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� An efficient yet accurate reconstruction model for heat release rate (HRR).

� Reconstruction model based on reduced-order POD method and data-driven ANN model.

� Validation of the HRR reconstruction model in a supersonic hydrogen flame.

� Accurate HRR reconstruction from measurable chemiluminescent species.

� Generalization of current framework to hydrocarbon combustion is feasible.
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Optimizing the distribution of heat release rate (HRR) is the key to improve the perfor-

mance of various combustors. However, limited by current diagnostic techniques, the

spatial measurement of HRR in many realistic combustion devices is often difficult or even

impossible. HRR prediction is theoretically possible through establishing correlations be-

tween HRR and other quantities (e.g., chemiluminescence intensity) that can be experi-

mentally determined; however, up to now, few universal correlations have been

established. A novel artificial neural network (ANN) approach was adopted to build the

mapping relationship between the combustion heat release rate and the measurable

chemiluminescent species. Proper orthogonal decomposition (POD) technology is used to

extract the combustion physics and reduce the data of the spatial-temporally high-reso-

lution combustion field. The correlation between the reduced-order HRR and chemilumi-

nescent species is built using an ANN model. A unique segmentation approach was

proposed to improve the training efficiency and accuracy. Validation in a supersonic

hydrogen-oxygen nonpremixed flame proves the accuracy and efficiency of the proposed

HRR reconstruction model based on the reduced-order POD method and data-driven ANN

model.

© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
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Nomenclatures

p pressure, Pa

T temperature, K

r density, kg,m�3

u velocity, m/s

Ru universal gas constant

nt eddy viscosity

tij viscous stress tensor

i time index during navigation

j waypoint index

Prt turbulent Prandtl number

Sct turbulent Schmidt number
~Yk mass fraction of species k

uk time-averaged mass production rate of species

k

MSE the mean squared error

HRR Heat release rate

ANN Artificial Neural Network

POD Proper Orthogonal Decomposition

LES large-eddy simulations
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Introduction

Heat release rate (HRR) is a key index in characterizing the

combustion system. It is significant for the understanding and

prediction of unsteady flame behaviors such as combustion

noise, combustion thermoacoustic instability, and pulsed

combustion [1e3]. For practical combustors, when combus-

tion instabilities are initiated by flow unsteadiness interacting

with heat-release fluctuations, severe structural damage can

be resulted in. For scramjets, optimizing the distribution of

heat release rate was necessary to control combustionmodes,

improve combustion efficiency and increase thrust [4]. On the

other hand, the heat release rate from an unwanted fire is a

major indication of the threat of the fire to life and property.

Therefore, the development of accurate predictive tools for

HRR distribution in flames is expected to be beneficial for the

development of combustion monitoring and control tech-

niques [5].

However, HRR is more like a theoretical variable [2] since

the spatial measurement of HRR in many combustion devices

is often impractical [6]. There is no existing method that can

real-time diagnose the spatial distribution of HRR emitted

from combustion. Among both intrusive and non-intrusive

instruments, only the cone calorimeter can measure a total

heat release in terms of oxygen consumption. The developing

non-intrusive chemiluminescence [7] measurement technol-

ogy is one effective diagnostic methodology to obtain the

species distribution with both high spatial and temporal res-

olutions. This provides a promising approach to obtain HRR

distribution reversely from the distribution of chemilumi-

nescent species. Hardalupas et al. [8] studied the relationship

between radiation intensity and tensile strength and equiva-

lence ratio using the Cassegrain teleseismic imaging system in

a collision-premix natural gas flame. Their results show that

the peak intensity of OH*, CH*, and C2* can mark the
maximum heat release rate well, but the quantitative rela-

tionship between radiation intensity and heat release ratewas

not given. Panoutsos and Taylor et al. [9] analyzed various

calculation models of OH* and CH*s and showed that the in-

tensity of OH* and CH* can qualitatively reflect the HRR, but

the quantitative relationship between them will change

slightly with the equivalence ratio. Both experimental [10e12]

and numerical [3,11,13e17] studies pointed out that the inte-

gral emissions approximate the spatial distribution of HRR is

more practical [2,18e21], while such inversion method is, on

the other hand, very complicated and can only provide qual-

itative analysis for the HRR. Quantitative diagnosis is usually

of practical significance. However, due to the intrinsic

complexity of combustion physics, no quantitative relation-

ship between chemiluminescent intensity and HRR has been

obtained in previous studies. This study focuses on devel-

oping a quantitative mapping relationship between HRR and

chemiluminescent species, with the purpose of conveniently

deriving HRR distribution in a real combustion scenario.

Artificial Neural Network (ANN) [22], as a promising

machine-learning and artificial intelligence methodology, has

shown its powerful ability to simulate the underlying mech-

anisms of complex data sets, so it can be trained to correlate

the HRR with selected chemiluminescent species. A typical

multilayer ANN architecture consists of three main parts: an

input layer, hidden layers, and an output layer. The number of

hidden layers determines the “depth” of the model [23]. ANN

provides amodular and agilemodeling framework that can be

tailored to address many challenges in fluid mechanics

[24e29]. ANN was not only used to resolve the ordinary and

partial differential equations [30e32] in dynamical systems

and fluid mechanics but also was applied in heat transfer [33],

turbulent flows [34], andmany other aeronautic problems [35].

More recently, ANN applications have been made to function

approximation, turbulence and turbulent combustion closure,

flow control, data association, and optimization [36e39]. Xiao

et al. [40], Ling et al. [28], Wang et al. [41], and Singh et al. [42]

have employed ANN models to identify and model the

anisotropic turbulence. Maulik et al. [43] have successfully

predicted the turbulence source terms in large eddy simula-

tion (LES) using coarsely resolved quantities using a multi-

layered ANN model. Lapeyre et al. [25] have employed a

convolutional neural network (CNN) to emulate the subgrid-

scale (SGS) flame surface density in LES. Ihme [27], Shadram

et al. [44], Owoyele et al. [24], and Bhalla et al. [45] applied ANN

to approximate nonlinear functions with high-dimensional

data and replace the memory-intensive tabulation method

by memory-efficient ANN models.

The raw data of HRR and chemiluminescent species pose

high costs and low convergence for ANN training. Instead,

reduced-order models (ROMs) can be employed. Proper

orthogonal decomposition (POD) is a sophisticated reduced-

order technique and has been applied in many different

fields: data compression, image processing, dynamical sys-

tems, and fluidmechanics [46e50]. The coupling between POD

and machine learning models has been succesfully employed

for the emulation and extraction of physics [47,51e56].

Aiming to develop an ANN-POD coupled reconstruction

model to correlate HRR with chemiluminescent species, the

paper is structured as follows. Section Introduction puts

https://doi.org/10.1016/j.ijhydene.2021.03.074
https://doi.org/10.1016/j.ijhydene.2021.03.074


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 6 ( 2 0 2 1 ) 1 9 5 9 9e1 9 6 1 6 19601
forward the current research status in HRR diagnosis, POD,

and ANN. Section Framework for HRR

reconstruction introduces the physical models, numerical

methods, and reconstruction framework. In the reconstruc-

tion framework, POD technology is used to extract the com-

bustion physics and reduce the data of the spatial-temporally

high-resolution combustion field, then the correlation be-

tween the reduced-order HRR and chemiluminescent species

is built using an ANN model. Section Results and

discussion presents the realization of HRR reconstruction

from OH in a demo case, where the reconstruction framework

of HRR is verified by a high-resolution LES modeling of a su-

personic oxyhydrogen non-premixed flame of Evans's exper-

iment, and the chemiluminescent species of OH is selected as

the input of chemiluminescent species because it has been

proved to be a good marker of the main heat release rate re-

gion [57e59]. The conclusions in Section Conclusion elaborate

on the prospects of the proposed HRR reconstruction model.
Framework for HRR reconstruction

Artificial neural network

BackpropagationArtificial Neural Network (BP-ANN) is trained

to build the connection between HRR and chemiluminescent

species. A similar implementation has been realized in Li et al.

[60], and a brief review of the methodology is given below.

As shown in Fig. 1, a typical multilayer BP-ANN architec-

ture usually consists of three main parts: an input layer, some

hidden layers, and an output layer. Each layer is composed of

individual neurons operating in parallel. The input layer is

used to load the known parameters X, e.g., the chemilumi-

nescent species in this study. The hidden layer is set to

accommodate all the known information and build a

nonlinear relationship between the input parameters and the

output results. The output layer is utilized to resolve the un-

known results Y from the hidden layer, e.g., HRR in this study.

Once the number of hidden layers and the number of neurons

in each hidden layer were determined, the connection

weights between the neurons were adjusted by information

transmitting forward and errors transferring backward during

training. Any errorsmade by the network during trainingwere

fed back sent to correct the neuron weights and teach the

network what is right and wrong, as schematically illustrated

in Fig. 1. During the learning process, the error is estimated by

the mean squared error (MSE) defined as,

MSE¼ 1
n

Xn

i¼1

�
yi � ti

�2
(1)

where yi , n is the network output value and the total number

respectively, ti is the target value. Smaller MSE values indicate

better ANN performance. When the MSE reaches a minimum,

or the steps of training reach the predefined maximum steps,

the network training is terminated, and the weights are

stored.

Fig. 2 illustrates how signals are processed through a

single neuron. First, the neuron receives weighted activa-

tions from other neurons and added up. The summation is

then passed through an activation function f, the outcome a
is transferred to the next layer's neurons as a new activation.

Activation functions determine the output of a deep learning

model through a series of nonlinear transformations on the

input, making the trained model capable of learning and

performing more complex tasks. During the back-

propagation, the gradients are supplied along with the errors

to update the weights and biases, so the activation functions

should be differentiable and monotonic. Recently, the

nonlinear activation functions such as logistic sigmoid, hy-

perbolic tangent (tanh), and rectified linear unit (ReLU) are

popular activation functions in deep learning, while the

sigmoid function is the most frequently used activation

function in recent studies. Both sigmoid and tanh have S-

Shaped curves; the only difference is that sigmoid lies be-

tween 0 and 1 while tanh lies between 1 and -1. The wide-

spanning range of tanh function makes the model based on

it learns more slowly. ReLU function can greatly accelerate

the convergence of stochastic gradient descent compared

with sigmoid and tanh activation functions. However, it may

encounter the problem of dying neurons, which stop

responding to the variations of the output error. In compar-

ison, sigmoid function is differentiable across its entire

domain, efficient to compute with, and can lead to a faster

convergence rate. This study adopts the logistic sigmoid

activation function given by:

fðzÞ¼ 1

1þ e�zn
(2)

where zn ¼ Pn
j¼1xjWij is the weighted sum of the input acti-

vations for each neuron.

During the backpropagation, the weights were updated

according to the gradient descent algorithm [61,62]. The

change of weight Wij in the connection neuron from i to j is

written as:

DWij ¼ � lr
vMSE
vWij

(3)

Here an appropriate learning rate lr plays an important role

in the training, since the abrupt change caused by a large lr
maymiss the minimumwhile the low learning rate caused by

a small lr slows down the training. In order to minimize the

error function MSE, Wij needs to be decreased when vMSE
vWij

> 0,

and increasedwhen vMSE
vWij

<0. In order to avoid oscillation inside

the network such as alternating connection weights, and to

improve the convergence rate, an adaptive learning rate was

adopted [63]. Similar to a ball rolling down a mountain, the

current rolling speed is determined not only by the local slope

of the mountain but also by its own inertia (momentum).

Similarly, the change of weight Wij at time (tþ1) is DWijðtþ1Þ,
written as

DWijðtþ 1Þ¼ ðm� 1ÞlrvMSE
vWij

þmDWijðtÞ (4)

where m is the momentum varying in the range of [0, 1].

To avoid overfitting and make sure that the final trained

model performs well not just on the training data but also

on new inputs, a regularization strategy of early stopping

was adopted in this study. Early stopping is an unobtrusive

form of regularization because it requires nearly no change
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Fig. 1 e Schematics of the three-layer BP-ANN.
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in the underlying training procedure, the objective function,

and the set of allowable parameter values. It is also the

reason why the MSE equation (Eq. (28)) does not contain an

explicit regularization term. The early stopping strategy

works by monitoring the validation set error to terminate

the trajectory at a point with the lowest validation set error.

In this view, the number of training steps is just another

hyperparameter. Usually, when the training epochs reach a

certain number, the validation set error (ValidationSetMSE)

will reach a small value and drops negligibly later. Mo-

mentum is not only a technique to keep the weight chang-

ing in the direction of the previous step to speed up the

convergence but also has the benefit of avoiding the abrupt

change in the opposite direction once the direction reverses.

To avoid an excessive influence of the momentum on the

weight update, a momentum adaptation technique was also

developed in combination with the learning rate adaptation

[64].

Proper orthogonal decomposition

Proper Orthogonal Decomposition (POD) is a mathematical

procedure for extracting a basis of a modal decomposition

from an ensemble of signals, which was first introduced in

the context of fluid mechanics by Lumley [65]. The most

attractiveness of the POD lies in the fact that it is a linear

procedure, and this kind of mathematical property makes it
Fig. 2 e Information processing in a single neural-network

neuron.
a preferred basis to use in many nonlinear circumstances. In

this section, a brief discussion of the main features of POD

will be given below, and further details on the mathematical

formulation can be found in the following references.

In this study, the vector of flow quantities qðx; tÞ, which is

assumed to be a function of space and time, is decomposed as

the sumof the time-averaged flow qðxÞ and the fluctuation q0ðx;
tÞ,

qðx; tÞ¼ qðxÞ þ q0ðx; tÞ (5)

The so-called “snapshot POD” technique [66] is used to

address the fluctuating combustion fields. In the snapshot

POD analysis, the mean field of all snapshots in a series is

calculated and then subtracted from the snapshots to give the

fluctuating part of the snapshots, which was arranged in a

matrix q0. Assuming that sampling time is N and the number

of data points is M, each snapshot is formulated as a column

in thematrix, which has a total of N columns andM rows. q0 is

expressed as

q0 ¼ �
q01 q02

… q0N�¼
26666664
q01

1 q02
1

/ q0N
1

q01
2 q02

2
/ q0N

2

« «

q01
M q02

M

«

/

«

q0N
M

37777775 (6)

The vector of primitive variables can be generalized as q0 ¼
ð _Q;YOHÞt, where _Qis the heat release rate, YOH is the mass

fraction of OH. In POD, the fluctuation quantities, q
0 ðx;tÞ, can be

expanded as the combination of POD modes ∅iðxÞ in M-vector

form and their temporal model coefficients aiðtÞ for a given

mode number of N,

q0ðx; tÞ¼
XN
i¼1

aiðtÞ∅iðxÞ (7)

In order to compute 4iðxÞ and aiðtÞ, the covariance matrix C

is defined to describe the temporal correlation of the flowfield,

https://doi.org/10.1016/j.ijhydene.2021.03.074
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C¼ 1
N
q0Tq0 ¼ 1

N

�
q0ðx; tiÞ; q0�x; tj��U (8)

Then, the eigenvalues l and eigenvectors A are obtained

from:

CA¼ lA (9)

where the eigenvalues li are sorted in descending order, and

the eigenvectors are sorted in the same order, as shown in Eq.

(10). Themagnitude of the n-th eigenvalues depicts the energy

contribution of the n-th eigenmode. When the total energy of

the fluctuating field is obtained by the sum of the eigenvalues

as in Eq. (11), the relative energy ratio of the i-th eigenmode is

calculated as in Eq. (12).

l1 > l2 >…> lN ¼ 0 (10)

E ¼
XN

i¼1
li (11)

ki ¼ li=E (12)

The spatial eigenfunctions ∅iðxÞ of the POD modes is

defined as:

∅iðxÞ¼
PN

j Aiq0 j������PN
j Aiq0 j

������; j ¼ 1:::: N (13)

where Ai is the i-th eigenvector corresponding to li from Eq.

(11), q0 j is the j-th component of the snapshot matrix q0 in Eq.

(6). As the flow field is decomposed, the spatial eigenfunctions

are only dependent on the position, and the temporal mode

amplitudes are only functions of time. The temporal mode

coefficients for the j-th snapshot can then be computed as,

aiðtÞ¼∅iq
0 j�x; tj� (14)

When the number of modes Npod is equal to the number of

snapshots N, the original flow field can be perfectly recon-

structed as in Eq. (7). Otherwise, if Npod < N, the flow recon-

struction is an approximation to the original field. However, in

most cases, the first few modes take the vast majority of the

total energy, suggesting that they are associated with the

dominant energetic flow structures. This gives the conve-

nience of reducing the order of the time-variant flow field to a

limited number of POD modes.

HRR reconstruction

Fig. 3 schematically shows the overall framework of the HRR

reconstruction method comprising pre-processing, POD

extracting, ANN training, and final reconstruction. The

workflow is: 1) firstly extracting the main POD base modes to

significantly compress the field data of OH and HRR gener-

ated by LES, 2) then establishing the correlation between the

POD mode coefficients of OH and HRR by the ANN model, 3)

finally reconstructing the HRR distribution from a new data

set of chemiluminescent species based on the POD
coefficients predicted by the trained ANN model and the POD

base modes.

Considering that the experimental data are usually scarce

and temporally inconsistent, experimentally validated high-

fidelity LES data are used to validate the proposed ANN-POD

reconstruction method. Defining the flow-through time (FTT)

as the stream washing out the computational domain, a total

of 3000 snapshots were sampled within 2 FTT. To reduce the

data volume, snapshots were sampled in the central com-

bustion region of 300 mm � 24 mm. By POD, basis modes and

modal coefficients of OH and HRR are extracted. A three-

hidden-layer BP-ANN model is used to correlate the modal

coefficients of OH and HRR:

Y¼∅ðXÞ (15)

where ∅ is the mapping function, X is the input vector of

modal coefficients for OH, Y is the output vector of modal

coefficients for HRR (termed by dQ).

A unique segmented training approach is developed in this

study, as shown inFig. 4. Since thePODmodesare independentof

each other, a mapping between all themodal coefficients of HRR

withall themodal coefficientsofOHcanbeestablished, i.e., anm-

to-n ANN model with m modal coefficients of OH to n modal co-

efficients of HRR. Theoretically, one needs to build such am-to-n

ANN model between all the POD modal coefficients of OH and

HRR.Consideringthatthefirst fewPODmodesareassociatedwith

the most energetic flow structures, as indicated by their large

relative energy ratios, the number of ANNmodels can be signifi-

cantly reduced. Even so, it is still time-consuming and

computationally-expansive to conduct the ANN training ofm-to-

n. By segmenting the total n output data sets into l subsets, each

segmentation subset consists of n=l modal coefficients. Then in-

dividual ANNmodels ofm-to-n/l for each segmentation data will

be separately trained. The training is conducted by a cross-

validation approach, which divides the training data set into

several divisions after randomly disrupting the data order, and

uses one as the validation setwhile the other nine as the training

set.

After the successful training of the ANN models, the modal

coefficients of HRR can be derived from themodal coefficients of

OH, and then the HRR fields can be reconstructed based on the

derived modal coefficients and the previously-obtained POD

modes.

Validation case: Evans’ supersonic hydrogen flame

Fig. 5 shows a schematic of a simplex shear-coaxial injector

representative of those commonly used in hydrogen-fueled

rocket engines. The experiment was conducted by Evans

et al. [67]. As shown in Fig. 5, supersonic hydrogen is injected

through a circular nozzle at a Mach number of 2 and 251 K, to

the center of vitiated air, which is at nearly the same Mach

number of 1.9 but with a higher temperature of 1495 K. Before

mixing, the airflow will be preheated by burning with

hydrogen and then replenished with oxygen to maintain an

https://doi.org/10.1016/j.ijhydene.2021.03.074
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Fig. 3 e The framework of HRR reconstruction comprising pre-processing, POD extracting, ANN training, and reconstruction.
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oxygen volume fraction equal to the ambient condition. In the

following, spatial coordinates are scaled with the outer

diameter of the hydrogen tube, D ¼ 9.525 mm, including the

inner diameter of 6.525 mm and the wall thickness of 1.5 mm.

Table 1 provides the boundary conditions of the experiment.

The mass fractions of stable species, i.e., N2, O2, H2, and H2O

were measured in the Evans’ experiment by conventional

probe technique at four axial planes of x/D ¼ 8.26, 15.5, 21.7,

and 27.9. Though intermediate radical species were not

available, the abundant measurement data can be used to

calibrate an LES modeling.
Fig. 4 e Schematic diagram of the segmentation trainin
Numerical details of the validation case

A. Governing equations

In this study, the numerical modeling was conducted by

Large Eddy Simulation (LES), in which large-scale turbulent

structures are directly resolved while small dissipative struc-

tures aremodeled. LES solves the unsteady three-dimensional

Favre-averaged spatially-filtered compressible Navier-Stokes

(NeS) equations of mass, momentum, energy, and species

concentration,
g process conducted by three-hidden layers ANN.

https://doi.org/10.1016/j.ijhydene.2021.03.074
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Table 1 e Experimental boundary condition.

Hydrogen Vitiated air

Mach number 2 1.9

Velocity 2432 m/s 1510 m/s

Static temperature 251 K 1495 K

Static pressure 1 bar 1 bar

Composition

YH2 1 0

YO2 0 0.241

YN2 0 0.478

YH2O 0 0.281

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 6 ( 2 0 2 1 ) 1 9 5 9 9e1 9 6 1 6 19605
vr

vt
þ vr~uj

vxj
¼ 0 (16)

vr~ui

vt
þ vr~uj~ui

vxj
þ vp
vxi

� v~tij
vxj

¼ �vtij

vxj
(17)

vr ~Ht

vt
þ vr~uj

~Ht

vxj
� v

vxj

0@rDT
v ~Ht

vxj
þ

XL

k¼1

rDk
v~Yk

vxj

~Hk

1A� vp
vt

� v~uj~tij
vxj

¼

� vJT;j

vxj

(18)

vr~Yk

vt
þ vr~uj

~Yk

vxj
� v

vxj

0@rDk
v~Yk

vxj

1A¼ � vJk;j

vxj
þ uk (19)

p¼ rR~T (20)

where the over bar “-” and the tilde “~” represent spatial-

filtering variables and Favre-filtering operation respectively, t

denotes the time; The variables p ; T, r; tij ; ui is the pressure,

temperature, density, viscous stress tensor and the velocity in

xi direction (spatial dimension i¼ 1, 2, 3), respectively; ~Ht ¼ ~Hþ
0:5~u2

i is the total absolute enthalpy obtained as the sum of the

absolute enthalpy ~H and the resolved kinetic energy; ~Yk and uk

represents the mass fraction and the averaged mass produc-

tion rate of species k (k ¼ 1, …, L, with L the total species

number), respectively; Dk and DT denotes the mixture-

averaged mass diffusivity and the thermal diffusivity,

respectively. For the combustion is considered far from the

drastic phase-change region, the ideal gas law is employed to

relate the density, temperature and pressure of the gas, in

which R ¼ Ru=W is the gas constant of gas mixture and Ru is

the universal gas constant, W is the molar weight of the

multicomponent mixture and defined by:

W¼
�XL

k¼1
Yk=Wk

��1

(21)

The Soret and Dufour effects are neglected in the present

study because of its small contribution in Eqs. (3) and (4).
Fig. 5 e Schematics of the supersonic diffusion flame

experiment by Evans et al.
According to the Stokes's hypothesis, the computable average

momentum diffusive flux for a Newtonian fluid is given by:

~tij ¼ rn
�
~T
�	

2~Sij � 2
3
dij~Skk



(22)

where n is the kinetic viscosity, andeSij is the rate-of-strain

tensor of the computable scales,

~Sij ¼1
2

0@v~ui

vxj
þ v~uj

vxi

1A (23)

For the unclosed terms in the NeS equations, additional

specific modeling is required. By the gradient diffusion

assumption, the turbulent enthalpy flux term

JT;j ¼ rðgujHt �~uj
~HtÞ and the turbulent species diffusion term

Jk;j ¼ rðgujYk �~uj
~YkÞ is modeled as Eq. (9) and Eq. (10),

respectively.

JT;j ¼ � 2r
nt

Prt

v ~Ht

vxj
(24)

Jk;j ¼ � 2r
nt

Sct

v~Yk

vxj
(25)

where nt is the eddy viscosity, Prt is the turbulent Prandtl

number and Sct is the turbulent Schmidt number. Both Prt and

Sct are set to unity. The thermodynamic and transport prop-

erties of the mixture are calculated by the gas-phase property

and chemical kinetics package CHEMKIN-II [68]. Thermody-

namic properties are obtained from the NIST-JANAF thermo-

physical database [69]. Transport properties of the gas

mixture, such as viscosity, thermal, and mass diffusivities are

calculated based on a CHEMKIN-format transport database

[70]. Themixture thermal diffusivity is calculated based on the

conductivity and specific heat. Viscosity and thermal con-

ductivity are averaged by themodifiedWilke's law [71] and the

combination averaging, respectively. Mixture-averaged mass

diffusivities are used with the mass conservation achieved by

setting nitrogen as the inert gas.

The LES simulation will be conducted by a compressible

reacting flow solver Amber (formerly known as AstroFoam)

[72], which is developed based on the original density-based

rhoCentralFOAM solver distributed with the open-source

CFD package OpenFOAM [73]. Amber has been successfully

applied in a wide range of supersonic flow and combustion

modelings [74e77].

https://doi.org/10.1016/j.ijhydene.2021.03.074
https://doi.org/10.1016/j.ijhydene.2021.03.074


i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 6 ( 2 0 2 1 ) 1 9 5 9 9e1 9 6 1 619606
B. Turbulence model and turbulent combustion model

The turbulent viscosity is modeled by dynamic subgrid

kinetic energy model (DKEM) [78], which has the advantages

in modeling the transitional flows and flows with large-scale

unsteadiness. The formulation in LES is defined as:

vrksgs

vt
þ vr~ujksgs

vxj
¼ v

vxj

�
r

		
nt

Prt
þDm



vksgs

vxj


�
� tij

v~ui

vxj

� C
ε

r
�
ksgs

�3=2
D

(26)

nt ¼ CvD
ffiffiffiffiffiffiffiffi
ksgs

q
(27)

where C
ε
and Cv are model constants being dynamically

determined [79,80], D is the characteristic length of the grid

filter, Dm is the laminar diffusivity equals to the viscosity

assuming a laminar Pt ¼ 1.

For combustion chemistry, Burke's detailed hydrogen-

oxygen chemical mechanism with nine species and 19

reversible reaction steps was adopted [81,82]. Additionally, in

the present study, the partially stirred reactor model (PaSR)

was employed to account for the turbulence-chemistry

interaction. PaSR assumes that each computational cell is

divided into two parts: a reacting part and a non-reacting

zone, and in the former region, the diffusion and mixing

rate of molecules in a single cell is considered infinitely fast.

The averaged turbulence-affected chemical reaction rate uk is

calculated as,
Fig. 6 e Computational grid distribution: (a) global view
uk ¼uk
tc

tc þ tmix
(28)
where uk is the Arrhenius reaction rate integrated over the

current time step, tc is the characteristic timescale of chemi-

cal reactions calculated as the reciprocal of the largest positive

eigenvalue of the chemical source term Jacobianmatrix; tmix is

the turbulent micromixing timescales, defined as,

tmix ¼Cmix

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvt,vÞ1=2

ε

s
(29)

where the constant value of Cmix is a set as 1.0, ε is the dissi-

pation rate of turbulent kinetic energy and defined as ε ¼

2veff

����~Sij

����2, vef ¼ vt þ v is the mixture viscosity as the sum of

the turbulent viscosity and the mixture dynamic molecular

viscosity.

C. Mesh and boundary condition

As shown in Fig. 6, the current modeling was performed

on a three-dimensional block-structured hexahedral grid

with an axisymmetric pattern. Different from the previous

work of M€obus et al. [83], who used axisymmetric two-

dimensional mesh to reduce the numerical effort, a full-

domain mesh is used in this study to eliminate the influ-

ence of symmetry boundary [84]. The computational

domain consists of a cylinder of size 300 mm� 40 mm in

the flow and radial directions, respectively. The radial
, (b) top view at x∕D ¼ 0, (c) side view at z/D ¼ 0.
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Fig. 7 e The comparison of time-averaged mass fraction distribution at different streamwise locations, (a)e(b) x/D ¼ 8.25,

(c)e(d) x/D ¼ 15.5, (e)e(f) x/D ¼ 21.7, (g)e(h) x/D ¼ 27.9.
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Fig. 8 e Magnitudes of instantaneous (a) H2, (b) HO2, (c) OH, and (d) heat release rate on the centerplate for the supersonic

diffusion flame.
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direction was extended from the hydrogen tube's outer wall

for an additional distance of 2D, where D is the outer

diameter of the hydrogen tube, to minimize the restriction

of open boundary to flame development. The total grid size

is 1.728 million, of which there are 301 points along the flow

direction, 85 points in the circumferential direction, and 71

points in the normal direction. To better resolve the shear

layer region, the mesh contains a refinement region of high

resolution for the jet core and the jet shear layer, as shown

in Fig. 2(b) and (c). A relatively coarser grid is generated in

the far-field to avoid wave reflections as well as to reduce

the computational cost.
Fixed pressure, temperature, and velocity on the oxygen

and fuel inlets are set according to those listed in Table 1. The

velocity and temperature profiles on the inlets are slightly

modified to embody the momentum thickness according to

the modified Crocco's correlation,

U¼U0ð1� ðdu=dÞÞ1=7 (30)

T¼T0

	
1þ r

g� 1
2

Ma0
2

	
1�

	
U
U0


2


(31)

where U0, Ma0, and T0 are the free-stream static value of ve-

locity, Mach number, and temperature, respectively; du is the
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distance from the wall; d is the boundary layer thickness,

which is set as 1.66 mm and 3.14 mm for the inner and outer

channels, respectively; r and g are constants of 0.7 and 1.4. For

the far-field and the outlet boundaries, the zero-gradient

condition is applied for the outflow flux, and the ambient

conditions are specified for inflow flux. No-slip and adiabatic

conditions are used for all the walls.
Results and discussion

Case validation

Quantitative validation of the LES results against the mea-

surements is conducted before the application of the ANN-

POD reconstruction method. The comparisons of predicted

and measured radial profiles in Fig. 7 show good agreements

for themeanmass fraction ofmain species, i.e., H2, O2, N2, and

H2O at four downstream locations x/D ¼ 8.25, 15.5, 21.7, and

27.9. Note that the measurements are made only for �0.3 � y/

D � 1.5. All numerical predictions match well with the mea-

surements, even at the peak and inflection points. Slightly

larger discrepancies can be observed around the shear layer

ð0:5� jy =Dj � 1:5Þ, where larger combustion-induced un-

steadiness occurs.

Fig. 8 shows the contours of instantaneous hydrogen, hy-

droxyl, HO2, and heat release rate of the modeled supersonic

diffusion flame at a quasi-steady time. The numerical simu-

lation well reproduced the shear layer instability and the
Fig. 9 e The first six and 300
unsteady evolution. Near the injector exit (x < 1.0D), the H2

stream has not been observably diluted. The formation of HO2

indicates successful autoignition at a lift-off distance of

around 1D. The distributions of HO2, OH, and dQ are compared

in Fig. 8(b)e(d). HO2 mainly distributes inside the jet core and

has a lower concentration in the shear layer, where the re-

actions are more approaching the final product H2O. This

suggests that a rich HO2 concentration indicates incomplete

combustion and lower heat release. By comparing Fig. 8(b) and

(c), it can be seen that the profiles of HO2 and HRR are quite

different. The distributions of OH and HRR have high simi-

larity and a positive proportionality, i.e., a higher OH con-

centration corresponds to a higher HRR.

POD modes analysis

The data set consisting of 3000 snapshots of transient OH and

HRR (dQ) fields are sampled within 2 FTTs during a quasi-

steady period. The POD analysis extracts a set of 3000 POD

modes. Figs. 9 and 10 show the first six and the 300th POD

modes for HRR and OH, respectively. It can be seen that the

modes of HRR and OH show high similarity in the size and

location of key structures, especially for modes 1 and 2. The

first POD mode depicts the averaged flame structure, which

indicates that combustion mainly occurs near the shear layer

and is gradually strengthened downstream. The second and

third modes characterize large-size flow structures formed in

the shear layer. As the modal order increases, the size of flow

patterns in the corresponding PODmode is reduced.When the
th POD modes of HRRs.
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Fig. 10 e The first six and 300th modes of OH.
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modal order reaches 300, very fine flow structures are

observed. The evolution of transient supersonic flame is

composed of complex combinations of all the modes.

Mode selection for ANN training

As aforementioned, using the inputs of the full 3000-mode

data poses a high burden for ANN training. To minimize the

inputs, the modal energy distribution and the reconstruction

proximity by retaining different modal numbers are analyzed.

Fig. 11 shows the modal energy distribution for OH and HRR

calculated by Eq. (12). The first mode of OH takes 23% of the

total energy, while modes 2 and 3 take only 7% and 2.9%.

Similarly, for HRR, the first three modes take 7%, 3%, and 2.5%
Fig. 11 e Themodal energy distribution of OH and HRR, (a) energ

the first N POD modes.
of the total energy. When the modal order reaches 18, the

energy ratio drops below 1%. With the further increase of the

modal order, the energy ratio approaches zero. The difference

between the neighbormodes decreases graduallywith the rise

of the modal order, and the growth curve becomes almost

flattened with the order increasing. The summed energy ra-

tios of the first 50, 100, 210, and 300 modes for HRR are 54.3%,

67.9%, 80.6%, and 85.7%, respectively. For OH, the energy ratio

of the first 300 modes is higher than 99%.

Fig. 12 compares the original instantaneous contour of HRR

with those reconstructed by using different numbers of POD

modes. All the reconstructed approximations capture the

main flow patterns, while the accuracy and resolution near

the shear layer can be significantly improved by retaining
y ratio for the Nthmodal energy, (b) sum of energy ratios for
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Fig. 12 e Comparison of instantaneous contours of HRR between the original field and POD approximations by retaining

different modes.

Fig. 13 e Quantitative comparison for the instantaneous HRR between the original field and POD approximations by

retaining different modes, (a) x ¼ 30.4D, (b) y ¼ 0.79D.
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more POD modes. Fig. 13 quantitatively compares the radial

and streamwise profiles for HRR between the original flow

field and the POD approximations. The locations of peaks and

inflection points are well captured by all the approximations.

However, the 50-mode approximation underpredicts the

peaks. Additionally, all the approximations exhibit
Table 2 e The best ANN structures for each segmentation.

Segmentation Modes Neurons Ep

1 1e21 (50,50,50) 20

2 22e41 (50,50,50) 20

3 42e61 (50,50,50) 20

4 62e81 (50,50,50) 20

5 82e101 (50,50,50) 20

6 102e121 (50,50,50) 20

7 122e141 (50,50,50) 20

8 142e161 (50,50,50) 20

9 162e181 (50,50,50) 20

10 182e210 (50,50,50) 20
fluctuations except for the 210-mode approximation, which

precisely matches the original flow field. Therefore, in the

following analysis, 210 POD modes are used for the recon-

struction of HRR, and 300 PODmodes are used for OH to retain

99% source information. In the ANN training, the first 300

modal coefficients of OH are combined as the input vector,
ochs TrainingSetMSE ValidationSetMSE

0,000 9.961e-06 5.730e-03

0,000 1.823e-05 6.945e-03

0,000 2.478e-05 8.658e-03

0,000 3.378e-05 1.086e-02

0,000 4.135e-05 1.114e-02

0,000 5.451e-05 1.493e-02

0,000 5.609e-05 1.441e-02

0,000 6.673e-05 1.542e-02

0,000 7.733e-05 1.786e-02

0,000 7.781e-05 1.795e-02
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Fig. 14 e The comparison of the instantaneous contours of HRR between the original one and the reconstruction at (a)

t ¼ 0.0265 s, (b) t ¼ 0.0303 s.
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and the first 210 modal coefficients of HRR constitute the

output vector.

Results of segmentation training

To improve the efficiency in the ANN training, the 210-neuron

output vector for HRR is segmented into ten subsets, i.e., the

new neuron number in each segmented output vector is 21.

The 300-neuron input vector for OH is kept the same for each

segmented output vector. Another critical aspect of the
Fig. 15 e The quantitative comparison of the instantaneous HRR

t ¼ 0.00265 s, and (c)e(d) t ¼ 0.00303 s.
development of ANNmodels is the number of neurons in each

hidden layer. Increasing the neuron numbers can improve the

capacity of the ANN model but will certainly increase the

training time. How to determine a proper neuron number in

each hidden layer is still an open question for diffident prob-

lems. By trial and error, it is found that 50 neurons for each

hidden layer can maintain high accuracy yet modest training

burden for the problem in this study. The early stopping reg-

ularization method is adopted to avoid overfitting during the

training. When the training epochs reach 200,000, the
between the original one and the reconstruction at (a)e(b)
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Fig. 16 e Linear regression between the reconstructed and original HRR data at (a) t ¼ 0.0265 s and (b) t ¼ 0.0303 s.
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validation set error (ValidationSetMSE) reaches a small value

and drops negligibly later; thus, the maximum training epoch

is set as 200,000 for each ANN model. The training results for

all of the ten subsets are listed in Table 2. The orders of

magnitude for TrainingSetMSE and ValidationSetMSE are as

small as 10�5 and 10�2, respectively.

Performance of the HRR reconstruction framework

To validate the performance of the HRR reconstruction

framework, two new data sets are sampled from themodeling

at times inside and outside of the 2-FTT sampling window.

The training data set is sampled from 0.026 s to 0.03 s with an

interval of 1.34 � 10�7 s. The new data sets are sampled at the

times of 0.0265 s and 0.0303 s. The first one tests the inter-

polation capability of the trained ANN model, while the latter

test the extrapolation capability.

Using the trained ANN model, the modal coefficients for

the two new snapshots are obtained. Then the full fields of dQ

are reconstructed based on the derivedmodal coefficients and

the previously-obtained 210 POD modes of HRR. The com-

parisons of the instantaneous contour for HRR between the

original ones and those predicted by the ANN-POD recon-

struction model are shown in Fig. 14. No apparent differences

are found even for the fine structures in the shear layer. For

further demonstration, Fig. 15 conducts the quantitative

comparisons at different radial and axial locations, where the

agreements are good for both the interpolation and extrapo-

lation cases. The discrepancies at several peaks and trough

locations can be further improved by further expanding the

input vector to include more POD modes.

The reconstructed HRR versus the original HRR at each cell

in the full combustion field is plotted in Fig. 16. The correlation

coefficients (R) are 0.86 and 0.82 for the interpolation case at

the times of 0.0265 s and the extrapolation case at 0.0303 s,

respectively. Since the correlation coefficient above 0.8 is

considered highly correlated, the current accuracy of the

trained ANN model is satisfactory, which demonstrates the

feasibility of reconstructing HRR fromOH by using the current

proposed ANN-POD model.

In addition, comparing Figs. 4 and 5, it can be seen that

prediction can achieve better results for interpolation. It is

understandable that the time range of the training data covers
the corresponding time points of the interpolation data, while

the accuracy of the extension prediction is mainly based on

the assumption that the flow situation in each circulation

time of the example is consistent, i.e., the flow repeatability.

In this case, the data only cover two flow times, not all the

transient characteristics of turbulence. Therefore, in order to

further improve the accuracy of the extended time point

prediction, the training data must include more data in the

flow time to ensure sufficient transient turbulence

characteristics.
Conclusion

In this study, a novel model based on the reduced-order

proper orthogonal decomposition (POD) and the data-driven

artificial neural network (ANN) is proposed to reconstruct

the spatial distribution of heat release rate (HRR) based on

measurable chemiluminescent species OH. The ANN-POD

reconstruction model is then validated in a supersonic

hydrogen flame, whose instantaneous full-domain HRR dis-

tributions at different times are accurately predicted by the

trained ANN model and the reduced-order POD models, given

the OH distributions.

The main procedures in applying the ANN-POD recon-

struction model are as follows, 1) extract POD modes for the

HRR and OH snapshots in consecutive time; 2) determine the

minimum numbers of POD modes that can precisely approx-

imate the original HRR andOHfields, e.g.,m PODmodes for OH

and n POD modes for HRR; 3) segment the n POD modal co-

efficients of HRR into l subsets, train individual ANNmodel for

each subset to establish the correlation between the input

vector consisting of mmodal coefficients of the PODmodes of

OH, and the output vector consisting of the n/l modal co-

efficients of the POD modes of HRR; 4) decompose the target

OH field to obtain the modal coefficients, derive the modal

coefficients of HRR using the trained ANN models, and

reconstruct HRR using the derived modal coefficients and the

previously-obtained POD modes of HRR.

The application of POD technology effectively reduces the

order of the raw flow data in the modeling with 1.728 million

cells by a factor of more than 1500 times, which dramatically

relieves the computational burden for the ANN models. For
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the examined case, the comparison shows that m ¼ 300,

n ¼ 210, and l ¼ 10 can provide close approximations to the

original flow fields while considerably reducing the ANN

training cost. By using the segmentation method, not only the

total training time is reduced, but also the accuracy for each

individual segmented training can be improved. A simpler

ANN structure with three hidden layers and 50 neurons in

each hidden layer is used for the segmented training. Inter-

polation and extrapolation data sets sampled within and

outside the time window for the training set are used to

validate the ANN-POD reconstruction model. The HRR fields

reconstructed from the OH fields agree well with the original

HRR fields with correlation coefficients (R) higher than 0.8 for

both cases.

This study represents the first attempt to correlate HRR

with chemiluminescent species by an ANN model. To gener-

alize the reconstruction framework, a reduced-order POD

method was used to extract the most energetic modes from

unsteady flows. A novel segmentation method is also devel-

oped to reduce the training difficulty and improve training

efficiency. The verification in a supersonic hydrogen flame

indicates that the reconstruction of HRR from OH is feasible,

which is of practical significance for the performance diag-

nosis and optimization of industrial combustion devices.

Once the spatial distribution of HRR can be reconstructed,

many technical challenges in combustor design can be reas-

sessed, e.g., 1) optimizing HRR distribution to reduce wall

temperature and achieve better thermal management; 2)

monitoring HRR distribution in real time to alleviate ther-

moacoustic coupling oscillation, 3) optimizing the HRR dis-

tribution to organize combustion modes and enhance engine

thrust. The current HRR prediction method is of great signifi-

cance for the controlling of combustion modes inside an

enclosed combustor and performance-based optimization of

engines.

In this study, the OH concentration is obtained from high-

fidelity modeling validated by available experimental data.

However, in realistic applications, the OH distribution can be

obtained via non-intrusive diagnostic techniques, e.g.,

chemiluminescence, then the real HRR distribution can be

obtained by using the proposed ANN-POD reconstruction

model. In future work, the current reconstruction model can

also be extended to hydrocarbon combustion, for which more

chemiluminescent products, e.g., CH and OH, may need to be

included to correlate with HRR.
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