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� Pores and microfractures extrac-

tions by machine learning are

used.

� Microfractures contribute more to

energy storage and seepage than

pores.

� Stress, cementation and corrosion

control the complex geometric

properties.

� Pores and microfractures are

geometrically heterogeneous.

� The development of micro-

fractures and pores are linked

closely.
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This study aimed to carry out the data-driven evaluation of pores and microfractures in

tight conglomerate reservoirs combining machine learning and complex geometric anal-

ysis, then investigate the internal control factors of reservoir damage.

Results show that for the Upper Wuerhe formation of Mahu sag in Xinjiang of China,

the average contribution rate of microfractures to fluid storage and seepage is 7.1 times

that of pores, and microfractures dominate in fluid storage and seepage. Besides, the

average contact probability between microfractures and fluids is 3.0 times that of pores.

Compared with microfractures, pores are more conducive to form a homogeneous distri-

bution of seepage flow and expand the sweep efficiency. On the contrary, microfracture is

the dominant factor to aggravate the heterogeneity of seepage.
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The conclusions will provide crucial theoretical support and practical basis for the

effective exploitation of tight conglomerate oil.

© 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

In the third decade of the 21st century, fossil energy still plays

a key role in the development and progress of human society

[1e5]. Scholars have carried out many useful scientific studies

on the exploration [6e10], development [11e16] and effective

utilization [17e21] of the above types of fossil energy.With the

continuous advancement of unconventional energy explora-

tion and development, tight oil has gradually become an

irreplaceable part of global fossil energy [22,23]. As the largest

conglomerate oil field discovered so far in the world, Mahu

oilfield in Xinjiang has become a crucial replacement area for

increasing reserves and production of unconventional energy

in China. The tight conglomerate reservoir represented by the

Upper Wuerhe formation in Mahu sag has typical character-

istics of mixed rock and mineral, diversified storage and

seepage space, obvious reservoir damage and high difficulty of

exploitation [24e29]. Long term research and practice have

shown that how to accurately characterize the reservoir

spatial characteristics of such rocks has become an important

direction for the investigation on oil storage and flow mech-

anism, and is also a frontier scientific problem in the field of

petroleum geology [30e32]. At the same time, facing the key

problems such as the effective identification and development

mechanism of pores and microfractures in conglomerate,

there is still a lack of effective research ideas, which makes it

difficult to carry out reservoir stimulation, and then seriously

restricts the improvement of oil recovery, so it is urgent to

conduct in-depth research.

Pores and fractures are the common places for the occur-

rence and flow of primary and foreign fluids in rocks, and they

are important attributes of all fossil energy reservoir rocks

[33e36]. For tight conglomerate reservoirs, the formation of

pores and fractures depends on the accumulation and

arrangement of skeletonminerals and interstitial particles. As

the most important reservoir space for hydrocarbon, the

development degree and structural characteristics of pores

will have a decisive impact on the hydrocarbon reserves and

the final upper limit of production [37e40]. At the same time,

microfractures with different sizes and shapes are widely

developed in the dense conglomerate, whichwill undoubtedly

be a “double-edged sword” affecting the exploitation of hy-

drocarbon. For the enrichment and preservation of hydro-

carbon, if the scale of microfracture extends to a certain

threshold step by step, it will lead to the loss of reserves, the

reduction of original hydrocarbon saturation and the decline

of exploitation potential; However, for the effective exploita-

tion of crude fossil hydrogen energy, the development of

microfractures helps to form new seepage channels, so as to

improve the flow performance of hydrocarbon and the final
recovery degree of fluid [41e43]. In addition, the strong het-

erogeneity and anisotropy of microfracture development can

directly affect the displacement efficiency of injection agent

and is also one of the fundamental reasons for the formation

of remaining oil [44e46].

Pores and fractures are two main types of reservoir space

in rocks. Scholars have focused on above two types of reser-

voir space and carried out a set of studies on the qualitative

description and quantitative computation [46e50]. For tight

conglomerate, the role of pores and microfractures in the

whole process of oil exploration and development is different.

Pores mainly play the role of storing hydrocarbon and provide

auxiliary seepage channels for hydrocarbon exploitation; On

the contrary, microfractures mainly provide the core seepage

channel for the efficient transportation of hydrocarbon, and

also provide auxiliary space for the storage of hydrocarbon.

However, if the reservoir space type of rock is mainly pore or

microfracture, which accounts for a large proportion of the

reservoir space type, it would dominate the reservoir and

seepage process of rock at the same time, the contribution

rate of pore and microfracture to reservoir and seepage can

also be calculated quantitatively [51e53]. At the same time,

due to the coexistence of pores and microfractures in rocks,

there must be an interactive mechanism in their develop-

ment, but at present, there is a lack of research in this field.

It is very necessary to extract pores and microfractures in

turn and then conduct in-depth research respectively, which

has indispensable quantitative scientific and engineering

significance for thoroughly clarifying the enrichment and

exploitation of hydrocarbon. However, according to the cur-

rent research status, for the same rock, the research idea of

studying its internal pores and microfractures separately and

exploring the developmentmechanismunder the background

of the interaction between pores and microfractures has not

been paid enough attention, which is the research direction of

this study.

In view of the above research status, the noverty of this

study is reflected in that pores and microfractures in uncon-

ventional hydrocarbon reservoirs are firstly extracted pre-

cisely, the average contribution rates of microfractures and

pores to fluid storage and seepage are figured out and the

development mechanism of the complex geometric proper-

ties of microfractures and pores are finally investigated.
Methodology

Research background

The study area located in Mahu sag, Junggar Basin, Xinjiang,

China. At present, proven oil reserves are 120 million tons.
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Among them, the Permian Upper Wuerhe formation is the

main contributing stratum in Mahu 1 well area [24,25].

According to the logging curve characteristics of well

“K205” inMahu area (Fig. 1), thewhole formation of the oilfield

could be divided into two sets of strata P3W2 and P3W1 for

development. Among them, P3W2 can be subdivided into

P3W21 (hereinafter referred to as W2-1) and P3W2-2 (herein-

after referred to as W22), and P3W1 can be further subdivided

into P3W1-1 (hereinafter referred to as W11) and P3W2-2

(hereinafter referred to as W12).

At present, the method combining horizontal well and

volume fracturing is adopted for development, but the pro-

duction is poor, the recoverable reserves of single well (EUR)

are low (up to 29,000 tons). Preliminary research and engi-

neering practice show that physical and chemical factors such

as water sensitivity, hydration and pressure sensitivity are

important mechanisms that lead to large-scale damage to the

storage and seepage performance of this type of rock and

inhibit the significant increase of its recovery [26,27].

From the perspective of sedimentary geology, the Upper

Wuerhe formation is a set of large lakes transgressive and

retrograde fan deltas, and the reservoir rock is mainly sandy

conglomerate. The reservoir is mainly developed in the

channel of fan delta plain and the underwater distributary

channel of fan delta front [28,29]. Since there are significant

differences in reservoir and seepage space in various types of

conglomerate formed by complex geological processes, there

should also be very obvious heterogeneity in the contribution

rate of pores and microfractures to reservoir and seepage.

Technical route

The technical route is mainly reflected in Fig. 2, which fully

shows the overall context of this research.

Step 1: Image acquisition by field emission scanning elec-

tron microscope (FE-SEM). We made the physical sample of

conglomerate by precision wire cutting and placed it under
Fig. 1 e The geological horizon division of tight conglomerate r

Xinjiang (Well name is “K205”).
the high-resolution FE-SEM to obtain the high-precision rock

backscatter image.

Step 2: Find those easily identifiable pores and micro-

fractures. According to the traditional definition of pores and

microfractures, a series of easily identifiable pores and

microfractures are selected directly by using the method of

manual identification. Take them as research objects to the

segmentation methods of pores and microfractures.

Step 3: Carry out the complex geometric characterization

carefully. The reservoir space of rock is extracted by image

processing, and two types of characterization parameters are

introduced: pore (microfracture) size and geometric shape,

the values of all kinds of parameters are calculated respec-

tively. Among them, the size parameters include two types of

lengths and widths. The first type of length and width in-

dicates maximum Feret diameter (herein referred to as “pore

length” and “microfracture length”) and minimum Feret

diameter (herein referred to as “pore width” and “micro-

fracture width”). The second type of length and width in-

dicatesmajor axis length of fitting ellipse,minor axis length of

fitting ellipse. Geometric parameters include circularity,

aspect ratio (ratio of major axis to minor axis of fitting ellipse),

solidity and tortuosity [54e56].

Step 4: Construct the intelligent recognition model of pore

and microfracture by training above data based on decision

tree (DT) method.

Decision tree (DT) is a type of powerful algorithm for data

classification. It is represented by a tree structure. Leaf nodes

represent classification results, internal nodes describe an

attribute. A path from top to bottom determine a classification

rule. Compared with other classification methods, DT method

has five advantages: (1) DT has strong interpretability, tree

structure can be visualized and rules which are easy to un-

derstand can be generated; (2) The training needs less data and

does not need data normalization. (3) the efficiency is high, and

the cost of using DTmethod is the logarithm of the data points

required for training; (4) Able to process continuous and
eservoir of Upper Wuerhe formation in Mahu 1 well area,
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discrete data; (5) Prior knowledge or domain knowledge other

than training data is usually not required [57,58].

As we know that the most significant difference between

pores and microfractures is nothing more than geometry. In

the third step, the shape factor and solidity are optimized as

the basis for distinguishing pores and microfractures. Taking

the above two types of parameter values of pores and micro-

fractures identified in the second step as independent vari-

ables and the attribute characteristics of pores (set to 0) and

microfractures (set to 1) as dependent variables, 70% of the

data are randomly selected as the training set and the

remaining 30% of the data are used as the verification set.

Using machine learning [59e61], the intelligent identification

model of pores and microfractures could be constructed, and

the verification accuracy can be close to 100%.

Step 5: Use the model to identify the remaining reservoir

space intelligently. Using the intelligent recognition model

established in the fourth step, the complex geometric pa-

rameters of the mixed reservoir space of pores and micro-

fractures extracted in the third step are input to complete the

purpose of extracting individual pores and microfractures in

the remaining reservoir space. The cross-plot figure in the

middle of Fig. 2 shows the identified pores and microfractures

of Upper Wuerhe reservoir.
Finally, Explore the complex geometric characteristics and

coupling development mechanism of pores and micro-

fractures [62e65]. Using correlation trend analysis, the geo-

metric parameters of pores and microfractures are analyzed

by multiple intersection to explore the complex development

characteristics and mechanism of pores and microfractures.
Results and discussion

The representative recognition results of pores and
microfractures

In order to show the geometric characterizations are correctly

collected, the characterization results of the size and geo-

metric parameters of typical pores and microfractures are

displayed (Fig. 3Aea, 3A-b, and 3A-e, 3A-f), which provides

basic data for finding the core parameters to distinguish pores

and microfractures via machine learning method.

The typical recognition results of pores andmicrofractures

based on machine learning model are also shown (Fig. 3Aec,

3A-d, and 3A-g, 3A-h). It could prove that the recognition of

pores and microfratures based on machine learning method

in this study is effective and accurate (Fig. 3).
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Geological and engineering significance of pores/
microfractures

High resolution imaging based on field emission environ-

mental scanning electron microscope is a necessary and

powerful tool for qualitative observation and quantitative

analysis of pore and microfracture characteristics. Fig. 4

shows that a large number of residual intergranular pores

and secondary corrosion pores are developed in the

conglomerate reservoir of each layer of the Upper Wuerhe

formation.

It can be qualitatively seen from the electron microscope

image that the pore size and tortuosity in the layers of P3W21

and P3W22 (Fig. 4-e, 4-f, 4-g and 4-h) are more homogeneous

thanwhich in the layers of P3W11 and P3W22 (Fig. 4-a, 4-b, 4-

c and 4-d). However, the connectivity of the above secondary
Fig. 3 e Size and geometric characteristics of typical pores

and microfractures (A-images of typical microfractures and

pores; B- statistics of size parameters; C- statistics of

geometric parameters).
pores is relatively poor, so it is difficult to build a relatively

stable seepage system in the actual development process.

Fig. 4 also indicates that microfractures are mainly grain

boundary fractures, which constitute the reservoir and

seepage space with significant heterogeneity. But the

contribution rate still needs to be deeply evaluated. Simi-

larly, compared with the layers of P3W11 and P3W22 (Fig. 4a,

b, c and d), the layers of P3W21 and P3W22 have a higher

degree of homogeneity in microfracture size and tortuosity

(Fig. 4-e, f, g and h). In addition, the microfractures are

mostly weak mechanical surface, it is easy to promote the

formation of complex fracture network. So it is expected that

microfractures will dominate the storage and seepage of

hydrocarbon.
Fig. 4 e SEM images of tight conglomerate of Upper

Wuerhe formation.
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In order to understand the contribution rate of pores and

microfractures to hydrocarbon storage and seepage, we

analyze the geological and engineering significance of pores

and microfractures in the Upper Wuerhe formation.

Contribution rate of pore/microfractures to reservoir and
seepage
Due to the different area proportion of pores and micro-

fractures in the reservoir space, their contribution rates to

fluid storage and seepage will be different. For reservoirs with

different layers, the contribution rate of pores and micro-

fractures to the storage and seepage of hydrocarbon is het-

erogeneous (Fig. 5). As for the contribution rate of

microfractures to seepage, W21 is the highest (92.75%), and

the other three layers have little difference, ranking as W11

(85.92%), W22 (83.97%) and W12 (81.64%) respectively. On the

contrary, for the contribution rate of pores to reservoir

permeability, W21 is the lowest (7.25%), and there is little

difference among the other three layers, ranking W12

(18.36%), W22 (16.03%) and W11 (14.08%) respectively. In

addition, the ratio of contribution rate of microfracture and

pore to seepage is W21 (12.8), W11 (6.1), W22 (5.2) and W12

(4.4), with an average value of 7.1.

This shows that for the Upper Wuerhe formation, the

average contribution rate of microfractures to fluid storage

and seepage is 7.1 times that of pores, and microfractures

dominate in fluid storage and seepage.

Contact probability between pore/microfracture and fluid
In fact, reservoir damage essentially comes from the dynamic

contact between external fluid and porous rock. The seam

wall of pore, which is also the mineral surface, is the “direct

contact position” between fluid and rock and the “leading

edge” of the reservoir damage process. Without the deep

participation of external fluid, it is not easy to cause signifi-

cant reservoir damage. Due to the difference of boundary

shape and size between pores andmicrofractures, the contact

probability between oil/water and various pores and micro-

fractures is also different in the process of seepage, which

directly affects the difference of pores and microfractures in

promoting the degree of reservoir damage. In fact, whether
Fig. 5 e The contribution rate of pores/microfractures in

four layers of Upper Wuerhe formation to reservoir and

seepage.
pores or microfractures, the perimeter of their boundaries

directly determines the length of the flow path of fluid in the

rock. For the same sample, the larger the sum of the perimeter

of pores (or microfractures), the higher the probability of

contact between pores (or microfractures) and fluid. There-

fore, this paper proposes that for a specific conglomerate

sample, the sum of the perimeter of all pores (or micro-

fractures) is used to evaluate the contact probability between

pores (or microfractures) and fluid in the conglomerate sam-

ple, and then further explore the difference between pores

and microfractures in promoting the degree of reservoir

damage. It should be noted that, the contact probability

referred here indicates the contact probability in two dimen-

sional surface, which may deviate from the actual contact

probability. In order to narrow the gap between two-

dimensional and actual contact probability, then improve

the accuracy of the results, for different samples from each

layer, we made rock slices from different angles and obtained

the average value of the contact probability between rock and

fluid in each layer. Therefore, the applicability of the results

has been significantly improved.

Similarly, for reservoirs in different geological horizons,

the contact probability between pores/microfractures and

fluid is also heterogeneous (Fig. 6). The ratio of the contact

probability between microfracture/pore and fluid is W21 (4.3),

W11 (2.8), W22 (2.5) andW12 (2.2), with an average of 3.0. This

shows that for the Upper Wuerhe formation, the average

contact probability betweenmicrofractures and fluids is three

times that of pores.

As can be seen from Figs. 5 and 6, it is obvious that

although the average contribution rate of microfractures to

fluid storage and seepage is 7 times that of pores, the

average contact probability between microfractures and

fluids is only 3 times that of pores, not up to 7 times. This

shows that the area (volume) ratio of pores/microfractures

is not equivalent to their contact probability with fluid. This

tells us that for the tight conglomerate reservoir of Upper

Wuerhe formation, although microfractures occupy an ab-

solute dominant position in reservoir permeability (The

ratio between microfractures and pores equals to 8:1), the

role of pores can not be ignored in terms of its contact

probability with fluid which is also the probability of
Fig. 6 e Contact probability between pores/microfractures

and fluid in four layers of Upper Wuerhe formation.
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promoting reservoir damage (the ratio between micro-

fractures and pores equals to 3:1).

Evaluation of homogeneity degree of pore/microfracture size
development
Pore radius and microfracture width are two of the most

common size parameters affecting fluid storage and perme-

ability. The detailed parameters consist of the radius of all

pores and the width of all microfractures in the rock reservoir

of each geological horizon, the ratio of the average value of

pore radius to the maximum value, the ratio of the average

value of fracture width to the maximum value. The above two

types of ratios can indicate the homogeneity of the pore radius

and microfracture width, respectively.

Fig. 7 shows that W21 is the highest (0.172) in terms of

the homogeneity of pore width, and the other three sub

layers are W11 (0.151), W22 (0.144) and W12 (0.116) respec-

tively. For the homogeneity of micro crack radius, W22 is

the highest (0.047), and the other three layers are W12

(0.031), W21 (0.19) and W11 (0.018) respectively. In addition,

the ratio of pore width/microfracture radius homogeneity is

W21 (9.2), W11 (8.4), W22 (3.8) and W12 (3.0), with an average

of 6.1. This shows that for the Upper Wuerhe formation, the

average degree of homogeneity of the pore radius is 6 times

that of microfracture width. This shows that compared with

microfractures, pores are more conducive to form a homo-

geneous distribution of seepage flow and expand the sweep

efficiency. On the contrary, microfracture is the dominant

factor to aggravate the heterogeneity of seepage.

Morphologic homogeneity of pore/microfracture
Similarly, the tortuosity of pores/microfractures is undoubt-

edly one of the most important geometric parameters to

determine the fluid movement path. Based on the traditional

definition of tortuosity, in this study, the ratio of half perim-

eter to the major axis of ellipse is used to represent the tor-

tuosity of pores or microfractures, and then the ratio of the

average value of tortuosity to the maximum value is used to

evaluate the homogeneity of tortuosity.

Fig. 8 shows that in terms of the homogeneity of pore

tortuosity, the overall difference between the four layers is
Fig. 7 e Size development homogeneity of pore/

microfracture in the four layers of Upper Wuerhe

formation.
very small, basically distributed between 0.572 and 0.575. For

the homogeneity of microfracture tortuosity, W22 is the

highest (0.238), and the other three layers are W22 (0.205),

W11 (0.177) and W21 (0.139) respectively. In addition, the

ratio of pore/microfracture tortuosity to homogeneity is W21

(4.1), W11 (3.2), W22 (2.8) and W12 (2.4), with an average of

3.1. This shows that for the Upper Wuerhe formation, the

average degree of homogeneity of pore tortuosity is three

times that of microfracture. Similarly, this proves once again

that compared with microfractures, pores are more condu-

cive to promote the formation of uniform seepage direction

and avoid the formation of water flooding. On the contrary,

microfracture is the dominant factor to aggravate the het-

erogeneity of seepage direction.

It can be seen from the above analysis that, in order to

enhance the recovery of hydrocarbon in the area to be

exploited, we can carry out high-resolution electron micro-

scope imaging of reservoirs in other research areas. Then we

could complete the pores and microfractures identification of

all samples by using the intelligent model constructed in this

study, and form a new database of pores and microfractures.

Besides, we could select the total perimeter and total area of

pores and microfractures as the core parameters to evaluate

the reservoir damage potential quantitatively, so as to

improve the efficiency of exploitation and utilization of

hydrocarbon.

Geometric characteristics analysis of pores/microfractures

In terms of the sedimentary and tectonic evolution history of

the tight conglomerate of the Upper Wuerhe formation, the

formation of multi-scale pores and fractures in the Upper

Wuerhe formation has a significant causal relationship with

the weathering, denudation, transportation, sedimentation,

compaction, and many other geological processes of the

parent rock from the provenance area. In other words, the

characteristics of pores and microfractures indicate the

complexity of geological processes to a great extent. In this

study, through the image analysis of above two types of

lengths and widths, we can get the development character-

istics of pores and microfractures.
Fig. 8 e Morphological development homogeneity of pore/

microfracture in the four layers of Upper Wuerhe

formation.
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The development of pores and microfractures can be

considered to be affected by three main factors: “stress”,

“cementation”, and “corrosion”. Generally speaking, the early

stage of pore and microfracture development is mainly

dominated by compaction and tectonic stress. In the later

stage of development, diagenesis process represented by

corrosion and cementation gradually participated in the

transformation of pores and microfractures, resulting in the

gradual complexity of the geometric characteristics of pores

and microfractures. The greater the effective stress on pores/

microfractures, the higher the reduction of pore/microfracture

size. The stronger the corrosion of the mineral boundary

constituting pores/microfractures, the worse the cementation,

the higher the increase of pore/microfracture size. At the same

time, according to the classical geotechnical mechanics the-

ory, when the development of pores/microfractures is domi-

nated by stress, the length and width of microfractures will

tend to be linearly correlated, and the higher the correlation

coefficient, themore significantly affected by stress. When the

pores/microfractures enter the later stage of development, the

cementation and corrosion are gradually enhanced. At this

time, the size of pores/microfractures is jointly controlled by
Fig. 9 e Correlation analysis of two groups of length parameter

member of Upper Wuerhe formation.
“stress”, “cementation”, and “corrosion”, its length and width

will tend to be non-linear correlation (such as power expo-

nential correlation), and the higher the correlation coefficient,

the more significantly affected by corrosion and cementation.

According to the above basic understanding, the development

mechanism of pores and microfractures in Upper Wuerhe

formation are analyzed below.

As for the layer of W11, the correlation between length and

width in microfractures is slightly higher than that in pores. It

may indicate that the degree of corrosion and cementation

effect in pores is slightly higher than which in microfractures

(Fig. 9). Reservoir cementation degree in pores of W11 is high,

and the grain boundary fractures and pores are relatively

developed (Fig. 10).

As for the layer of W12, the correlation between length and

width in pores is slightly higher than that in microfractures. It

may indicate that the degree of corrosion and cementation

effect in microfractures is slightly higher than which in pores

(Fig. 9). Reservoir cementation degree in microfractures of

W12 is higher than which in the other three layers, and the

grain boundary fractures and pores are relatively developed

(Fig. 10).
s of pores/microfractures in W11, W12, W21 and W22
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Fig. 10 e SEM images of pores/microfractures in W11, W12, W21 and W22 member of Upper Wuerhe formation.
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Overall, as for the layer of W21 and W22, the correlation

between length and width in microfractures is apparently

higher than that in pores. It may indicate that the degree of

corrosion and cementation effect in pores is significantly

higher than which in microfractures (Fig. 9). Reservoir

cementation degrees in pores of W21 and W22 are high but

relatively low in microfractures (Fig. 10).

We summarize the data of the four layers in 3.2 (Fig. 11 and

Table 1). Table 1 shows that for the Upper Wuerhe formation,

the pore development is jointly affected by stress and corro-

sion, while the microfracture development is mainly domi-

nated by stress. For the four layers, there is significant

heterogeneity among them. As to the layer of W12, the square

of the correlation coefficient between the major axis length

and minor axis length of microfractures (0.5194) does not

mean poor correlation since it is based on the statistical

analysis of 18,132 microfractures. So it can still indicate that

there is a significant positive correlation between the major

axis length and minor axis length of microfractures for W12

layer.

It should be noted that for reservoirs at different horizons,

the square of correlation coefficient “R2
” between pore length

(or major axis length) and width (or minor axis length) have

passed the statistical significance test (Figs. 9 and 11 and Table

1), which is fit to the change law of pore morphology during

reservoir deposition and compaction.

There is no doubt that the correlation coefficient between

pore length (or minor axis length) and width (or minor axis

length) can be improved when the original mineral particles

forming the reservoir have good sorting degree and the

geological process is uniform in the critical period of rock

formation.
The coupling development mechanism between pore and
microfracture

As we know, pores and microfractures co-exist in rocks, their

development must be closely related. This coupling develop-

ment mechanism is worthy of further exploration.

Therefore, we analyze the complex geometric character-

istics of pores and microfractures, and try to find the internal

relationship between pores and microfractures in size and

shape development.

The orientation of pores and microfractures directly affects

the anisotropy of seepage direction, and then determines the

final mining effect. Based on the advantage of standard devia-

tion in characterizing the degree of data dispersion, we calcu-

lated the standard deviation of pore/microfracture extension

angle in each field of view. The smaller the standard deviation,

the better the orientation of pores and microfractures.

The heterogeneity of pore aspect ratio can be expressed by

the standard deviation of pore aspect ratio. The larger the

standard deviation, the higher the degree of heterogeneity.

Fig. 12-a shows that the greater the heterogeneity of micro-

fracture extension angle, that is, the worse the orientation of

microfracture, the stronger the heterogeneity of pore aspect

ratio.

Fig. 12-b shows that the stronger the heterogeneity of

microfracture aspect ratio, the weaker the heterogeneity of

pore tortuosity. This shows that there is a reverse promoting

relationship between the heterogeneity of aspect ratio of

microfractures and the heterogeneity of pore tortuosity.

Fig. 12-c and 12-h show that the tortuosity and orientation

of pores and microfractures show a positive correlation trend,

which shows that the tortuosity and orientation of pores and
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Fig. 11 e Correlation analysis of two groups of length parameters of pores/microfractures in the Upper Wuerhe formation.
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microfractures change in the same directionwith the progress

of a series of geological processes such as sedimentation,

structure and diagenesis.

Fig. 12-d shows that the smaller the microfracture shape

factor, the higher the probability of contact with the fluid. This

shows that the more the shape of microfractures deviates

from the circle, the more conducive it is to the spread of fluid.

Fig. 12-e, 12-f, 12-g and 12-i show that the larger the

microfracture opening, the lower the pore aspect ratio, the

lower the ovality, the higher the roundness and the higher the

tortuosity. This shows that there is a reverse promoting
Table 1 e Statistics of correlation analysis results of two group
Wuerhe formation.
relationship between the opening of microfracture and the

change of pore aspect ratio. For conglomerate, when the

average opening of microfractures is large, the roundness and

tortuosity of pores are also high.

In general, the heterogeneous extension angle of micro-

fracture is easy to lead to heterogeneous aspect ratio of pore,

while heterogeneous aspect ratio of microfracture is easy to

lead to relatively homogeneous tortuosity of pore. It can prove

that the development of microfractures and pores in size and

shape has an interactive process, and the control mechanism

is extremely complex (Fig. 12).
s of length parameters of pores/microfractures in Upper
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Fig. 12 e Analysis of coupling development mechanism of pores/microfractures in Upper Wuerhe formation.
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Conclusion

It is concluded that for of the tight conglomerate reservoir of

the Upper Wuerhe formation in Xinjiang of China, the

contribution rate of pore/microfracture to reservoir and

seepage, the contact probability between pore/microfracture

and fluid are heterogeneous in four layers include W11, W12,

W21 andW22. Compared withmicrofractures, pores are more

conducive to promote the formation of uniform seepage di-

rection and avoid the formation of water flooding. On the

contrary, microfractures are the dominant factor to aggravate

the heterogeneity of seepage process.

The development of microfractures and pores in size and

shape has an interactive process. For W21, W22 and W11, the

degree of corrosion and cementation effect in pores is higher

than which in microfractures which is opposite to which in

W12. The heterogeneous extension angle of microfracture is

easy to lead to heterogeneous aspect ratio of pore, while

heterogeneous aspect ratio of microfracture is easy to lead to

relatively homogeneous tortuosity of pore.

Finally, the exact geological significance ofmany geometric

parameters in this paper still needs to be tested or even cor-

rected in many future studies and practices.
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