦ and 
0◦ fiber layers. In 90◦ fiber layers, the interfaces are the weak link 
of stress transfer causing premature failure, whereas 0◦ fiber 
layers present a mixed morphology of brittle and ductile fracture 
with fiber debonding, pull-out and fracture. 

(2) Damage mechanics in composite such as matrix cracking, inter-
facial debonding and sliding, and fiber fracture causes stiffness 
degradation, inelastic strain accumulation, and hysteresis loop, 
which are the direct reasons for the nonlinearity response as the 
stress exceeds matrix cracking stress. Due to the different damage 
mechanisms, the linear elastic response and nonlinear elastic 
response stages present different damage evolution trends which 
can be fitted by Weibull failure probability (Eq. (8)).  

(3) According to the damage mechanisms including matrix cracking, 
interfacial debonding and sliding, a single fiber unit model was 
established to obtain the elastic and inelastic deformation law of 
the composite. In the model, based on stress distribution during 
processing (Eqs. (10, 27, 29–30)), loading (Eqs. (12, 14, 15, 19)) 
and unloading (Eqs. (32–33)), elastic and inelastic strain for-
mulas (Eqs. (23, 36)) for the composites were proposed. These 
can perfectly fit the experimental results (R2 > 99.9%). The 
model demonstrates the relation between deformation law of the 
composite and the basic macroscopic parameters such as the 
composition of the composite, the elastic modulus of the fiber, 
matrix, and composite, the strength of the matrix and the residual 
thermal stress of the matrix in a simple way. 
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Appendix  

symbol physical quantity symbol physical quantity 

σmc matrix cracking stress εe elastic strain 
εp inelastic strain L crack spacing 
E0 initial elastic module d damage value 
εth location parameter σw scale parameter 
m shape parameter D diameter of the single fiber unit 
df diameter of the fiber σRu yield limit of matrix 
Ef elastic modulus of fibers Em elastic modulus of matrix 
E0 elastic modulus of the unit τm shear strength of the interface 
σf tensile stress of fiber σm axial tensile stress of matrix 
lp debonding length Δle elastic deformation 
Δle irreversible deformation λ apparent coefficient of elastic modulus 
Tmc matrix cracking temperature σpre residual tensile thermal stress  
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