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a b s t r a c t 

Most of the previous studies on free-play aeroelasticity were based on the linear aerody- 

namic theory, which cannot consider the aerodynamic nonlinear effects. This paper pro- 

poses a framework of computational fluid dynamics/computational structural dynamics 

(CFD/CSD) coupling approach that can deal with the three dimensional aeroelastic prob- 

lems with both the free-play nonlinearity and the aerodynamic nonlinearity. The ficti- 

tious mass method is used to construct the reduced structural equations of motion and 

the switching point is detected using the bisection method. The adaptive time step ob- 

tained by the bisection method is returned to the CFD solver so that both the structural 

and the fluid equations are integrated using the same time step. An all-movable wing with 

free-play at the root is considered for numerical studies. Results demonstrate the CFD/CSD 

coupling method can predict the stable limit cycle oscillation (LCO) effectively. The initial 

condition study shows that the LCO behavior is subcritical and the hysteresis response can 

be predicted in time domain effectively by the presented method. The viscous effect is 

shown to increase the LCO boundary and shift the LCO amplitude to a larger velocity in 

transonic regime. The LCO boundary is determined from subsonic to transonic Mach num- 

bers. The transonic dip in LCO boundary is found by the CFD/CSD coupling method, but 

the equivalent linearization with doublet lattice method fails to predict this phenomenon. 

From the results of this study, the LCO boundary is shown to be 43.5% below the flutter 

boundary at most. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

1. Introduction 

The free-play nonlinearity is usually caused by wear and manufacturing tolerances in the linkage where relative motions 

exist [1] . This nonlinearity is piecewise linear and non-smooth as illustrated with Fig. 1 . It can induce limit cycle oscillations

(LCOs) even if the flow velocity is less than the linear flutter speed. LCOs have negative effects on pilot handling quality,

human comfort, structural fatigue and so on [2] . 

The describing function method (DFM, also called the equivalent linearization method) has been extensively applied to 

the free-play aeroelastic analyses [3–10] . Once the static equilibrium position and the LCO amplitude are given, DFM can 
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Fig. 1. Free-play nonlinearity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtain the equivalent linearized stiffness under the assumption of harmonic motion. Then, conventional flutter prediction 

methods such as the p-k method or V-g method can be used to calculate the flutter speed so that the relationship between

the LCO amplitude and flow velocity can be obtained. Gordon et al. [7] used DFM and the Theodorsen aerodynamic theory

to study the stable and unstable LCOs of a typical-section airfoil with free-play. Lee and Tron [8] used the doublet lattice

method (DLM) and DFM to calculate the nonlinear flutter speed of the folding wing of CF-18 aircraft with free-play. Kholo-

dar [9] studied the effect of preload using DFM. The results showed a certain amount of preload could cause the change in

equivalent stiffness which might lead to high-frequency oscillations, but a sufficient amount of preload could suppress the 

oscillations. Yang et al. [10] generalized DFM to the aerodynamic force based on Euler equations. In their work, the aerody-

namic and structural describing functions were calculated, and then the V-g method was used to analyze the LCO behaviors. 

DFM only considers the first-order harmonic, while the high order harmonic balance method (HOHBM) retains high order 

harmonics and can be applied to the general periodic responses [11 , 12] . Liu and Dowell [13] , Fichera and Ricci [14] used

HOHBM to study the LCOs induced by free-play nonlinearity. The results indicated HOHBM could improve the numerical 

accuracy compared with DFM. 

Detailed information of the responses can only be obtained by time domain methods, which are suitable for the anal- 

yses of complex aeroelastic phenomena such as chaotic motions. For a two-dimensional (2-D) aeroelastic system that only 

has several degrees-of-freedom (DOFs), it is convenient to construct the free-play aeroelastic system in terms of physical 

coordinates. For example, Dai et al. [15] studied the aeroelastic behaviors of an airfoil with free-play in pitch using a two-

DOF structural equations of motion. The Theodorsen aerodynamic theory was utilized along with the Wagner function to 

calculate the unsteady aerodynamic forces. Both LCOs and chaotic motions were observed in their work. The 2-D problems 

were also studied by many other researchers [16–19] and the analysis method could be generalized to three-dimensional 

(3-D) rigid wings. Firouz-Abadi et al. [20] considered a 3-D rigid fin that could plunge, pitch and flap. Each of the DOFs

was constrained by a free-play spring and the aeroelastic responses were simulated in supersonic flows based on the shock- 

expansion theory and the local piston theory. 

However, if the 3-D wing is elastic, both the stiffness of the wing and the connection stiffness at the free-play hinge

should be considered. Using the original physical coordinates to construct the aeroelastic system will result in a large 

amount of computational cost, to reduce which modal approaches are preferred [21–27] . For example, Kim et al. [22] em-

ployed the component mode synthesis method to analyze the nonlinear dynamic behaviors of a deployable missile control 

fin with nonlinear hinge. In their work, the fin was divided into two substructures that were connected at the hinge. The

displacements were represented by a linear combination of the modes for each substructure, while the compatibility condi- 

tion along the substructure boundaries took the nonlinear hinge into account. Yang et al. [23] coupled the component mode

synthesis method and the aerodynamic potential theory to perform nonlinear flutter analyses of a folding fin with free-play 

in subsonic flows. Wind tunnel tests were also carried out and the trend of divergent speed was the same between the

calculated and measured results. 

It is another choice to use a constant modal space. As shown in Fig. 1 , the free-play nonlinear system consists of three

linear subsystems. Once the subsystem is changed, the natural modes that span the modal space are also changed. Changing 

the modes repeatedly will produce the errors coming from the coordinate transformation between different modal spaces. 

To avoid this problem, a constant modal basis can be used such as the residual modes [24 , 25] and the fictitious mass (FM)

modes [26 , 27] . 

In this work, the FM method is discussed which was proposed by Karpel and Wiesemanm [26 , 27] . The idea is that the

local stiffness variations can be properly considered by the modes containing local significant deformations. This kind of 

modes can be obtained by adding a large mass to the local DOF. The FM method has proved to be effective for the dimen-

sionality reduction of the free-play nonlinear system and has been adopted by previous researchers [28–35] . For example, 

Huang et al. [28] used the FM method and the aerodynamic potential theory to analyze the aeroservoelastic behaviors of a

3-D wing with two free-play control surfaces. Bae et al. [29] studied the free-play aeroelastic responses based on the FM
2 
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method and pointed out that the time domain method could predict chaotic motions that could not be analyzed by the

frequency domain method. 

Most of the previous 3-D cases were analyzed using the linear aerodynamic theory, which cannot consider aerodynamic 

nonlinearities such as the transonic flows. On the other hand, the application of computational fluid dynamics was mainly 

restricted to 2-D cases [10 , 36–39] . Since the free-play nonlinearity can cause LCOs below the flutter boundary, its effect on

transonic dip phenomenon needs to be evaluated. What’s more, it remains a challenge to detect the switching points for 

a 3-D structure with free-play. Now that the 3-D problems considering both the free-play and aerodynamic nonlinearities 

were seldom discussed, it is necessary to develop a 3-D computational fluid dynamics/computational structural dynamics 

(CFD/CSD) coupling method to analyze the aeroelastic behaviors and predict the stability boundary of free-play aeroelastic 

systems. 

This paper is organized as follows. Section 2 constructs the numerical framework. In Section 3 , an all-movable wing is

considered for numerical studies. The LCO prediction, LCO boundary, viscous effect, hysteresis phenomenon and transonic 

dip phenomenon are discussed. Finally, Section 4 describes the conclusions. 

2. Numerical approach 

2.1. Fictitious mass method 

For a nonlinear aeroelastic problem, the structural equations of motion without damping are expressed as: 

M ̈u + R ( u ) = F (1) 

where M , F , u, R ( u ) denote the mass matrix, aerodynamic force vector, displacement vector and nonlinear restoring force

vector, respectively. For a concentrated nonlinearity, the nonlinear restoring force vector is as follows: 

R ( u ) = Ku + P f ( θ ) (2) 

where K is the linear stiffness matrix, f ( θ ) denotes the restoring force of a nonlinear spring at the hinge, P stands for the

chosen matrix which is a sparse matrix and the nonzero element only exists at the connection DOF of the hinge. The free-

play nonlinear system is piecewise linear and can be divided into three linear subsystems ( Fig. 1 ), so the restoring force is

expressed as: 

f ( θ ) = 

{ 

k ( θ + s ) , θ < −s 
0 , −s < θ < s 
k ( θ − s ) , θ > s 

(3) 

In the FM method, the nonlinear spring is replaced by a large mass (also called the fictitious mass) at the connection

DOF to calculate the FM modes. Then the FM modes can be obtained by the following eigenvalue problem: [
K − ω 

2 
f ( M + M f ) 

]
ϕ f = 0 (4) 

where M f denotes the FM matrix and is also sparse, ϕf and ω f denote the FM mode shape and frequency, respectively. The

FM modes are normalized so that 

�T 
f ( M + M f ) �f = I , �T 

f K �f = �f (5) 

where �f , �f , I denote the FM modal matrix, spectral matrix and identify matrix, respectively. The FM modes contain local

deformations near the free-play hinge so that the modes can serve as a constant set of basis vectors for the piecewise

linear system [27] . The displacements of the free-play nonlinear system can be expressed as a linear combination of the FM

modes: 

u = �f η (6) 

where η denotes the generalized displacements. Because the rotational angle θ needs to be calculated, the modal matrix 

should contain rotational components. 

Substituting Eq. (6) into Eq. (1) with the aid of Eqs. (2) and (5) yields the reduced structural equations of motion: 

M g ̈η + �f η + �T 
f P f ( θ ) = F g (7) 

where, 

M g = I − �T 
f M f �f 

F g = �T 
f F (8) 

in which subscript “g” denotes the generalized matrixes. Note that the generalized aerodynamic force F g and the rotational 

angle θ are functions of η. Eq. (7) is marched in time using the fourth-order Runge-Kutta (RK4) method based on adaptive

time step. The adaptive approach is discussed in Section 2.2 . 
3 
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2.2. Catching the switching point 

As shown in Fig. 1 , there are two switching points resulting in the non-smoothness of the free-play system. Integrating

the structural equations using a fixed time step is incapable of catching the switching points accurately. The round-off error 

will grow with time marching and finally may lead to numerical instability [40] . To overcome this difficulty, the time step

should be adapted elaborately to locate the switching points. 

There are some time marching methods that can integrate to the switching points accurately, such as the predictor- 

corrector algorithm [41 , 42] , the Henon’s method [15 , 40] and the point transformation method [13 , 43] . However, all these

methods are only suitable for the systems having several DOFs in which the rotational angle explicitly exists, and require 

that the aerodynamic model has analytic expressions. So far, these methods are only applied to 2-D aeroelastic systems in 

incompressible flow and it is difficult to generalize them to 3-D aeroelastic systems in general flow conditions. 

In the present work, the bisection method is developed to deal with this problem. This method is suitable for 3-D

problems and it ensures high accuracy for catching the switching points. The procedure is as follows. 

(1) First of all, define a normal time step �t n . 

(2) Integrate the structural equations from t to t + �t n and calculate the rotational angle θ at the hinge. The computation

of θ is based on the linear combination of FM modes. If the subsystem does not change, then continue the time

marching using the step of �t n . Otherwise, the step should be adjusted and go to (3). 

(3) Define the function f ( t ) = θ ( t ) – s , where s denotes the switching point crossed, and define a tolerance ε = 10 −10 . 

(4) Let a = 0, b = �t n . If | f ( t + b ) | < ε, then return b as the adaptive time step and go to (7). Otherwise, go to (5). 

(5) Let c = ( a + b )/2. Integrate the structural equations from t to t + c and recalculate the rotational angle θ . If | f ( t + c ) | <
ε, then return c as the adaptive time step and go to (7). Otherwise, go to (6). 

(6) If f ( c ) • f ( b ) < 0, let a = c , otherwise let b = c . Go to (5). 

(7) Go to (2) for the next time step. 

2.3. Aerodynamic solver 

ANSYS FLUENT is used for the unsteady aerodynamic simulations. The governing equations are three-dimensional com- 

pressible Navier–Stokes (N-S) equations. The gradients are evaluated by the Green-Gauss scheme and the vector of convec- 

tive fluxes is evaluated by the Roe-FDS scheme. The Sutherland formula is used to calculate the molecular viscosity coeffi- 

cient, and the turbulence is simulated using the shear-stress transport (SST) k - ω model. The second-order upwind scheme is

used for the spatial discretizations of the flow and the turbulent variables. The implicit dual-time formulation is employed 

to integrate the equations in time. 

2.4. Fluid-structure interpolation 

In order to calculate the generalized aerodynamic forces F g , the FM modes on the structural nodes should be first in-

terpolated onto the aerodynamics nodes on the surface. In this paper, the radial basis function (RBF) method [44] is used

for the interpolations. This method is based on the spatial positions of nodes only and can be performed on arbitrary point

clouds with no connectivity information required. Moreover, only simple matrix operations are required. The general form 

of RBF interpolation is [45] : 

s ( x ) = γ0 + γ1 x + γ2 y + γ3 z + 

N ∑ 

i =1 

αi φ( ‖ 

x − x i ‖ ) (9) 

where x = ( x, y, z ), ‖ x − x i ‖ 2 = ( x − x i ) 
2 + ( y − y i ) 

2 + ( z − z i ) 
2 , and N is the number of control points. After the coefficients

in Eq. (9) are calculated based on the known values at the control points, the substitution of a new point x into Eq. (9) yields

the interpolated value. The Wendland’s C2 function [44 , 46] , which gives satisfactory interpolation accuracy, is chosen here:

φ( ‖ 

x − x i ‖ ) = 

{
( 1 − ‖ 

x − x i ‖ 

/d ) 
4 
( 4 ‖ 

x − x i ‖ 

/d + 1 ) , ‖ 

x − x i ‖ 

≤ d 
0 , ‖ 

x − x i ‖ 

> d 
(10) 

where d represents the support radius and is chosen to be a suitable value to consider enough points near the interface and

exclude the points far away [47] . 

The deflection of fluid-structure interface requires the update of the volume mesh according to the structural displace- 

ments evaluated by Eq. (6) using the generalized displacement vector η. Mesh deformation is the preferred choice to update 

the CFD mesh automatically. The RBF method can also be used to deform the mesh. This method is mesh type independent

and has proven to preserve the grid quality well [44] . However, selecting all the surface points as control points will make

calculations expensive. To reduce the computational cost, Rendall and Allen [48] proposed the ‘greedy’ algorithm to reduce 

the number of the control points, which sacrifices the accuracy of the deformation on the surface with an acceptable error. 

In the present work, the RBF method is utilized along with the ‘greedy’ algorithm to deform the CFD volume mesh. 
4 
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Fig. 2. Flowchart of CFD/CSD coupling for free-play aeroelastic simulations. 

 

 

 

 

 

 

 

 

 

 

2.5. Implementation of CFD/CSD coupling 

The flowchart of the proposed CFD/CSD coupling method is shown in Fig. 2 . The three dimensional CFD mesh and the

structural finite element model should be built and a normal time step �t n is defined in advance. In pre-processing, the

structural FM modes are calculated which are then interpolated onto the aerodynamic nodes using RBF method. During the 

time simulation, the reduced structural equations and the CFD solver are coupled in a loosely coupling manner. After the 

calculation of unsteady aerodynamic force is converged at time t , the reduced structural equations are integrated in time. 

If the change in sub-system occurs, the bisection method is used to catch the switching point and determine the adaptive

time step which is returned to the CFD solver so that both the structural and the fluid equations are integrated using the

same time step. The volume mesh is deformed using the RBF method and then the unsteady aerodynamic force at next

time step is calculated. This procedure is repeated so that the aeroelastic time response can be obtained. 

In this paper, ANSYS FLUENT is chosen as the CFD solver. For free-play aeroelastic simulations, the FM method, the 

bisection method, the fluid-structure interpolation and mesh deformation schemes based on the RBF method are coded 

using the C programming language. Then, these codes are embedded into ANSYS FLUENT through user-defined functions to 

extend its range of application. 

3. Results and discussions 

3.1. Model descriptions 

An all movable wing [34 , 35] is considered here as shown in Fig. 3 . The structural thickness, the root chord length and the

tip chord length are 0.002 m, 0.156 m and 0.078 m, respectively. The material is an Aluminum alloy. The Young’s modulus,

shear modulus and density are 72.4 GPa, 26.2 GPa and 2713 kg/m 

3 , respectively. The pitching axis is located in the mid-

chord of the root. The free-play at the pitching axis is considered here. Within the free-play zone the hinge stiffness is zero,

otherwise the hinge stiffness takes a normal value of 100 Nm/rad. 

The airfoil section is NACA 0012. The viscous structured mesh is generated with clustered boundary layer cells. The 

number of volume cells is 0.82 million and the initial cell height near the wall is set to 1 × 10 −6 m so that y + < 1. The CFD

mesh distribution is shown in Fig. 4 . 
5 
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Fig. 3. The all-movable wing. 

Fig. 4. CFD mesh on the surface and symmetry plane. 

Fig. 5. Structural finite element model. 

 

 

 

 

The structural finite element model is built using 16 ∗17 = 272 quadrilateral shell elements as shown in Fig. 5 . Note that

the nodes of the shell elements are distributed on the mid-plane. To generate the wing section, the structural nodes on the

wing surface are created and these nodes are connected to the mid-plane by the RBE2 elements in MSC.NASTRAN. 

3.2. Linear structural and aeroelastic analyses 

3.2.1. Natural modes 

In this paper, the all movable wing is three-dimensional and elastic. Since the local stiffness at the hinge varies according

to the structural responses, the conventional natural modes that consider a single fixed stiffness are not accurate enough for 

the representation of a free-play nonlinear system. Therefore, the FM method [26 , 27] is used in this work. The idea is that

the local stiffness variations can be properly considered by the modes containing local significant deformations. This kind of 

modes can be obtained by adding a large mass to the local DOF. 
6 
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Fig. 6. FM modes, (a) the first mode (pitching mode), (b) the second mode (bending mode), (c) the third mode (torsion mode), (d) the fourth mode (second 

bending mode). 

Table 1 

Comparison of natural frequencies between the direct and FM methods for the normal stiff- 

ness and zero stiffness, unit: Hz. 

k = 100 N m/rad k = 0 N m/rad 

Mode Direct FM Error Direct FM Error 

1 43.2846 43.2846 0 0.0 0.0 0 

2 86.2939 86.2939 0 53.0542 53.0542 0 

3 293.4808 293.4808 0 293.0038 293.0039 0 

4 370.3349 370.3362 0.0004% 352.2761 352.2839 0.0022% 

5 584.6897 584.6903 0.0001% 583.5344 583.5384 0.0007% 

6 846.8429 846.8656 0.0027% 836.8683 837.0396 0.0205% 

7 1103.9460 1103.9715 0.0023% 1100.7520 1100.9577 0.0187% 

8 1306.8380 1306.9380 0.0077% 1301.4330 1302.3263 0.0686% 

9 1601.6170 1603.3325 0.1071% 1572.6300 1591.5522 1.2032% 

10 1714.5850 6358.5389 – 1668.3580 3873.7392 –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To calculate the FM modes, a fictitious moment of inertia of 0.001 kg/m 

2 is placed at the rotational DOF of the pitching

axis where the free-play nonlinearity exists. This value is one order of magnitude larger than the moment of inertia of the

wing about the pitching axis. The reference hinge stiffness value for the FM modal basis evaluation is k = 0 N m/rad. 

The first 10 FM modes are chosen to represent the free-play system. Fig. 6 shows the four dominant FM modes and they

denote the pitching mode, the bending mode, the torsion mode and the second bending mode, respectively. Table 1 lists the

natural frequencies for the zero hinge stiffness and the normal hinge stiffness ( k = 100 N m/rad). The results are calculated

by both the direct method based on MSC.NASTRAN (Sol. 103) and the FM method. To obtain the natural frequency by the

FM approach, the structural eigenvalue problem for Eq. (7) without the free-play and aerodynamic terms is solved [28] . 

The frequencies computed by the FM method show good agreement with the direct method except for the tenth mode. 

Note that the tenth mode contains local distortions and does not denote any natural mode [28 , 35] . The results demonstrate

that this fictitious moment of inertia is appropriate and that it is reasonable to choose the FM modes as a constant modal

space to represent the free-play nonlinear system. 

3.2.2. Linear structural dynamics 

The presented method used in the nonlinear analyses is also used in the linear analyses. But there are some differences

between these two kinds of analyses. For linear analyses, the system contains only one subsystem and there is no switching

point. The time step size used in linear analyses is a fixed value, while the nonlinear analyses use an adaptive time step. 

A time-varying concentrated force which is perpendicular to the wing is exerted at the trailing edge of the tip chord and

its expression is shown as (Unit: N): 

F = 20 sin ( 100 πt ) (11) 

The hinge stiffness here is considered to be a constant value of 100 Nm/rad. The linear dynamic responses are calculated

by both the direct method using MSC.NASTRAN (Sol. 109), and the FM method. To obtain the dynamic responses by the

FM method, the concentrated harmonic load is projected to the modal basis. The time step is set to 5 × 10 −5 s and Fig. 7

shows the time history of the rotational angle θ of the root mid-chord. Results show that the response computed by the FM
7 
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Fig. 7. Comparison of linear dynamic response between the direct method and FM method. 

Fig. 8. Linear flutter computation, Ma = 0.6. 

 

 

 

 

 

 

 

 

 

method is consistent with the direct method and reveal that the FM method can predict the dynamic response accurately 

for each linear subsystem of the free-play nonlinear system. 

3.2.3. Linear flutter speed 

In this section, the structural FM method is coupled with the CFD method to predict the linear flutter speed in time do-

main. The environment air density is 0.7364 kg/m 

3 . A typical subsonic Mach number of 0.6 is adopted. The flutter boundary

at a specified Mach number is determined by changing the inflow velocity while keeping the density unvaried [47] . The

environment temperature is allowed to be changed so that the speed of sound and the inflow velocity can be changed. The

environment pressure is calculated according to the equation of the state of perfect gas. The flutter simulation is started 

after the steady CFD calculation is converged for the rigid wing. Because the wing is symmetric, the initial configuration 

coincides with the equilibrium position. To evaluate the flutter boundary, an initial disturbance is imposed on the wing. 

The time step is set to 5 × 10 −5 s. Fig. 8 plots the time histories of displacement of the monitor point located in the

leading edge of the tip chord ( Fig. 3 ), showing that the linear flutter speed at Mach 0.6 is 139.17 m/s. For comparison, the

DLM in MSC.NASTRAN (Sol. 145) is also used to predict the linear flutter speed and it turns out to be 139.45 m/s. Therefore,

the presented CFD/CSD coupling method shows good agreement with DLM in this subsonic Mach number. 

Until now, the FM method has been validated for linear cases. Then, the nonlinear cases are discussed in the following

sections. 

3.3. Nonlinear aeroelastic analyses in subsonic flow 

3.3.1. Validation of bisection method 

The symmetric free-play is considered here and the free-play region is –s < θ < s ( s = 0.1 °), where s and - s denote the

switching points. 
8 
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Fig. 9. Iterative process of catching switching point. 

Fig. 10. Time histories of rotational angle under various initial conditions, V = 105.4 m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If the subsystem does not change, the structural equations are integrated using the normal time step of 5 × 10 −5 s. If the

change in subsystem occurs, the bisection method is used to locate the switching point and determine the adaptive time 

step. To check the validity of this method, the concentrated force in Eq. (11) is exerted and the tolerance is set to 10 −10 .

Fig. 9 shows the iterative process of catching the switching point when it is crossed for the first time. As shown in Fig. 9 a,

the error is defined as the difference between θ and the switching point, and it reduces to the tolerance of 10 −10 after

19 iterations. Fig. 9 b plots the convergence history of the adaptive time step. These results demonstrate that the bisection

method is effective for catching the switching point. 

3.3.2. LCO prediction and hysteresis phenomenon 

To evaluate aeroelastic LCOs, the whole wing is initially pitched by an angle θ0 . The Mach number is 0.6 and the free-

stream velocity is set to 105.4 m/s which is below the linear flutter speed. Fig. 10 plots the dynamic responses of the

rotational angle θ of the root mid-chord under various initial conditions. If the initial condition θ0 is set to 0.15 ° or 0.5 °
( Fig. 10 a-b) corresponding to setting θ0 outside the free-play zone, the system tends to evolve into a stable oscillation after

a short transient process, indicating the stable LCO occurs, whose amplitude is 0.169 °. 
The first four generalized displacements of the LCO are depicted in Fig. 11 , which shows the LCO is dominated by the

first three modes, while the fourth generalized displacement is very small. Other generalized displacements are also very 

small and not shown in the figure. It is seen that the generalized displacement has high order frequency components, which

is different from a linear analysis at flutter boundary where only simple harmonic motions are observed. 

The fast Fourier transform (FFT) analysis of the rotational angle θ is shown in Fig. 12 . The fundamental frequency is

51.7 Hz. Higher order harmonics are also observed although their amplitudes are small compared with the fundamental 

harmonic. The FFT plot shows that the frequencies of the high order harmonics are about three times, five times and seven

times the fundamental frequency. This observation is consistent with the work of Liu and Dowell [13] , who studied an airfoil

with free-play and showed the evidence of high order harmonics. According to Liu and Dowell [13] , for periodic motions,

high order harmonics need to be included in the harmonic balance analysis if their components are significant. But in 

the present case, the amplitudes of the high order harmonics are negligible, indicating the equivalent linearization method 

including only one harmonic can be used to predict the LCO for this flow velocity. The equivalent linearization method and

the comparison with CFD/CSD coupling are discussed in Section 3.3.4 . 
9 
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Fig. 11. Generalized displacements of the LCO. 

Fig. 12. FFT analysis of rotational angle, V = 105.4 m/s. 

Fig. 13. Time histories of monitor point displacement under various initial conditions, V = 105.4 m/s. 
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Fig. 14. Hysteresis phenomenon, θ0 = 0.05 °. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 plots the monitor point displacement under the various initial conditions. If the initial condition θ0 is set to 0.15 °
or 0.5 ° ( Fig. 13 a-b), the displacement response is attracted to the LCO whose amplitude is about 0.171 mm. 

From the standpoint of energy, the system dissipates energy outside the free-play zone because the velocity is less than 

the linear flutter speed. On the other hand, when the system falls into the free-play zone, it will gain energy due to the

instability of the subsystem with zero stiffness. Therefore, the nonlinear system will continually gain and lose energy during 

the switching of subsystems. If the equilibrium between the energy gaining and dissipation can be maintained, then the 

stable LCO arises [41] . But that does not mean the LCO occurs in any condition. Note that the stable LCO in Fig. 10 a-b is

excited by sufficiently large initial condition. If θ0 decreases to 0.05 ° corresponding to setting θ0 into the free-play zone, 

the monitor point displacement is damped ( Fig. 13 c) and the rotational angle converges to −0.105 ° near one of the free-play

limits ( Fig. 10 c), indicating that the LCO behavior of the current nonlinear system is subcritical and that there exists an

unstable LCO which cannot be predicted by the present time domain method. 

The subcritical LCO behavior is characterized by hysteresis [49] . For example, a hysteresis phenomenon is shown in 

Fig. 14 . The response starts with a relatively small velocity ( V = 105.4 m/s) and with a small initial condition ( θ0 = 0.05 °).
The preceding discussion has shown this initial condition cannot lead to a stable LCO. Then the flow velocity increases to

130.9 m/s and a stable LCO is discovered whose amplitude is 0.506 °. After this LCO is developed, the velocity decreases back

to 105.4 m/s and then the stable LCO with a relatively small amplitude is observed. It is seen that the LCO at V = 105.4 m/s

may or may not develop depending on the previous motion history (hysteresis). The previous LCO with a large amplitude 

corresponds to having a large initial condition (disturbance) for the subsequent simulation, so that the subsequent LCO can 

be excited when the velocity decreases. The hysteresis phenomenon means that once a stable LCO occurs, the amplitude 

decreases as the flow speed decreases. It does not decay to zero until the flow speed is reduced below the LCO boundary,

which is discussed in the next section. 

Figs. 15 and 16 depict the phase plots of fully developed LCOs for the rotational angle and the monitor point displacement

at various free-stream velocities. To better evaluate the effect of flow speed increasing, Fig. 17 a and b combine the phase

plots into a single plot for the rotational angle and the monitor point displacement, respectively. 

3.3.3. LCO boundary 

The free-play nonlinearity leads to LCOs even if the flow velocity is lower than the flutter boundary. To eliminate 

LCOs, the flow velocity should be less than the critical speed below which LCOs will not occur under any initial dis-

turbance. This critical speed is called the LCO boundary in this paper. To determine the LCO boundary, the initial con-

dition should be set to a sufficient large value, otherwise the subcritical property may suppress the occurrence of LCO. 

Then, the LCO boundary is determined by changing the flow velocity until the lowest velocity for the onset of LCO is

found. 

For example, as shown in Fig. 18 , the initial condition is set to θ0 = 0.5 ° corresponding to five times the free-play angle

( s = 0.1 °). It is seen that the response converges to an equilibrium position for the velocity less than 102 m/s. To ensure

the LCO will not occur below 102 m/s, larger disturbances are applied as shown in Fig. 19 . The velocity is set to 101.5 m/s.

Results show that the response also converges under the initial conditions of θ0 = 0.8 ° and θ0 = 1.5 °. Therefore, the initial

condition of θ0 = 0.5 ° can be considered as a sufficient large disturbance. Further increase of the initial value will not affect

the LCO calculation. Since the LCO begins to occur at V = 102 m/s, this critical speed is considered as the LCO boundary at

Mach 0.6. 

To evaluate the effect of free-play angle on the LCO boundary, the free-play angle is increased to s = 0.5 ° as shown in

Fig. 20 . Results show that the LCO boundary for s = 0.5 ° still is 102 m/s, indicating the LCO boundary does not vary with

the free-play angle. 
11 
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Fig. 15. Phase plots for θ at various speeds. 

Fig. 16. Phase plots for monitor point displacement at various speeds. 
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Fig. 17. Phase plots at various speeds in a single plot, (a) rotational angle θ , (b) monitor point displacement. 

Fig. 18. LCO boundary calculation, Ma = 0.6, θ0 = 0.5 °, s = 0.1 °. 

Fig. 19. Time responses under different initial conditions, Ma = 0.6, V = 101.5 m/s, s = 0.1 °. 
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Fig. 20. LCO boundary calculation, Ma = 0.6, θ0 = 1.0 °, the free-play angle is increased to s = 0.5 °. 

Fig. 21. LCO amplitude versus velocity, Ma = 0.6. 

 

 

 

 

 

 

 

 

3.3.4. Comparison with equivalent linearization 

In this section, the equivalent linearization method is used to predict the LCOs. Based on the describing function theory 

[6 , 37] , the equivalent linearized structural stiffness is 

K eq = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 , A < s 

2 k 

π

[ 

π

2 

− arcsin 

s 

A 

− s 

A 

√ 

1 −
(

s 

A 

)2 

] 

, A ≥ s 
(12) 

where A denotes the amplitude of θ and k represents the normal stiffness out of the free-play zone. After the equivalent

stiffness is obtained for a given amplitude, the p-k method based on DLM in MSC.NASTRAN is used to calculate the flutter

speed. This technique of equivalent linearization/doublet lattice method (EL/DLM) is used to obtain the curve of amplitude 

versus flow velocity as shown in Fig. 21 . Note that the model given by Eq. (12) is only used in the linearized approach

EL/DLM, while the proposed CFD/CSD coupling approach based on the FM method and the bisection method never uses this 

model. 

EL/DLM is a frequency domain method and can predict both the stable LCOs (denoted by solid line) and the unsta-

ble LCOs (denoted by dash line). The LCO stability is determined by checking if the perturbed motion about the LCO is

to return to the periodic orbit or leave away from it [5] . For the equivalent linearization method, this is equivalent to

evaluate the change of sign of the real part of the eigenvalue for a perturbed amplitude [7] . This eigenvalue is obtained

by the solution of the characteristic equations in the p-k method. An inference is that the LCO stability can be deter-
14 
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Fig. 22. LCO amplitude versus free-play angle, V = 130.9 m/s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mined by the trend of the LCO amplitude with respect to the flow velocity [10 , 50–52] . If the amplitude increases with

the increase of velocity, then the LCO is stable. If the amplitude decreases with the increase of velocity, then the LCO is

unstable. 

In Fig. 21 , the turning point that connects the stable branch and the unstable branch denotes the smallest velocity for

the onset of LCO. Thus, the LCO boundary (also called the turning point velocity) predicted by EL/DLM at Mach 0.6 is 89.9

m/s. 

The results predicted by the CFD/CSD coupling are also presented for comparison. Note that the LCOs that can be simu-

lated in time domain are stable. For the stable LCOs ( Fig. 21 ), the amplitude calculated by the CFD/CSD coupling agrees well

with that predicted by EL/DLM except for the speeds near the linear flutter boundary near which small changes in velocity

can lead to large changes in LCO amplitude. 

It is noted from Fig. 21 that there is a difference in LCO boundary between the two approaches. Similar observation

was reported by Padmanabhan et al. [52] , who studied the aeroelastic LCO behavior with cubic nonlinearity in incompress-

ible flow. Their results showed that the stable LCO branch predicted by the equivalent linearization theory could not be 

confirmed by time marching in the vicinity of the turning point. In the work of Verstraelen et al. [18] , experiments on a

typical aeroelastic system with free-play were conducted in a low-speed wind tunnel and the experimental results were 

compared with mathematical predictions. Their results showed that the equivalent linearization theory predicted the LCOs 

at speeds lower than the experimental LCO onset velocity. This kind of deviation is likely due to the reason that the equiv-

alent linearization theory is based on the assumption of simple harmonic motion so that it is not accurate enough for LCO

predictions in some cases, such as the aperiodic responses, LCOs with multiple dominant frequencies and so on [25 , 29] . To

improve the LCO solutions, Chen et al. [53] and Liu et al. [54] used the incremental harmonic balance method with high or-

der harmonics to predict LCO behaviors and the critical speed for stable LCOs was shown to be consistent with time domain

numerical results. But their studies were limited to 2-D airfoils in incompressible flow. To ensure the stable LCO prediction 

accuracy for 3-D structures in general compressible flow, especially near the turning point, this paper recommends the 

presented CFD/CSD coupling method. 

The simulation using the CFD/CSD coupling is computationally expensive. For example, to obtain a fully developed LCO, 

the aeroelastic response in Fig. 10 (a) is simulated for one second that includes enough periods. This simulation is based on

parallel computing using 48 processes and the results show the CPU time is about 88 hours. What’s more, several cases

are needed to obtain the LCO boundary. Note that this high computational effort is a common feature in CFD applications.

In contrast, the LCO response obtained by the linearized approach EL/DLM is based on serial computing and the CPU time

is only a few seconds. Although the CFD/CSD coupling is less efficient than EL/DLM, it shows better performance in the

prediction of LCO boundary, especially in transonic conditions. 

As expressed in Eq. (12) , K eq is determined by the ratio of s to A . Based on the theory of EL/DLM, the flow speed at which

LCO occurs is determined by K eq , so the flow speed is determined by s / A , indicating the LCO amplitude is proportional to

the free-play angle at a given flow speed. Fig. 22 shows the LCO amplitude of θ at various free-play angles at V = 130.9

m/s for the two methods. The amplitude calculated by the presented CFD/CSD coupling is also proportional to the free- 

play angle, which is consistent with EL/DLM, although there is a slight difference in the slope of curve between them. The

FFT analyses are illustrated with Fig. 23 , showing the free-play angle has little effect on the frequencies of the harmonic

components. 
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Fig. 23. FFT analyses for various free-play angles, V = 130.9 m/s. 

Fig. 24. Pressure coefficient distribution, Ma = 0.85, V = 112.2 m/s, α = 0 °. 

 

 

 

 

 

 

 

 

3.4. Nonlinear aeroelastic analyses in transonic flow 

3.4.1. Comparison between N-S, Euler and DLM 

In this section, the Mach number increases to 0.85. Both N-S equations and Euler equations belong to CFD methods and

are used in the simulations. The viscous effect (e.g. boundary layer and shock-boundary layer interaction) can be considered 

by the N-S equations, while Euler equations are based on the inviscid hypothesis. Fig. 24 a shows the steady pressure coeffi-

cient (C p ) distribution on the rigid wing surface and it is seen that the shock wave exists. Fig. 24 b plots the comparison of

C p distribution on the section of y = 0.13 m, showing that there exists a difference near the shock wave and the shock wave

predicted by the N-S equations moves forward compared to the Euler equations. Thus the viscous effect plays an important 

role in the transonic aerodynamic model. 

Before the nonlinear aeroelastic discussions, the linear flutter results are presented. The predicted flutter speed at Ma 

0.85 is 119 m/s, 124.7 m/s and 130.25 m/s for the Euler equations, N-S equations and DLM, respectively. The results show

that it is non-conservative to determine the transonic flutter speed by DLM, while the Euler approach gives a too conser-

vative result. Due to the existence of shock wave, the flow field is mixed subsonic-supersonic and this transonic flow is

nonlinear even under the assumption of small disturbances [55] . The aerodynamic nonlinearity due to shock wave has a 

great impact on the flutter predictions [49] . Because DLM is based on the linear aerodynamic theory, it cannot accurately
16 
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Fig. 25. LCO amplitude versus velocity, Ma = 0.85. 

Fig. 26. Transonic dip in linear flutter boundary. 

 

 

 

 

 

 

predict the transonic flutter speed. Although the Euler equations can capture the shock wave, this approach neglects the 

viscous term and gives a lower flutter speed compared to the N-S equations. 

Then, the free-play nonlinear aeroelastic simulations are performed at this transonic Mach number. The symmetric free- 

play is still considered in this section and the free-play angle is set to s = 0.1 °. All aeroelastic simulations are performed

at zero angle of attack. Fig. 25 depicts the LCO amplitude of θ as a function of velocity for different methods. The linear

flutter speeds are indicated by vertical lines. The comparison shows that DLM not only predicts the largest flutter speed 

but also predicts the largest velocity for a given LCO amplitude. In other words, DLM underestimates the LCO amplitude 

for a specified velocity. For the aerodynamic nonlinear methods, the Euler equations predict the largest LCO amplitude for 

a specified velocity. The LCO boundary is 86.9 m/s for the Euler equations, while it is 90.5 m/s for the N-S equations.

Fig. 25 shows that the curve of LCO amplitude versus velocity is moved to a smaller velocity for the Euler method than

the N-S method. This can be anticipated from the fact that the flutter speed obtained by the Euler equations is less than

that obtained by the N-S equations. Therefore, it is conservative to use the nonlinear inviscid method to predict the flutter 

boundary, LCO boundary and LCO amplitudes. In other words, this comparison reveals that the presence of viscous effect 

shifts the LCO amplitude to a larger flow velocity. 

3.4.2. Transonic dip phenomenon 

First, the linear flutter boundary is calculated at various Mach numbers. The comparison between DLM and the CFD/CSD 

coupling is shown in Fig. 26 . In this section, the N-S equations are used in the CFD/CSD coupling simulations. Because DLM

is based on the linear aerodynamic theory, it deviates from the CFD/CSD coupling results as the Mach number approaches 

the sonic value. The aerodynamic nonlinearity due to shock wave can lead to the well-known transonic dip phenomenon 
17 
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Fig. 27. Transonic dip in LCO boundary. 

Fig. 28. Flutter boundary and LCO boundary. 

 

 

 

 

 

 

 

 

[56–61] that the flutter speed experiences a drop within the transonic regime. Fig. 26 shows that the transonic dip in flutter

boundary is well captured by the CFD/CSD coupling method. 

Then, the LCO boundary of the free-play aeroelastic system is calculated at various Mach numbers and the comparison 

between EL/DLM and CFD/CSD coupling is shown in Fig. 27 . It is seen that the LCO boundary predicted by EL/DLM is nearly

unchanged over the range of Mach numbers. On one hand, the preceding discussion has shown that EL/DLM cannot predict 

the LCO boundary accurately even in subsonic regime because the assumption of simple harmonic motion is not accurate 

enough near the turning point. On the other hand, DLM is unsuitable for the calculation of transonic aerodynamic forces. 

Thus EL/DLM fails to predict the trend of LCO boundary with respect to Mach number and it is not recommended for

stability boundary analyses of 3-D aeroelastic systems with free-play. In contrast, the CFD/CSD coupling results confirm 

that there is a transonic dip in the LCO boundary, which can be attributed to the free-play nonlinearity and the transonic

aerodynamic nonlinearity. This phenomenon is similar to the transonic dip in linear flutter boundary but this new transonic 

dip is deeper due to the free-play nonlinear effect. 

Fig. 28 a plots the curves of flutter boundary and LCO boundary versus Mach number, which divide the figure into three

zones. The LCO can be observed over a wide range of speed that ranges from the LCO boundary to the flutter boundary. If the

flow velocity exceeds the flutter boundary, the response is divergent or has a large oscillation amplitude [37 , 53] . Although

the LCOs with large amplitudes may occur in this region, this paper still adopts the terminology in Ref. [38] and calls it
18 
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Fig. 29. Reduction ratio at various Mach numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

divergent flutter. If the flow velocity is below the LCO boundary, the response is damped under any initial disturbance. As

shown in Fig. 28 b, the flutter critical frequency and the LCO critical frequency also experience a drop in the transonic region.

Due to the free-play nonlinearity, both the stability boundary and the critical frequency are reduced significantly. To 

evaluate the free-play nonlinear effect on the transonic dip phenomenon, Fig. 29 plots the reduction ratio versus Mach 

number for the stability boundary and the critical frequency. The reduction ratio is defined as: 

reduction ratio = 

flutter value − LCO value 

flutter value 
(13) 

It is seen that the reduction ratio increases greatly near the transonic dip. This is because the flutter value is relatively

low and the difference between the flutter and LCO values is large in the transonic region. The maximum reduction ratio

turns out to be 43.5% for the stability boundary and 22.7% for the critical frequency, respectively. Both maximums occur at

Mach 1.1. 

As discussed in Section 3.3.4 , the LCO amplitude is in proportion to the free-play angle. In other words, if LCO occurs at

a certain velocity, the change in free-play angle only affects the LCO amplitude and cannot eliminate the occurrence of LCO.

It can be deduced that the size of free-play angle has no effect on the LCO boundary. The results in Section 3.3.3 ( Figs. 18

and 20 ) confirm this conclusion. Since the LCO boundary does not vary with the free-play angle, the transonic dip and the

reduction ratio are not affected by the free-play angle. 

4. Conclusion 

This paper proposes a framework of CFD/CSD coupling that can consider both the free-play nonlinearity and aerodynamic 

nonlinearity for three dimensional aeroelastic analyses. The reduced structural equations of motion are constructed using the 

FM method and are solved with the aid of bisection method that can detect the switching point effectively and accurately. 

The RBF method is used for the fluid-structure interpolation and CFD mesh motion. The reduced structural equations and 

the CFD solver are coupled in a loosely coupling manner. The three dimensional all-movable wing with free-play in pitch is

studied in subsonic and transonic conditions. The results are as follows. 

This CFD/CSD coupling method is shown to predict the LCOs and the hysteresis phenomenon in time domain effectively. 

In subsonic flow, the LCO amplitude predicted by the CFD/CSD coupling is in good agreement with that predicted by the

linearized approach EL/DLM, except for the speeds near the flutter boundary and the LCO boundary. The CFD/CSD coupling 

shows better performance in the prediction of LCO boundary than EL/DLM, which is based on the assumption of simple

harmonic motion but not accurate enough near the turning point. 

In transonic flow, the aerodynamic nonlinearity due to shock wave leads to the significant difference in LCO amplitudes 

between the CFD/CSD coupling and EL/DLM. The comparison between N-S and Euler results shows that the viscous effect 

increases both the LCO boundary and the flutter boundary and shifts the LCO amplitude to a larger flow velocity. 

Because the LCO behavior is subcritical, a large initial disturbance is needed to find the LCO boundary. At a specified

Mach number, the LCO boundary is determined by changing the flow velocity until the critical speed is found. The transonic

dip in LCO boundary is observed by the CFD/CSD coupling, while EL/DLM fails to predict this phenomenon. This transonic 

dip phenomenon is caused by the free-play nonlinearity and the transonic aerodynamic nonlinearity. From the results of 

this study, the LCO boundary and the critical frequency can be at most 43.5% and 22.7% below the flutter boundary and the

flutter frequency, respectively. The LCO boundary is not affected by the free-play angle. 
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This paper studies the free-play induced LCOs in subsonic and transonic flows. However, some aerodynamic nonlinear 

mechanisms, such as the strong shock wave interference and the shock-boundary layer interaction, are still difficult and 

remain unresolved. Future work should focus on the strong aerodynamic nonlinear effects on the free-play aeroelastic be- 

haviors. 
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