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ABSTRACT

In this paper, the physical origin of vortex stretching and twisting is theoretically investigated. The effects of inertial and viscous forces are
mainly considered and discussed. Two key conditions, i.e., solid walls and three-dimensional (3D) disturbances, are adopted in three typical
cases. Among them, the first two cases are straight and curved vortex lines at the initial time without any kind of disturbance. The third case
is a straight vortex line at the initial time with introduced 3D natural disturbances. Through experimental observations, numerical simula-
tions, and theoretical analysis in these cases, the first two cases illustrate that the straight or curved vortex lines are still straight or curved at
the next time, respectively, regardless of whether solid walls are introduced. However, the third case clearly shows that once natural distur-
bances are introduced, the straight vortex lines near and at solid walls at the initial time are stretched and twisted mainly by viscous forces,
instead of inertial forces, typically demonstrated by the 3D wake transition of a straight circular cylinder and the transition of the laminar
boundary layer at a flat plate. Accordingly, based on definitions of generation and enhancement in vortex stretching and twisting, it is con-
firmed that the viscous forces with two key conditions are the generation mechanism, while the inertial forces alone are the enhancement
mechanism.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0108594

I. INTRODUCTION

A vortex is a basic kind and, in particular, an existing form of
fluid motion originating from rotating fluid elements. There are so
many kinds of vortices found as organized structures. In the first
example, the typical forms in a bluff body’s wake are the well-known
K�arm�an vortex street alternately shed from a circular cylinder, two
three-dimensional (3D) wake instability modes, i.e., modes A and B,
and the large-scale vortex dislocations.1–5 In the second example, the
common form in the boundary layer is the hairpin(-like) vortex.6,7 In
the last example, helical vortex structures appear in many natural phe-
nomena and structures, typically in the form of Beltrami flows.8–18

Once formed, various vortices occupy only a very small portion of a
flow but play a key role in organizing the flow, such as the sinews and
muscles of the fluid motion19 and the sinews of turbulence.20 The gen-
eration, motion, evolution, instability, decay of vortices, and so on are
all the subject of vortex dynamics.21

In vortex dynamics, it is well known that inertial forces and vis-
cous forces play different roles in the vorticity transport equation.22

The inertial forces mainly lead to vorticity convective transport and

stretching of vortex lines, which intensifies the vorticity. However, vis-
cous forces mainly generate and diffuse vorticity due to the action of
viscosity. In addition, although Coriolis forces and shock fronts
(namely, drastic pressure gradient) when hydraulics jump takes place
can increase the vorticity, they are beyond the scope of the present
paper and are not considered here.

Above all, it is necessary to introduce these different mechanisms
of inertial and viscous forces into the vorticity equation. The
Newtonian fluid used here is incompressible with constant density q
and kinematic viscosity �. The body forces are conservative, which,
therefore, can be simplified as a part of the pressure. There is no heat
transfer in the whole flow field. We, thus, begin with the dimensionless
mass continuity and momentum equations written in an inertial frame
of reference (x, y, and z) (under the proper initial and boundary
conditions)

r � u ¼ 0; (1)

@u
@t

þ ðu � rÞu ¼ Du
Dt

¼ �rpþ 1
Re

r2u; (2)
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where u is the velocity vector with three components, i.e., u, v, and
w along its own coordinates; t is the time; r is the gradient operator
defined by r ¼ @

@x iþ @
@y jþ @

@z k, where i, j, and k are unit vectors

defined as i ¼ ð1; 0; 0Þ; j ¼ ð0; 1; 0Þ, and k ¼ ð0; 0; 1Þ, respectively,
giving r2 ¼ @2

@x2 þ @2

@y2 þ @2

@z2; D=Dt is the Lagrangian derivative; p is

the pressure; and Re is the Reynolds number defined as U1L=�, where
U1 is the characteristic velocity and L is the characteristic length.
Velocities are scaled by U1 and lengths by L.

Then, based on the definition of the vorticity vector, i.e.,
x ¼ r� u, taking the curl of the above momentum equation, Eq.
(2), gives

@x

@t
þ ðu � rÞx ¼ Dx

Dt
¼ ðx � rÞuþ 1

Re
r2x: (3)

This is the general form of the nondimensional vorticity equation.
As stated in previous literature,22 the second term on the left side,
ðu � rÞx, is the convective transport of vorticity. The second from the
last term, ðx � rÞu, represents the stretching of vortex lines. The vis-
cous diffusion of vorticity is represented by the last term,r2x=Re.

Subsequently, as shown in Fig. 1, the nonlinear stretching term,
ðx � rÞu, can be rewritten as follows:

ðx � rÞu ¼ jxj lim
P2P1!0

du
P2P1

¼ jxj lim
dl!0

du
dl

¼ jxj lim
dl!0

duk
dl

þ jxj lim
dl!0

du?
dl

; (4)

where P1 and P2 are two adjacent points on the vortex line with a dis-
tance of dl at the same moments and where du is the relative velocity
at position P2 relative to the velocity at position P1. Consequently, this
local relative velocity vector du can be divided into a component duk
parallel to the vortex line and a component du? perpendicular to the

vortex line. Therefore, in Eq. (4), the term jxj limdl!0
duk
dl represents

the stretching of the vortex line, while the term jxj limdl!0
du?
dl repre-

sents the twisting of the vortex line.
Recently, after introducing two key conditions, it was theoreti-

cally verified that viscous forces have the indirect physical mechanism
of vortex stretching and twisting.23 The first condition is the nonslip

boundary condition at solid walls or the existence of such solid walls
with a large velocity gradient associated with the fluid viscosity. The
second condition is the induction or generation of disturbed vorticity,
which can be attributed to 3D geometric or artificial disturbances or
perturbed velocity due to 3D instability or turbulence. In the immedi-
ate neighborhood of solid walls, where the viscous forces are far greater
than the inertial forces, the local spanwise vortex in shear flows at walls
can be stretched or compressed and twisted by the viscous forces.

Consequently, a more profound physical problem is naturally
proposed. Both inertial forces and viscous forces can produce the effect
of vortex stretching and twisting, regardless of the direct or indirect
effect. From the perspective of the physical mechanism of vortex
stretching and twisting itself, it would be very interesting to determine
the physical source or origin: inertial or viscous forces. In other words,
two opposite processes should be clarified as follows. The viscous
forces initially produce vortex stretching and twisting, and then the
inertial forces reinforce such a physical effect. On the contrary,
the inertial forces initially lead to vortex stretching and twisting, and
the viscous forces, thus, intensify this physical mechanism.

To the best of our knowledge, there is no literature addressing
this physical origin of vortex stretching and twisting owing to inertial
or viscous forces. Therefore, in this paper, the main aim is to explore
this physical origin problem in vortex stretching and twisting. The
central issue is the condition in the transition from the straight vortex
line at the initial time to the curved vortex line at the next time.

II. ANALYTICAL MODEL

As shown in Fig. 1, the spatiotemporal evolution of curved vortex
lines at two consecutive times, t0 and t1, is illustrated. At the initial
time t0, there are the local vorticity vector x0 at position P1 and the
decomposition of the local relative velocity vector du0 along both par-
allel and perpendicular directions at position P2. At the next time t1,
the fluid element at the original position P1 and at the initial time t0
moves to a new position, also marked by the same position P1, because
the fluid element is the same. Moreover, there is a new vorticity vector
x1 and its two orthogonal vector components x1

k andx
1
?.

Then, for analytical convenience, the original vortex equation (3)
can be modified. First, taking into account the decomposition of the
local relative velocity vector du0, vectors in the other two terms in Eq.
(3) can be rewritten as follows:

Dx
Dt

¼ Dx
Dt

� �
k
þ Dx

Dt

� �
?
; (5a)

1
Re

r2x ¼ 1
Re

r2xð Þk þ 1
Re

r2xð Þ?: (5b)

Resultantly, the original vortex equation (3) can then be divided into
the following two parts:

Dx
Dt

� �
k
¼ jxj lim

dl!0

duk
dl

þ 1
Re

r2xð Þk; (6a)

Dx
Dt

� �
?
¼ jxj lim

dl!0

du?
dl

þ 1
Re

r2xð Þ?: (6b)

Moreover, some assumptions are given as follows:

(1) The first-order approximation is adopted when the time step is
small enough, i.e., dt ¼ t1 � t0 ! 0; Dx

Dt ’ x1�x0

dt is assumed

FIG. 1. Schematic diagram of the spatiotemporal evolution of curved vortex lines
(denoted by solid lines) at the initial time t0 and the next time t1. In the meantime,
the fluid particle at the position P1 and at the initial time t0 moves to a new position
also marked by the same position P1 at the next time t1, which is denoted by the
dashed line with arrow.
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accordingly. Furthermore, the relationship between x1 and x0

can be prescribed by x1
k k x0 and x1

??x0, as shown in Fig. 1.
(2) When the distance between P2 and P1 is small enough, i.e.,

dl ! 0, two relationships are assumed, i.e., du0k k x0 and
du0??x0.

(3) The vorticity equation (3) is assumed to be explicitly expressed,
then two terms on the right side are written at initial time t0, i.e.,
½ðx � rÞu�0 ¼ jx0j limdl!0

du0
dl , and

1
Re ðr2xÞ0 ¼ r2x0=Re.

Consequently, Eq. (6) can be rewritten as follows:

x1
k � x0

dt
¼ jx0j lim

dl!0

du0k
dl

þ 1
Re

r2x0ð Þk; (7a)

x1
?
dt

¼ jx0j lim
dl!0

du0?
dl

þ 1
Re

r2x0ð Þ?: (7b)

More specifically, the analytical model for investigating the physical
origin of vortex stretching and twisting is presented as follows:

x1
k ¼ x0 þ dtjx0j lim

dl!0

du0k
dl

þ dt
Re

r2x0ð Þk (8a)

x1
? ¼ dtjx0j lim

dl!0

du0?
dl

þ dt
Re

r2x0ð Þ?: (8b)

This analytical model clearly indicates several following
situations:

(A1) The generation and enhancement of x1
k is mainly determined

by the initial vorticity x0, the vortex stretching term

jx0j limdl!0
du0k
dl and the viscous diffusion term ðr2x0Þk.

(A2) The nonzero vortex stretching or viscous diffusion term
results in x1

k being different from x0 along its own rotational
direction.

(A3) Otherwise, both the vortex stretching term and the viscous
diffusion term disappear, and x1

k is exactly the same as x0.
(B1) However, the generation and enhancement of x1

? is depen-

dent only on the vortex twisting term jx0j limdl!0
du0?
dl and the

viscous diffusion term ðr2x0Þ?.
(B2) Once x1

? ¼ 0, it signifies that the physical effect of vortex
twisting disappears at the next time. Therefore, in the follow-
ing analysis, the generation and enhancement of x1

? is used
to determine whether the vortex line is straight or curved at
the next time.

Based on these descriptions, two definitions of the generation
and enhancement of vorticity are clarified as follows. (1) The term
“generation” indicates the value of vorticity from zero to nonzero,
which is the qualitative variation owing to the appearance of nonzero
vorticity. (2) The term “enhancement” means that the value of vortic-
ity quantitatively varies, such as from 1 to 10.

Similarly, for vortex stretching and twisting, these two concepts
are briefly described. The generation mechanism shows that the vor-
ticity initially begins to change along its rotation axis and develops
from a straight vortex into a curved vortex as time passes. For exam-
ple, as shown in Fig. 1, at the initial time t0, there is ðx0ÞP1 ¼ ðx0ÞP2
first in the same straight vortex line with ðx0 � rÞu0 ¼ 0. And then at
the next time t1, we have ðx1

kÞP1 6¼ ðx0ÞP1 and ðx1
?ÞP1 6¼ 0 with

ðx1 � rÞu1 6¼ 0. However, the enhancement mechanism manifests an
initially curved vortex still twisted at the next time. For example, also
as shown in Fig. 1, at the initial time t0, there is ðx0ÞP1 6¼ ðx0ÞP2 first
in the same curved vortex line with ðx0 � rÞu0 6¼ 0. And then at the
next time t1, we have ðx1

kÞP1 6¼ ðx0ÞP1 and ðx1
?ÞP1 6¼ 0 with

ðx1 � rÞu1 6¼ 0. Accordingly, the generation mechanism is the physi-
cal origin of vortex stretching and twisting, but the enhancement
mechanism is just the sustaining of already generated vortex stretching
and twisting. It should be noted in the above concepts and the follow-
ing analysis that the nonzero vorticity at the initial time t0 is still non-
zero at the next time t1 although this vorticity ultimately dissipates due
to viscous diffusion.

III. RESULTS AND DISCUSSION

The key point in identifying the physical origin of vortex stretching
and twisting is to determine certain conditions in the transition from
the straight vortex into the curved vortex. On the basis of previous
research,23 two introduced conditions, i.e., solid walls and velocity or
vorticity disturbances, are also used here. Different cases associated with
these two conditions are presented. First, two cases without any kind of
disturbance are studied and analyzed. In these two cases, one involves
straight vortex lines at initial time t0, while the other involves curved
vortex lines at t¼ t0. Then, the third case involves the initially straight
vortex lines near the solid walls under 3D natural disturbances.

A. First case: Straight vortex lines at t¼ t0
with no disturbance

1. Infinite flow domain without solid walls

As shown in Fig. 2(a), straight vortex lines in a vortex tube along
the z-axis at t¼ t0 are illustrated with the vortex center at position (x0,
y0). The flow field is infinite without any solid wall. Such straight vor-
tex tube can be generated by the Kelvin–Helmholtz instability in a
strictly two-dimensional (2D) mixing layer, e.g., in the (x, y) plane,
without any disturbance (or turbulence) in the z-axis.22 The local
velocity field around vortex lines is 2D, that is, u0 ¼ ðu0; v0;w0Þ,
where u0ðx; yÞ 6¼ 0; v0ðx; yÞ 6¼ 0 and w0 ¼ 0. The vorticity vector is
obtained as follows: x0 ¼ ðx0

x;x
0
y ;x

0
zÞ, where x0

x ¼ x0
y ¼ 0 and

x0
z ¼ @v0

@x � @u0
@y 6¼ 0. Here, the case with x0

z > 0 is considered and dis-

cussed. The variation in x0
z along both the x- and y-axes is assumed to

be maximal at position (x0, y0) but gradually decays away from the
center due to the fluid viscosity, as shown in Fig. 2(b). Then, the vor-
ticity vector at two successive times, t0 and t1, can be simplified in the
present case as follows, x0 ¼ x0

zk and x1 ¼ x1
k þ x1

?, in which

x1
k ¼ x1

zk and x
1
? ¼ x1

xiþ x1
y j.

For x1
k in Eq. (8a), the stretching and diffusion terms can be

solved. First, the stretching term is given by jx0j limdl!0
du0k
dl

¼ x0
z
@w0

@z k � 0. This shows that the stretching effect disappears.
Then, the diffusion term is expressed by 1

Re ðr2x0Þk ¼ 1
Rer2x0

zk with

r2x0
z < 0 near position (x0, y0) in the viscous fluid, or 1

Re ðr2x0Þk
¼ 0 in the inviscid fluid. This leads to jx1

kj ¼ x1
z � jx0j ¼ x0

z .

For x1
? in Eq. (8b), the twisting and diffusion terms are obtained.

The twisting term is solved as jx0j limdl!0
du0?
dl ¼ x0

z
@u0
@z iþx0

z
@v0

@z j � 0. This result clearly verifies the disappearance of the
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twisting effect. Moreover, in the diffusion term, 1
Re ðr2x0Þ?

¼ 1
Rer2x0

xiþ 1
Rer2x0

y j � 0, regardless of the viscous or inviscid fluid.
This leads to x1

? � 0 or x1
x � 0 andx1

y � 0.
Therefore, it can be obtained that jx1j ¼ jx1

kj ¼ x1
z � jx0j

¼ x0
z , indicating that the vorticity jxj reduces only under the viscous

dissipation effect or remains constant in the inviscid fluid.
These results clearly show that the straight vortex at the initial

time undergoes straight formation at the next time without any
stretching or twisting, but the vorticity decreases due to nonzero vis-
cous diffusion and dissipation of the vorticity or remains constant
indefinitely when the fluid is inviscid.

2. Finite flow domain near solid walls

When solid walls are introduced as the first key condition, as
shown in Fig. 3, two typical flows are analyzed. The first is the flow
past a bluff body, typically a straight cylinder with a circular cross sec-
tion, at low Reynolds numbers before the 3D instability occurs. The
second is the shear flow near solid walls, typically the laminar bound-
ary layer at a flat plate at zero incidence.

In the wake flow of a circular cylinder, as reported in the previ-
ous works,1,5 the near wake is 2D at Re < 140–145. When Re < 50,
the shear flow is attached on cylinder surfaces, with a pair of sym-
metrical vortices on the rear surface. As the Reynolds number
exceeds 50 and increases to 140 � 145, the near wake can be
described by alternately shedding K�arm�an vortices because of the
onset of the wake instability as the manifestation of Hopf bifurca-
tion, as shown in Fig. 3(a). These K�arm�an vortex streets can be dem-
onstrated by isosurfaces or contours of spanwise vorticity. Among
them, x0 ¼ �jx0

z jk holds in the clockwise primary vortex shedding
from the upper side of the cylinder, while x0 ¼ þjx0

z jk holds in the
anticlockwise spanwise vortex shedding from the lower side of the
cylinder.

In the laminar boundary layer at a flat plate with zero incidence,
as already presented in Ref. 24, the shear flow is stable and 2D before
the appearance or introduction of disturbances, such as the instability
of traveling, 2D Tollmien–Schlichting (T–S) waves or unsteady, lami-
nar, and 3D waves due to secondary instabilities, as shown in Fig. 3(b).
Here, because the nonuniform streamwise velocity U(y) increases
along the vertical distance y away from the plate at y¼ 0, then,
x0 ¼ �jx0

z jk appears in the whole laminar boundary layer, and the
vorticity jx0

z j gradually decreases with increasing y.
A similar analysis can also be carried out in both typical flows.

Similar features in the distributions of velocity vector u0 ¼ ðu0; v0;
w0Þ and vorticity vector x0 ¼ ðx0

x;x
0
y ;x

0
zÞ are presented as follows:

(1) w0 ¼ x0
x ¼ x0

y ¼ 0; (2) u0ðx; yÞ 6¼ 0 and v0ðx; yÞ 6¼ 0 in the near
wake; or (3) u0ðyÞ ¼ UðyÞ and v0 ¼ 0 in the laminar boundary layer;
(4) then, x0

z 6¼ 0. Therefore, similar conclusions, as stated in detail in
the above subsection, can be made, particularly for the remaining dis-
appearance of the twisting term and x1

?.
In summary, whether solid walls are introduced or not, under

present circumstances (i.e., without any kind of disturbance), the

FIG. 2. Sketches of (a) a straight vortex tube with its rotational direction along the
z-axis, i.e., x0 ¼ ð0; 0;x0

zÞ, in the infinite flow region at the initial time t0 and with
the vortex center at position (x0, y0) and (b) its amplitude x0

z varying along the x- or
y-axis.

FIG. 3. Sketches of straight vortex tubes in (a) the near wake of 2D bluff body at
low Reynolds numbers and (b) the laminar boundary layer at a flat plate without
any disturbance.
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straight vortex line at t¼ t0 is still straight at t¼ t1 with the absence of
any vortex stretching and twisting.

B. Second case: Curved vortex lines at t¼ t0
with no disturbance

1. Infinite flow domain without solid walls

For the convenience of analysis, and without loss of generality, as
shown in Fig. 4, some assumptions in the analysis of the curved vortex
line at t¼ t0 are presented as follows:

(1) The analyzed fluid element at position P1 in Figs. 1 and 4 is
located at the origin of the Cartesian coordinate system, i.e.,
ðx ¼ 0; y ¼ 0; and z ¼ 0Þ.

(2) The direction of vortex vector x0 at position P1 is aligned to
the þz-axis.

(3) The curved vortex line between two positions P2 and P1 is
located in the (y, z) plane.

Similarly, this curved vortex line can be generated in the 3D mix-
ing transition, typically in the appearance of helical pairing.22,25 Some
experiments indicate the presence of longitudinal vortices stretched
into “hairpins” between the Kelvin–Helmholtz spiral vortices.

Then, the velocity and vorticity fields at t¼ t0 around the curved
vortex line are typically 3D. As shown in Fig. 4, the velocity vector
near position P1 is almost 2D, i.e., ðu0ÞP1 ¼ ðu0; v0; 0ÞP1, associated
with the local vorticity vectors x0 ¼ x0

zk (x0
z > 0) and x0

x ¼ x0
y ¼ 0

at position P1, based on the above assumptions. However, near posi-
tion P2, the curved vortex line between positions P2 and P1 leads to
the vorticity vector at position P2; x0

P2, slightly skewed away from the
direction of x0 at position P1 in the (y, z) plane, as shown in Fig. 4.
Correspondingly, at position P2; x0

y is nonzero, while x0
x is still

zero, then, x0
P2 ¼ ðx0

yÞP2jþ ðx0
zÞP2k. Consequently, the local velocity

vector near position P2 by Biot–Savart induction is certainly
3D because of the appearance of nonzero spanwise velocity, i.e.,
ðu0ÞP2 ¼ ðu0; v0;w0ÞP2.

At the next time t1, the relationships between x0 and x1 for the
fluid element of P1 are still valid: x0 ¼ x0

zk and x1 ¼ x1
k þ x1

?,
where x1

k ¼ x1
zk andx

1
? ¼ x1

xiþ x1
y j.

For x1
k in Eq. (8a), the stretching and diffusion terms can be

analyzed similarly as follows. First, the stretching term is given by

jx0j limdl!0
du0k
dl ¼ x0

z limdl!0
ðw0ÞP2
dl k ¼ x0

z
@w0

@z k 6¼ 0. This shows that
the stretching effect still exists. Then, the diffusion term is expressed
by 1

Re ðr2x0Þk ¼ 1
Rer2x0

zk 6¼ 0 in the viscous fluid, or 1
Re ðr2x0Þk

¼ 0 in the inviscid fluid. This leads to jx1
kj ¼ x1

z 6¼ jx0j ¼ x0
z .

For x1
? in Eq. (8b), the twisting and diffusion terms are obtained

as follows. The twisting term is given by

jx0j limdl!0
du0?
dl ’ x0

z
@u0
@z iþ x0

z
@v0

@z j. If there is no twisting term, spe-

cific conditions, @u
0

@z ¼ 0 and @v0

@z ¼ 0, should be satisfied at the same

time. The definition of xz ¼ @v
@x � @u

@y gives
@x0

z
@z � 0. Moreover, x0

x ¼ 0

in the present curved vortex line in the (y, z) plane gives @x0
x

@x ¼ 0.

The relationship, r � x ¼ 0, thus, gives
@x0

y

@y ¼ 0. The situation with
@x0

y

@y ¼ 0 between positions P2 and P1 is inconsistent with the present

curved vortex line, in which x0
y at P2 appears while x0

y at P1 disap-

pears. Therefore, this paradox verifies that the twisting term always
exists in the present case. In the diffusion term, 1

Re ðr2x0Þ?
¼ 1

Rer2x0
y j appears in the viscous fluid or disappears in the inviscid

fluid. Finally, this leads tox1
? 6¼ 0.

These results clearly show that the curved vortex at the initial
time keeps the curved formation at the next time with certain vortex
stretching and twisting.

2. Finite flow domain near solid walls

Similarly, two typical flows, i.e., the wake flow of a bluff body and
the boundary layer at a flat plate, are discussed here, as the first intro-
duced key condition of solid walls. The term “no disturbance” in the
present subsection means that once vortex lines are curved or twisted,
no artificial or natural disturbance is introduced. Only the curved vor-
tex lines at two adjacent times t0 and t1 are presented and discussed.
Besides, as pointed out by Gresho,26 improper initial and boundary
conditions in numerical simulations will result in spurious solutions or

FIG. 4. Schematic diagrams of (a) a curved vortex line at the initial time t0 with the
specific Cartesian coordinate system (x, y, and z) established at position P1 and the
local velocity distributions near positions P1 and P2, where two thick and short line
segments indicate the local vortex lines at positions P1 and P2, respectively and (b)
the decomposition of vorticity vector at position P2.
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unreal flows, particularly in the wake of a bluff body.4,5 To avoid the
great influence of initial conditions on numerical results, the computa-
tional time is long enough until the wake flow is fully developed. In
order to minimize the effect of boundary conditions (especially out-
flow boundary conditions) on simulations, the computational domain
is large enough. These independence studies are already carried out
and reported in the previous works.4,5

In the near wake of a circular cylinder, as the first example, the
first 3D instability mode, i.e., pure mode A without the interference of
vortex dislocations, is presented. As already reported in the previous
works,5 the second critical Reynolds number of approximately 195
denotes the transition from the initially generated pure mode A to the

fully developed pure mode A. In the full development stage, as shown
in Fig. 5 through direct numerical simulations (DNS), pure mode A
can be described by alternately shedding primary vortices wavily
twisted across the span.1–4 At two typical times T0 and T1, as shown in
Fig. 5(a), vortex lines in different shedding spanwise vortices are
always twisted across the span, as shown in Figs. 5(c) and 5(d). On the
other hand, as shown in Fig. 5(b), as an example, curved vortex A at
present T0 will become curved vortex B at the next T0 after a whole
shedding period. Moreover, the isosurface of vortex B with xz ¼ 0:5
is notably smaller than that of vortex A because of the viscous diffu-
sion and dissipation. These results clearly demonstrate that in the near
wake far away from the cylinder, inertial forces lead to curved vortices
continuously stretching and twisting over time, while viscous forces
mainly result in vorticity diffusion and dissipation.

In laminar and turbulent boundary layers at a flat plate, as the
second example, there are several models for describing the 3D shape
of eddies as typical coherent structures,27 which is typically the pre-
dominant role of Townsend’s attached eddies.28 The most widespread
model is probably the hairpin vortex paradigm, which advocates for
attached loop-like vortices or hairpin vortices. The classic hairpin vor-
tex paradigm was originally proposed by Theodorsen,6 as shown in
Fig. 6(a). Under the present circumstances, such a hairpin vortex is
assumed to be simplified as a vortex line in the center of the hairpin
vortex, as shown in Fig. 6(b). Moreover, the local coordinate system
ðx0; y0; and z0Þ is established at the top of the head, as shown in Figs.
6(b) and 6(c). The local head and adjacent leg are assumed to be in the
local (y0, z0) plane. Therefore, the analysis presented in the infinite

FIG. 5. (a) Schematic diagram of lift coefficient CL along with time, where T0, T1,
T2, and T3 are four typical times in a whole shedding period. (b) Isosurfaces of
dimensionless spanwise vorticity xz ¼ 60:5 (red/blue) in the near wake at t¼ T0,
typical vortex lines at (c) t¼ T0 and (d) t¼ T1 in shedding primary vortices at
Re ¼ 195 and nondimensional axial cylinder length LZ of 4 through DNS,4 where
the background at z¼ 0 is illustrated by contours of xz with legend in figure (d),
and the cylinder is denoted by the gray translucent surface. The incoming flow is
from left to right.

FIG. 6. (a) Sketch of Theodorsen’s hairpin vortex paradigm.6 Simplified schematic
diagrams of Theodorsen’s hairpin vortex as a vortex line located in the center of
hairpin vortex from (b) the top view and (c) the side view, where local system
ðx0; y0; and z0Þ locates at the head, and dashed line in figure (c) denotes the vortex
line slanted downstream.
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flow domain can be used in this local vortex line. This result indicates
that such a hairpin vortex maintains its curved formation at the next
time, before the vorticity totally vanishes.

In summary, whether solid walls are introduced or not, under
present circumstances (i.e., without any kind of disturbance), the
already curved vortex line at t¼ t0 is still curved at t¼ t1 with the exis-
tence of local vortex stretching and twisting effects, mainly due to iner-
tial forces, before its vorticity completely dissipates.

C. Third case: Straight vortex lines at t¼ t0
with introduced disturbances

Some conditions in the present analysis are prescribed as follows.
First, it should be stated that in the present subsection, the invis-

cid fluid is not taken into account. The physical reason is mainly
attributed to the free-slip boundary condition of the introduced dis-
turbed velocity or vorticity. For example, in the circle region of
x2 þ y2 ¼ r2 � 1, the nonzero disturbed spanwise velocity w0 along
the z-axis is introduced into the original 2D velocity field ðu0; v0Þ in
the (x, y) plane at the initial time t¼ t0, e.g., w0 ¼ 1 at r � 1 and
w0 ¼ 0 at r> 1. Because of the inviscid fluid and the resultant disap-
pearance of shear stress at the radial boundary of such a circular region
r¼ 1, there exists a discontinuous gradient, i.e., @w

0

@x ¼ @w0

@y ¼ 0 if r 6¼ 1
but @w

0

@x ¼ @w0

@y ! 1 when r¼ 1. Consequently, based on the definition
of the vorticity vector, there is a singularity in the induced streamwise
vorticity x0

x ¼ @w0

@y and vertical vorticity x0
y ¼ � @w0

@x at r¼ 1. A similar
situation also occurs in the boundary of the introduced vortex with a
certain size and vorticity when the viscosity and consequent viscous
diffusion vanish. Once the fluid viscosity is introduced, such singular-
ity trouble in vorticity distribution disappears. Hence, only viscous
flow is analyzed and discussed in the following context.

Then, the finite flow domain with solid walls is the main concern
here. The main reason is that twisted vortices in the flow region far
from solid walls are diffused and dissipated due to the action of viscous
forces, as well as disturbed vorticity temporarily introduced, from the
above-stated analysis and Fig. 5(b) as an example.

Accordingly, the focus is mainly placed on the immediate neigh-
borhood of solid walls. Here, three velocity components in the local
velocity field are assumed to have the same magnitudes, i.e.,
u � v � w. Then, the magnitude of inertial forces is approximately
u2=Dy, where Dy is the normal height of the local flow region away
from the solid surface, while the magnitude of viscous forces is approx-
imately u=ðReDy2Þ. When viscous forces are far greater than inertial
forces, then Dy 	 ðuReÞ�1, i.e., in the immediate neighborhood of
solid walls. When the height Dy exceeds ðuReÞ�1, viscous forces are
gradually weakened and inertial forces become dominant.

In the present subsection, two typical flows are also illustrated to
present the process of 2D straight vortex lines twisted to be 3D curved
vortex lines. One is the 3D wake transition of a straight circular cylin-
der. The other is a transition in the boundary layer.

Finally, natural disturbances are mainly considered and discussed
here, such as perturbations due to 3D instability or turbulence.
However, for artificial disturbances, such as geometric disturbances
introduced in square section cylinders29 and circular section cylin-
ders30 at Re ¼ 100, the original 2D wake flow becomes 3D wake flow,
similar to the appearance of pure mode A,4 as shown in Fig. 5(b), or
even the complete suppression of K�arm�an vortices.

Consequently, analytical results in the previous work23 can be
applied here. Under the condition of Dy 	 ðuReÞ�1, only viscous
forces in the vorticity equation, Eq. (3), are applied first, i.e.,r2x ¼ 0.
At the initial time t0, there is no disturbance in original 2D shear flows
with ðx0 � rÞu0 ¼ 0. After a kind of disturbance is introduced at the
next time t1, 3D vorticity field then appears although the theoretical
analysis is carried out in the steady flow.23 Once this 3D vorticity field
x1 is generated, there are x1

k 6¼ x0 and x1
? 6¼ 0. In the meantime,

although inertial forces are neglected in this flow region
Dy 	 ðuReÞ�1, they still exist but are physically small. This 3D vortic-
ity field x1 obtained by only viscous forces leads to nonzero vortex
stretching and twisting appearing, i.e., ðx1 � rÞu1 6¼ 0 in the disturbed
flow region Dy > 0. It further results in x1

k 6¼ x0 and x1
? 6¼ 0. It

should be mentioned here that, in this work,23 when the vertical dis-
tance Dy becomes zero at solid walls, the theoretical vorticity distribu-
tion clearly illustrates x1

k 6¼ x0 and x1
? 6¼ 0, while ðx1 � rÞu1 ¼ 0

and ðu1 � rÞx1 ¼ 0. This means that the original 2D vortex line at
solid walls is stretched and twisted by only viscous forces with 3D dis-
turbances, while inertial forces always disappear at solid walls and,
thus, have no physical effect on the vortex stretching and twisting.
This is a key feature in that the origin of vortex stretching and twisting
is determined by viscous forces rather than inertial forces. As time
passes and the vertical distance Dy increases, vortex stretching and
twisting due to inertial forces are gradually dominant.

1. 3D wake transition of a straight circular cylinder

Different from the previous Reynolds number range of Re
< 140–145 in Sec. IIIA 2, the Reynolds number in the present analysis
exceeds 140–145, in which 3D instability occurs first near cylinder sur-
faces.5 With increasing Reynolds number, originally 2D or straight
vortex lines near cylinder surfaces become 3D or curved vortex lines,
remarkably indicated by the appearance or generation of streamwise
and vertical components of vorticity, i.e., xx and xy. The initial stage
of such a 3D vortex structure in a 2D boundary layer separation flow
was first investigated by Yokoi and Kamemoto.31,32 The wavy separa-
tion line on the surface of a circular cylinder is observed in the experi-
ments, as shown in Fig. 7(a). Correspondingly, the laminar boundary
layer is wavily separated from the side of a separated region. It is
clearly shown in Fig. 7(a) that the originally parallel surface stream-
lines in the upstream region, illustrated by solid lines, become 3D after
leaving the surface, and the distances between neighboring streamlines
become either wider or narrower. This indicates that the spanwise
velocity appears near such a wavy separation line, associated with
skewed streamlines along the z-axis. Consequently, according to the
definition of the vorticity vector,xx andxy are generated behind those
wavy separated regions.

Moreover, in the Reynolds number range from 145 to 195, the
initially generated stage of pure mode A gradually appears through
DNS, as reported in recent work.5 The main characteristics in the pre-
sent stage are vortex lines in primary vortex cores still almost 2D or
straight, as shown in Fig. 7(b) or 7(c) at Re ¼ 190, compared with
those in the fully developed stage in Fig. 5(c) or 5(d) at Re ¼ 195.
Another prominent feature, different from the flow at Re < 140, is the
initial generation of streamwise and vertical components of vorticity
on the cylinder surface, typically as shown in Figs. 7(d) and 7(e).
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These results agree well with the above statements in Yokoi and
Kamemoto.31,32

Therefore, both experimental observations and DNS confirm
that the original 2D or straight vortex lines become 3D or curved vor-
tex lines first near cylinder surfaces due to 3D instability associated
with the generation of streamwise and vertical vorticities.

2. Transition from 2D steady flow to 3D vortex
structures in the boundary layer

Generally, the experimental results demonstrating the appear-
ance of hairpin vortices are shown in the basic sketch in Fig. 8. The
transition in the laminar boundary layer is initially governed by stable
laminar flow, the instability of traveling, 2D T–S waves, primary stabil-
ity theory, and the appearance of unsteady, laminar, and 3D waves

due to secondary instabilities and a characteristic K-structure vortex
formation,24,33 as shown in Fig. 8. The 3D disturbance with increasing
T–S instability waves leads to the formation of streamwise vortex pairs
in the viscous sublayer.34 This periodic distribution of streamwise vor-
tex pairs along the span further results in the redistribution of the
streamwise velocity along the span, forming staggered streaks with
high and low speeds in the buffer region.35 The streaks and the vortices
are involved in a self-sustaining nonlinear cycle.36,37 Moreover, the sig-
nal of velocity fluctuations is characterized by so-called spikes, which
denote the appearance of local high shearing regions together with the
point of inflection velocity profiles. With increasing disturbance,
streamwise vortex pairs around low-speed streaks develop into a
horseshoe vortex.38 The horseshoe vortex can be lifted up under the
vortex-induced vortex mechanism owing to viscous forces through
theoretical analysis7 and, thus, becomes a hairpin vortex.

Accordingly, both experiments and theoretical analysis clearly
illuminate that 3D disturbances lead to the original 2D vortex lines in
stable laminar flow being 3D with the appearance of a lifting-up hair-
pin vortex, also accompanied by the generation of streamwise and ver-
tical components of vorticity, as shown in Fig. 6(b).

In summary, through analysis in flows past a straight bluff body
or a flat plate at zero incidence, it is clarified that 3D natural disturban-
ces are one of the key conditions in the transition from the 2D flow
state to the 3D flow state as well as the transition from straight vortex
lines to curved vortex lines. Based on the indirect physical mechanism
of viscous forces in vortex stretching and twisting,23 these phenomena
are closely related to solid walls, 3D disturbances, and fluid viscosity.

IV. CONCLUSIONS

In this paper, the physical origin of vortex stretching and twisting
is theoretically investigated and discussed in detail. In the present fluid
dynamic system, such as incompressibility of the fluid and conserva-
tive body forces, only inertial and viscous forces are considered and
analyzed as generation or enhancement mechanisms in vortex stretch-
ing and twisting. Two key conditions, namely, solid walls and 3D dis-
turbances, are introduced, as reported in the previous work.23 Three
different cases are analyzed according to whether 3D disturbances are
introduced. Moreover, the analysis in two typical flows, namely, the

FIG. 7. (a) Schematic diagram of the 3D separation from a circular cylinder,31,32 where symbols 
 and � denote upstream and downstream singular separation points with
zero shear stress at walls, respectively. In the near wake of a circular cylinder at t¼ T0, Re ¼ 190 and dimensionless axial cylinder length LZ ¼ 4 through DNS,5 (b) isosurfa-
ces of nondimensional spanwise vorticity xz ¼ 60:5 (red/blue), (c) typical vortex lines in primary vortex cores and contours of dimensionless additional vorticities, (d) xx

(with 60.01, 60.02, and 60.04), and (e) xy (with 60.02, 60.04, and 60.06), on the rear surface of cylinder. Note that in figures (b) and (c), the cylinder is denoted by the
gray translucent surface, the free stream is from left to right, and the background at z¼ 0 is demonstrated by contours of xz. And in figures (d) and (e), the dash dot line
denotes the wake center plane of y¼ 0, and solid and dashed lines denote positive and negative values of additional vorticities, respectively.

FIG. 8. Schematic diagram of the formation of T–S waves and horseshoe and hair-
pin vortices in the transition of the laminar boundary layer of a flat plate at zero inci-
dence,24,33 where Recrit is the critical Reynolds number with the occurrence of
transition.
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near wake of a bluff body and the boundary layer at a flat plate, is also
carried out, as in typical cases with the introduction of solid walls.

The first case is the straight vortex line at the initial time without
any kind of disturbance. Through theoretical analysis and experimen-
tal observation, whether solid walls are introduced or not, the straight
vortex line at the initial time is still straight at the next time with the
absence of any vortex stretching and twisting.

The second case is the curved vortex line at the initial time with-
out any kind of disturbance. According to theoretical analysis, experi-
ments, and numerical simulations, it is confirmed that whether solid
walls are introduced or not, the already curved vortex line at the initial
time is still curved at the next time with the existence of local vortex
stretching and twisting effects, mainly due to inertial forces, before the
vorticity totally dissipates due to the action of fluid viscosity.

The key analysis is the third case with the straight vortex line at
the initial time under 3D natural disturbances, coupled effects of solid
walls, and viscous forces. The 3D wake transition of a straight circular
cylinder is analyzed through experimental observations and direct
numerical simulations, and the transition of the laminar boundary
layer at a flat plate is also presented by experiments and theoretical
analysis. It is verified that 3D natural disturbances are one of the key
conditions in the transition from straight vortex lines to curved vortex
lines. By means of the indirect physical mechanism of viscous forces in
vortex stretching and twisting,23 these 3D transitional phenomena are
closely related to solid walls, 3D (natural or artificial) disturbances,
and fluid viscosity. Particularly, at solid walls, the vortex stretching
and twisting still can be generated by viscous forces with 3D disturban-
ces, but inertial forces totally disappear.

Consequently, according to the above analysis of 3D transitional
phenomena mainly appearing in the immediate neighborhood of solid
walls, where viscous forces are greater than inertial forces, it is clarified
that viscous forces coupled with two key conditions are the generation
mechanism of vortex stretching and twisting, while inertial forces
independent of two key conditions are the enhancement mechanism
once the vortex stretching and twisting already appear.
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