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Biological staggered composites, which are hierarchy spanning from nano scale to macro scale, boast remark-
able mechanical properties. In this paper, a trans‐scale shear‐lag model is established based on the strain gra-
dient theory and the Gurtin‐Murdoch model, which provides a chance to glimpse how the micro‐nano
structures of the biological composite determine its macroscopic mechanical behavior. With the trans‐scale
shear‐lag model, we found that the deformation, stress distribution and overall effective modulus have strong
size effects, which are related to the thickness of the ‘matrix’ and ‘platelet’ of the biological staggered compos-
ites. Based on the analysis, two normalized numbers d/l and Es/(hEp) are proposed to describe the size effects
caused by the thickness of the matrix and platelet, respectively. Besides, the predicted effective moduli of the
biological staggered structure composites are compared with the experiments to verify our trans‐scale shear‐lag
model. Our research sheds light on the understanding of the mechanical behaviors of the staggered biological
composites and provides theoretical guidance for the design of high‐performance bionic composite materials.
1. Introduction

Nature has produced many materials with excellent performance,
such as bone, teeth, shell and antler, during thousands of years of evo-
lution. These biological materials are made up of mineral as brittle as
chalk and protein as soft as skin, but exhibit a perfect combination of
toughness and stiffness compared to their constituents. For example,
the shell is composed of 1 ~ 5% vol. protein and 95 ~ 99% vol. mineral.
Its modulus is about 50 GPa, which can be comparable to that of min-
eral (50 ~ 100 GPa), and its strength is 100 ~ 300 MPa, which is 3 ~ 10
times that of the mineral; besides, the fracture toughness of the shell
(3 ~ 7 MPa m1/2) is also greater than that of mineral (≪1 MPa m1/2)
[1–4] and comparable to that of skin [5]. Similarly, the bone, made
up of 55 ~ 60% vol. collagen and 40 ~ 45% vol. mineral, also possesses
excellent mechanical properties. Its strength and fracture toughness
are higher than those of the mineral, and its modulus is comparable
to that of the mineral [6,7]. These remarkable mechanical properties
of biological composites attract extensive attention from researchers
with the objective of imitating nature to manufacture high‐
performance bionic composite materials.

The combination of toughness and stiffness of the biological com-
posites is attributed to the hierarchy bottom up from nanoscale
[2,4,8–11]. For example, there are three‐layer structures in seashell
(periostracum layer, prismatic layer and nacreous layer) [2,4,10,11]
and more than seven hierarchical levels in bone [9,12]. Despite their
complex structures, the basic building block in biological composites
is the staggered structure at the micro‐nano scale [8]. For example,
the nacre occupying the majority of the volume of shell is a “brick
and mortar” structure, where the thickness of the staggered platelets
is 0.2 ~ 1 μm and that of the matrix gluing the platelets together is
20 ~ 40 nm [13,14]; the mineralized fibril in bone consists of mineral
platelets with a thickness of a few nanometers (~2 nm) staggered in a
collagen matrix [12]. This staggered structure at the micro‐nano scale
is found to be a main factor contributing to the large stiffness of bio-
logical composites [8]. In order to better design the artificial compos-
ites, the mechanical model for the relationship between the staggered
structure at the micro‐nano scale and the overall effective modulus has
been investigated for many years. In the early stage, researchers
mainly focused on the relationship between the staggered structure
and the overall effective modulus [7,8,15–20]. For example, Jäger
and Fratzl [7] proposed a model with a staggered array of platelets
for the collagen fibrils and explored the dependence of the mechanical
behaviors on the geometric features of the platelet and matrix.
Inspired by the work of Jäger and Fratzl, Ji and Gao [8] developed a
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tension‐shear‐chain model (TSC model), where they assumed the shear
stress between the platelet and the matrix is uniform, to predict the
mechanical properties of the staggered composites, and they pointed
out that the large stiffness of biological materials is attributed to the
large aspect ratio and staggered structure. After that, with the consid-
eration of the non‐uniform shear stress between the platelet and the
matrix, Zuo and Wei [18] improved the TSC model and established
a shear‐lag model (SL model). Then, SL model was used by Gao [21]
to study the mechanical properties of hierarchical materials and the
results show that the non‐uniform shear stress between the platelet
and the matrix cannot be neglected when the number of the hierarchy
is large. Both TSC model and SL model are based on the assumption
that the mineral platelets in the staggered structure only bear the ten-
sile stress, while the organic layers only bear the shear stress. Based on
the SL model also, Bar‐on and Wagner [19] established a general
mechanical model (BW model) that considered both the tensile and
shear deformation in the mineral platelet and organic matrix. Besides,
the effects of the arbitrary distribution of the unidirectional platelets
and the waviness of the platelet on the mechanical properties of the
staggered composites were also widely studied by previous researchers
[16,17,20].

With the improvement of the understanding of the mechanical
behaviors of materials at the micro‐nano scale, researchers further
pay attention to the scale characteristics on the basis of focusing on
the staggered structure. Many studies have shown that the higher‐
order continuum theory (e.g. strain gradient theory) can describe the
mechanical behaviors of materials at the micron scale due to its ability
that captures microstructure effects resulting from non‐local interac-
tions of material particles [22–27]. This theory is applicable to both
a continuum medium with microstructure and a non‐local medium
including long‐range interactions. Based on the strain gradient theory,
Ma et al. [24] extended SL model and derived a strain gradient shear‐
lag model. They systematically studied the size effect of the mechani-
cal behaviors of biological staggered composites and found that the
size effect depends on the thickness of the organic matrix layer, and
the thinner the thickness of the organic matrix layer, the stiffer the
staggered structure materials. Different from the work of Ma et al.
[24], other researchers consider the effect of the surface energy on
the mechanical behaviors of staggered structure composites. The sur-
face elasticity theory developed by Gurtin and Murdoch [28] can
reflect the surface energy arising from the difference of arrangements
between the surface atom and the inner atom [28], which has been
widely considered in the mechanical characterization of nanostructure
and has been proved to be effective [28–33]. Based on the Gurtin‐
Murdoch model, Dong et al. [34] introduced the surface effect into
the TSC model and analyzed the influence of the interface effect on
the effective modulus of biological staggered composites. The results
show that the size effect of the mechanical properties of biological
staggered composites is related to the thickness of the mineral platelet.
From the researches of Ma et al. [24] and Dong et al. [34], it can be
found that the influence of scale characteristics on the biological stag-
gered composite is significant. However, for the biological staggered
composites made of mineral platelets and organic materials, the size
effect should depend on both the scale characteristic of the mineral
platelet and that of the organic matrix layer, but not on the scale char-
acteristic of one of them. Up to now, a model which can reflect both
the scale characteristic of the mineral platelet and that of the organic
matrix layer has not been proposed. Moreover, it is also not clear how
the scale characteristic of the mineral platelet and that of the organic
matrix layer are coupled to influence the mechanical behaviors of stag-
gered structure materials. Therefore, in order to design bionic compos-
ite materials with high strength and toughness, a general model that can
reflect the staggered structure characteristic and the scale characteristic
of mineral platelets and organic matrix needs to be put forward.
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Considering the problems in current researches, in this paper, we
establish a trans‐scale shear‐lag mechanical model that includes the
scale and staggered structure characteristics of biological staggered
composites based on the strain gradient theory and the Gurtin‐
Murdoch model. What should be emphasized is that our model can
simultaneously describe the size effects caused by the organic layer
and the mineral platelet, and provides a chance to glimpse that how
the microstructure of the biological composite influences its macro-
scopic mechanical behaviors. The paper is organized as follows: In Sec-
tion 2, firstly, the simplified strain gradient theory developed by Wei
and Hutchinson [35] and the Gurtin‐Murdoch surface elasticity theory
[28] are reviewed; then, the trans‐scale shear‐lag model is introduced
in detail. In Section 3, with the model, the size effects caused by the
thickness of mineral platelet and organic layer are analyzed from three
aspects: the deformation state, the stress distribution and the overall
effective modulus of the biological staggered composites. The effective
moduli predicted by the trans‐scale shear‐lag model are compared
with the experiment results to verify our model in Section 4. In Sec-
tion 5, the main conclusions are summarized. Our research sheds light
on the understanding of the size effect of the mechanical behaviors of
biological staggered composites and provides theoretical guidance for
the design of the bionic composite materials with high strength and
toughness.

2. Theory and model

The strain gradient and surface energy play important roles in the
mechanical behaviors of structures at the micro‐nano scale. In order to
establish a general trans‐scale model for the biological staggered com-
posites, firstly, the simplified strain gradient theory developed by Wei
and Hutchinson and the Gurtin‐Murdoch surface elasticity theory are
reviewed. Then the detailed processes of the model establishment
are introduced. Finally, based on our trans‐scale model, the size effect
characteristic of the mechanical behaviors of biological staggered com-
posites is analyzed.
2.1. The simplified strain gradient theory

The strain gradient theory developed by Wei and Hutchinson based
on Mindlin [25] with five constants is one with just three constants
containing two Lame constants and one characteristic length [36].
The constitutive equations and geometrical equations for this simpli-
fied gradient theory are

σij ¼ λɛkkδij þ 2μɛij τijk ¼ 2El2κijk ð1Þ

ɛij ¼ 1
2
ðui;j þ uj;iÞ κijk ¼ @i@juk ¼ uk;ij ¼ uk;ji ð2Þ

where σij and τijk are the stress and high‐order stress tensor; ɛijand κijk
are the strain and high‐order strain tensor; ui is the displacement vector;
the comma stands for derivation; λ and μ are the classical Lame con-
stants; E is Young’s modulus; δij is Kronecker delta; l is the characteristic
length of material; Latin indices (i, j and k) run from 1 to 3. It should be
noted that we adopt a simplified strain gradient constitutive equation
for convenience, and the general strain gradient constitutive equation
can be found in previous researches [25,37]. The variation of the strain
energy is

δW ¼
Z
V
σijδɛij þ τijkδκijkdV ð3Þ

When the surface of the solid is smooth, based on Stokes’ theorem
and Gauss’ flux theorem, Eq. (3) can be expressed as
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δW ¼
Z
V
τijk;ijδuk � σkj:jδukdV þ

Z
@V

σijnjδui � τijk;jniδuk

þ ðDlnlÞnjniτijkδuk � DiðnjτijkÞδukdSþ
Z
@V

τijkninjDδukdS ð4Þ

where Dj ≡ ðδjk � njnkÞ@k;D≡ nl@ l; ni is the normal vector of the surface.
What needs to be emphasized is that if the surface has an edge, there
will be an edge force [25,38]. Eq. (4) suggests that the variation of work
done by external forces is

δW1 ¼
Z
V
f kδukdV þ

Z
@V

tkδukdSþ
Z
@V

rkðDδukÞdS ð5Þ

where f k is the body force; tk is the surface traction; rk is the double
stress traction. From Eqs. (4) and (5), the equilibrium equation reads

σik:i � τijk;ij þ f k ¼ 0 ð6Þ
and the boundary conditions are

tk ¼ σkini � τijk;jni þ ðDlnlÞnjniτijk � DiðnjτijkÞ ð7aÞ

rk ¼ ninjτijk ð7bÞ
2.2. The Gurtin-Murdoch model

The surface elasticity developed by Gurtin and Murdoch abstracted
the surface as a mathematical surface without thickness, and the con-
stitutive equation and the geometrical equation of the surface can be
expressed as [39]

τsαβ ¼ Cs
αβγη � ɛsγη ð8aÞ

ɛsγη ¼
1
2
ðusγ;η þ usη;γÞ ð8bÞ

where τsαβ is the surface stress tensor; C
s
αβγη is the surface stiffness tensor;

us is the displacement vector of the surface; ɛsαβ is the surface strain ten-
sor. α,β,γ and η run from 1 to 2. Recently, a simplified surface elasticity
theory is developed by Rosi et al., which can be found in reference [40];
here, we will not go into the details about it. Based on the generalized
Young‐Laplace equation, the equilibrium equations on the normal
direction and the tangential direction of the surface [39,41] are

Δσijninj ¼ �τsαβκ
s
αβ ð9aÞ

PmiΔσijnj ¼ �τsαβ;α ð9bÞ

where Pmi ¼ δmi � nmni; Δσij ¼ σð2Þ
ij � σð1Þij represents the stress difference

across the interface; τsαβ is the stress on the interface; κsαβ denotes the
curvature of the surface. Moreover, Eq. (9) can also be understood as
the governing equation of stress transmission across the interface. For
the perfect interface, the displacement of the surface is consistent with
that of the block material:

us ¼ uð1Þ
��x; y; z ¼ surface ¼ uð2Þ

��x; y; z ¼ surface ð10Þ
For the one‐dimensional interface without curvature as shown in

Fig. 1, based on Eq. (8), it can be known

τs ¼ Esus1;1 ð11Þ
Fig. 1. The diagram of a one-dimensional interface without curvature.
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Following Eqs. (9) and (10), the stress transmission across the inter-
face and the displacement of the surface read

σð2Þ22 � σð1Þ22 ¼ 0 ð12aÞ

σð2Þ21 � σð1Þ
21 ¼ � dτs

dx
ð12bÞ

us ¼ uð1Þ
��y ¼ surface ¼ uð2Þ

��y ¼ surface ð13Þ
2.3. The general trans-scale shear-lag model for the biological staggered
composites

The diagram of the biological staggered composite is shown in
Fig. 2(a). The foundation assumptions for the establishment of the
trans‐scale shear‐lag model are

(a) Because the modulus ratio of the mineral platelet to the organic
matrix is more than 103 and the aspect ratio of the mineral platelet is
large, we assume that the tensile force is mainly carried by the mineral
platelet and the shear force is mainly born by the organic matrix. In
addition, the organic matrix between the end of the mineral platelet
is far shorter than the length of the mineral platelet, and consequently,
the load carried by the organic matrix in this area is neglected. There-
fore, when a tensile load F is applied on the biological staggered com-
posite, the transmission path of force is shown in Fig. 2(b). At this
time, the volume ratio of the mineral platelet to the organic matrix
approximately equals the thickness ratio of them h/d;

(b) Based on the assumptions in (a), we can say that there are only
tensile deformation in the mineral platelet and shear deformation in
the organic matrix, and the tensile deformation of the mineral platelet
is uniform along y and varies along x. Namely, up is a function of x. In
addition, the shear deformation of the organic matrix occupies the
majority of the deformation of the staggered structure, and the aspect
ratio of the platelet is large. Therefore, the strain gradient effect in the
platelet can be neglected. Namely, the platelet is regarded as a tradi-
tional elastic material;

(c) Because the thickness of the organic matrix is much smaller
than its length. At this time, the derivative of the displacement of
organic matrix to y is much larger than that to x. So only the strain gra-
dient effect in the organic matrix along y is considered.

Considering the periodicity of the staggered structure composites, a
representative cell is extracted as shown is Fig. 2(c), and the equilib-
rium analysis of its infinitesimal elements is shown in Fig. 3 based
on assumptions (a), (b) and (c).

For the mineral platelet, the moments caused by the surface trac-
tion and double‐stress traction are balanced by the other half platelet.
According to the equilibrium analysis, the balance equations for the
platelets and organic matrix without body force are
Fig. 2. (a) The diagram of biological staggered composite; (b) The transmis-
sion path of force in the composite; (c) Representative cell of the composite.



Fig. 3. The equilibrium analysis of the infinitesimal elements of the staggered structure composites.
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dσ1
dx

� h
2
þ τs1!1 ¼ 0 ð14aÞ

τs1!m ¼ τs2!m ¼ t ð14bÞ

dσ2

dx
� h
2
� τs2!2 ¼ 0 ð14cÞ

where σ1 and σ2 are the tensile stress on the mineral platelets P1 and P2,
respectively. τs1!1 is the shear stress of the interface S1 on the mineral
platelet P1; τs2!2 is the shear stress of the interface S2 on the mineral
platelet P2; τs1!m and τs2!m are the interfaces S1 and S2 on the organic
matrix. Following Eq. (12), it can be known that

τs1!m � τs1!1 ¼ � dτs1

dx
ð15aÞ

τs2!2 � τs2!m ¼ � dτs2

dx
ð15bÞ

where τs1 and τs2 are the surface stress of the interfaces S1 and S2,
respectively. Based on Eqs. (1), (2), (7a) and (11), the stresses
expressed by displacement read

t ¼ n2ðσ21 � @2τ221Þ ¼ Gm
@um
@y

� 2El2
@3um
@y3 ð16aÞ

σ1 ¼ Ep
dup1
dx

σ2 ¼ Ep
dup2
dx

ð16bÞ

τs1 ¼ Es du
s1

dx
τs2 ¼ Es du

s2

dx
ð16cÞ

where Gm is the shear modulus of the organic matrix. up1 and up2 are
the displacements of platelets P1 and P2 along x, respectively. um is
the displacement of the organic matrix. us1 and us2 are the displace-
ments of surfaces S1 and S2, respectively. Using Eqs. (15) and (16) in
Eq. (14), we can get the governing equations for this problem:

Eph
2

d2up1
dx2 þ Es d

2us1

dx2 þ t ¼ 0 ð17aÞ

t ¼ Gm
@um
@y

� 2El2
@3um
@y3 ð17bÞ

Eph
2

d2up2
dx2 þ Es d

2us2

dx2 � t ¼ 0 ð17cÞ

The boundary conditions are

up1
��
x¼0 ¼ 0; σ2jx¼0 ¼ 0

σ1jx¼L=2 ¼ 0; σ2jx¼L=2 ¼ σmax
ð18Þ

We assume that the interfaces S1 and S2 are perfect, and the dis-
placement and its normal gradient Dui is continuous. Then the contin-
uous conditions are

umjy¼0 ¼ up1 ¼ us1 ; Dumjy¼0 ¼ Dup1
��
y¼0 ¼ Dus1 ¼ 0 ð19aÞ
4

umjy¼d ¼ up2 ¼ us2 ; Dumjy¼d ¼ Dup2
��
y¼d ¼ Dus2 ¼ 0 ð19bÞ

Based on the governing equations, the boundary conditions and the
continuous conditions, the problem can be solved as follows: using Eq.
(19) in Eq. (17b), we obtain

um ¼

up2eA d � up2eA dþyð Þ � up1eA d � up1eA dþyð Þ þ up1eA y

þup2eA y þ up1e2 A y � up2e2 A y � Aup1yeA y þ Aup2yeA y

þAdup1eA dþyð Þ � Aup1yeA dþyð Þ þ Aup2yeA dþyð Þ þ Adup1eA y

0
B@

1
CA

2eA y � 2eA dþyð Þ þ AdeA dþyð Þ þ AdeA y

ð20aÞ

t ¼ �
A up1 � up2
� � GmeA y � GmeA d � Gme2 A y þ GmeA dþyð Þ

þ2A2Eml
2eA d þ 2A2Eml

2e2 A y

 !

2eA y � 2eA dþyð Þ þ AdeA dþyð Þ þ AdeA y

ð20bÞ

where A ¼
ffiffiffiffiffiffiffiffiffi
Gm

2Eml2

q
. l is the characteristic length of the organic

matrix. By Eqs. (17a), (17c), (18) and (20), the displacements of the
mineral platelets are

up1 ¼ C1 þ C2x � C3eBx � C4e�Bx ð21aÞ

up2 ¼ C1 þ C2x þ C3eBx þ C4e�Bx ð21bÞ
where

B ¼
ffiffiffiffiffiffi
2n
K

r
; K ¼ Eph

2
þ Es; n ¼ Gm

d½1� 2ðeAd�1Þ
AdðeAdþ1Þ�

ð22aÞ

C1 ¼ �
σmax
Ep

þ σmax
Ep

e
B L
2

2 B� BeB L
2

� � ;C2 ¼
σmax
Ep

2
;C3 ¼ �

σmax
Ep

2 B� BeB L
2

� � ;C4

¼ �
σmax
Ep

e
B L
2

2 B� BeB L
2

� � ð22bÞ

Based on Eq. (16b), the tensile stresses in the mineral platelets are

σ1ðxÞ ¼ EpðC2 � C3BeBx þ C4Be�BxÞ ð23aÞ

σ2ðxÞ ¼ EpðC2 þ C3BeBx � C4Be�BxÞ ð23bÞ
The overall effective modulus of the biological staggered compos-

ites is defined as the ratio of the effective stress to the effective strain.
Then the compact form of the effective modulus can be written as

1
Ec

¼ ɛ
�

σ
� ¼

up2ðL=2Þ�up1ð0Þ
L=2

� �
σmax�h

2
hþd

� � ¼ 1
ϕEp

þ 4
ηϕEptanhðη4Þ

ð24Þ

where η ¼ ηcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ðeA d�1Þ

Adð1þeA d Þ

q ; ηc ¼ 2ρ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gmh
Epð2EsEph

þ1Þd

r
; ρ ¼ L=h; ϕ ¼ h

dþh.

From Eq. (24), it can be known that the mechanical size effect of
the staggered composites depends on two dimensionless numbers d/l
and Es/(Eph). Es/(Eph) and d/l reflect the size effects due to the mineral
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platelet and the organic matrix, respectively. When Es and Ep are con-
stants, the smaller the thickness of the mineral platelet, the larger the
value of Es/(Eph). At this time, the size effect caused by the mineral
platelet becomes stronger. If the surface effect is neglected (Es = 0),
our solution is reduced to the SGSL model [24]. When the thickness
of the organic matrix, d, is far smaller than its characteristic length,
l, 1‐[2(eAd‐1)]/[Ad(1 + eAd)] tends to zero. At this time, the effective
modulus Ec tends to infinity based on Eq. (24). Namely, the size effect
due to the thickness change of the organic matrix is very strong. When
d is much larger than l, d/l tends to infinity. At this time, 1‐[2(eAd‐1)]/
[Ad(1 + eAd)] tends to 1, and then our model that has ignored the sur-
face effect will be further reduced to the traditional SL model [18].
Based on the above analysis, it can be found that by considering the
influences of the strain gradient and surface energy, our model can
reflect both the size effect caused by the mineral platelet and that
caused by the organic matrix. In other words, our model constructs a
bridge between the micro‐nano structure of biological staggered com-
posite and its macroscopic mechanical behavior.

3. Results and discussion

In this section, the size effects caused by the thickness change of the
mineral platelet and the organic matrix on the mechanical behaviors of
the staggered structure composites are investigated based on the solu-
tion of displacement, stress, and effective modulus given by the pro-
posed model. Because the thickness of the organic matrix is usually
several nanometers to tens of nanometers [12,13] and the length scale,
l, is about several micrometers [24,42], d/l is taken to be 0.01 ~ 100 in
the following results to cover the possible range in reality. In addition,
the thickness of the mineral platelet is always several nanometers to
several micrometers [12,13], and the modulus of the mineral platelet
is 50 ~ 100 GPa [8], so we take Es/(Eph) as−0.4 ~ 0.4 according to the
value of Es taken by other researches [29,34]. Here, we mainly focus
on the effects of the strain gradient and surface energy on the mechan-
ical behaviors of the biological staggered composites. Therefore, with
regard to other parameters, such as Em/Ep, ϕ, and ρ, a common set of
values are selected [24].

3.1. Size effect of the deformation and tensile stress in the mineral platelet

Since the mineral platelets P1 and P2 are antisymmetric, only the
displacements and stresses distributions of the mineral platelet P1
are analyzed. Based on the dimensionless analysis, we can know that
the normalized displacement of the mineral platelet P1, up1/(σmaxL/
Ep), is a function of Es/(Eph), Em/Ep, ϕ, ρ, β and x/L from Eq. (21a):
up1/(σmaxL/Ep) = f (Es/(Eph), Em/Ep, ϕ, ρ, β, x/L). Fig. 4 shows the dis-
Fig. 4. The displacement of the mineral platelet P1 along x. (a) the
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placement of the mineral platelet P1 along x at different β and Es/(Eph).
From Fig. 4(a), it can be known that up1/(σmaxL/Ep) increases with the
increase of x/L, but the increasing pattern is different under different
β. In classical case (β=∞), the relationship between up1/(σmaxL/Ep)
and x/L is parabolic, which denotes the deformation at different points
is non‐uniform and the strain decreases gradually with the increase of
x/L. The relationship between up1/(σmaxL/Ep) and x/L becomes more
and more linear along with the decrease of β, which represents the
deformation at different points is more uniform than before. In addi-
tion, surprisingly, there is little difference in the total tensile deforma-
tion of the mineral platelet at different β (the total deformation, up1/
(σmaxL/Ep)|x=0.5‐up1/(σmaxL/Ep)|x=0, is always 0.25 at different β). In
other words, the size effect due to the decrease of the organic matrix
thickness only influences the deformation pattern of the mineral plate-
let but has no significant effects on its total tensile deformation. Sim-
ilar to the above case, the size effect due to the decrease of the
platelet thickness also only changes the deformation pattern of the pla-
telet and does not affect its total deformation, which is shown in Fig. 4
(b). For example, with the decrease of the surface modulus, the rela-
tionship between up1/(σmaxL/Ep) and x/L becomes more and more lin-
ear, and the total tensile deformation of the platelet has no change.
From the above analysis, it can be found that the strain gradient and
the surface energy only influence the deformation pattern of the min-
eral platelet, but have little effect on its total tensile deformation.

As we all know, the deformation depends on the force. In order to
understand the deformation behavior of the mineral platelet with the
influence of the strain gradient and surface energy, the tensile stress in
the platelet needs to be investigated. From Eq. (23a), it can be known
that σ1/σmax is a function of Es/(Eph), Em/Ep, ϕ, ρ, β and x/L: σ1/σmax= f
(Es/(Eph), Em/Ep, ϕ, ρ, β, x/L). Fig. 5 shows the tensile stress in the min-
eral platelet P1 along x at different β and Es/(Eph). As shown in Fig. 5,
the tensile stress in the mineral platelet has a strong size effect. For
example, from Fig. 5(a), we can know that the tensile stress decreases
linearly along x when there is no strain gradient and surface energy
effect. With the decrease of the organic matrix thickness (namely,
the gradient effect becomes strong), the stress shows a more and more
obvious gradient at the end region of the platelet and becomes more
and more uniform in the middle region of platelet. Interestingly, we
found that the stress distribution is antisymmetric with respect to
the point O. This phenomenon illustrates that although the strain gra-
dient effect changes the state of the stress distribution, the sum of the
strain produced by the stress does not change due to the antisymmetry
of the stress distribution, which provides robust evidence for the
unchanged total deformation of the mineral platelet shown in Fig. 4.
The influence caused by the surface energy is similar to that of the
strain gradient. For example, as shown in Fig. 5(b), when the surface
results at different β = d/l; (b) the results at different Es/(Eph).



Fig. 5. The tensile stress in the mineral platelet P1 along x. (a) The results at different β = d/l; (b) the results at different Es/(Eph).
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modulus decreases, the stress at the end region of the plate changes
sharply, and the stress in the middle region of the plate is uniform.
And the stress distribution is also antisymmetric with respect to the
point O, which also implies that the surface energy also only influences
the stress distribution but has no effect on the sum of the strain
induced by the stress.

3.2. Size effect of the deformation and stress in the organic matrix

Based on Eq. (20a), it is easy to know that the normalized displace-
ment of the organic matrix um/(σmaxL/Ep) is a function of Es/(Eph), Em/
Ep, ϕ, ρ, β, x/L and y/d: um/(σmaxL/Ep) = f (Es/(Eph), Em/Ep, ϕ, ρ, β, x/
L, y/d). The variation of the displacement of the organic matrix
along x is consistent with that of the platelet, so it will not be analyzed
again. Fig. 6 shows the displacement of the organic matrix along y at
different β and Es/(Eph). Compared to the case of the displacement of
the mineral platelet along x, the influences of the strain gradient and
surface energy on the displacement of the organic matrix along y is
more significant. From Fig. 6(a), it can be read that the shear deforma-
tion of the organic matrix decreases with the decrease of β. Namely,
the stronger the size effect caused by the strain gradient, the smaller
the total shear deformation of the organic matrix. For example, in clas-
sical case (β=∞), the displacement of the organic matrix increases
with the increase of y linearly, and when y/d is 1, um/(σmaxL/Ep) is
6.38. Along with the decrease with β, a nonlinear relationship between
the displacement of the organic matrix and y is shown, and the total
Fig. 6. The displacement of the organic matrix along y. (a) The re
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shear deformation of the organic matrix becomes smaller than before.
For example, the normalized total shear deformations of the organic
matrix are 3.59, 1.87 and 0.41 when β are 10, 5 and 1, respectively.
The reason for this is as follows: the thinner the thickness of the
organic matrix, the stronger the size effect caused by the strain gradi-
ent. At this time, the nominal modulus of the organic matrix is
increased and consequently, the shear deformation of the organic
matrix becomes small under the same external load. In addition, the
influence of the surface energy on the shear deformation of the organic
matrix is similar to that of strain gradient, which is shown in Fig. 6(b).
The results in Fig. 6(b) illustrate that when the surface modulus
decreases, the total shear deformation of the organic decreases. For
example, the normalized total shear deformations of the organic
matrix are 3.09, 1.87 and 0.64 when the normalized surface moduli
are 0.4, 0 and −0.4, respectively. Combined with Fig. 4 and Fig. 6,
it can be concluded that the influences of the strain gradient and the
surface energy on the deformation of the organic matrix are larger
than those on the platelet. Since the deformation of the staggered
structure mainly derives from the shear deformation of the organic
matrix, so we can say that the strain gradient and surface energy affect
the deformation behavior of the staggered structure mainly by affect-
ing that of the organic matrix.

The load determines the deformation. Therefore, in order to com-
prehend the shear deformation behaviors of the organic matrix, the
shear stress applying on the organic matrix needs to be investigated.
Based on Eq. (20b), it can be seen that the normalized shear stress
sults at different β = d/l; (b) the results at different Es/(Eph).
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t/σmax is a function of Es/(Eph), Em/Ep, ϕ, ρ, β and x/L: t/σmax = f (Es/
(Eph), Em/Ep, ϕ, ρ, β, x/L). Fig. 7 shows the shear stress applying on the
organic matrix along x at different β and Es/(Eph). As shown in Fig. 7,
the shear stress has a strong size effect under the influence of the strain
gradient and surface energy. For example, it can be known from
Fig. (7a) that when β changes from 1 to 0.01, the shear stress at the
middle region becomes smaller and smaller, but that at the end region
increases sharply. What we want to emphasize is that although the
shear stress at the end region becomes larger than before, the deforma-
tions at these regions has no significant change, which can be verified
by the displacement of the platelet at x/L = 0 and x/L = 0.5. The rea-
son for this is that the strain gradient makes the organic matrix stron-
ger. Namely, the nominal modulus of the organic matrix becomes
large. In addition, because the shear stress at the middle region is smal-
ler and the nominal modulus is larger than before, the deformation at
these regions becomes small. Therefore, with the influence of the
strain gradient, the shear deformation of the organic matrix decreases
significantly. The influence of the surface effect on the organic matrix
is similar to that of the strain gradient, which can be seen from
Fig. (7b). For example, when Es/(Eph) changes from 0.4 to −0.4, the
shear stress in the end region decreases, which explains the reason
why the shear displacement of the organic matrix decreases with the
decrease of Es/(Eph). In addition, the existence of the surface effect
has a significant effect on the shear stress at the end region of the inter-
face (e.g. 0 < x/L< 0.1), which is enlightening to us. For example, we
can change the mechanical properties of the interface to reduce the
stress concentration at the end region of the interface, which is helpful
to avoid interface failure.

3.3. The effective modulus of the biological staggered composites

Stiffness is usually the focus of researchers. Based on Eq. (24), it can
be known that the normalized effective modulus Ec/Ep is a function of
Es/(Eph), Em/Ep, ϕ, ρ and β: Ec/Ep = f (Es/(Eph), Em/Ep, ϕ, ρ, β). Here,
we focus on the influences of strain gradient and surface effect on the
effective modulus. In order to investigate the influences of strain gra-
dient and surface interface effect more clearly, we first set Es/(Eph) as
zero to investigate the influence of strain gradient alone. Fig. 8 shows
the normalized effective modulus Ec/Ep as a function of Em/Ep, ρ, and
ϕ, at different β, respectively. It can be known from Fig. 8 that the nor-
malized effective modulus increases with the increase of Em/Ep, ρ, and
ϕ at different β. The reason for this has been explained by previous
researchers [8,24], so it will not be analyzed again. What we want
to emphasize is that the strain gradient has significant influences on
the effective modulus of the staggered structure composites. As shown
in Fig. 8, under the same Em/Ep, ρ, and ϕ, the smaller β, the larger Ec/
Fig. 7. The shear force applying on the organic matrix along x. (a) Th
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Ep. The reason for this is as follows: when β becomes small, the strain
gradient effect makes the organic matrix stronger than before. At this
time, the shear deformation of the organic matrix decreases. In addi-
tion, we know that the shear deformation of the organic matrix occu-
pies the majority of the deformation of the staggered structure
composites. Therefore, under the same load, the deformation of the
staggered structure composites decreases with the decrease of β. Cor-
respondingly, the modulus of the staggered structure composites
increases. In addition, it is important to note that under the influence
of the strain gradient, the composites with staggered structures at
microscale have an elastic modulus comparable to that of the mineral
platelet.

On the basis of considering the influence of strain gradient, the sur-
face effect is further considered by us. Fig. 9 shows the influence of
surface energy on the effective modulus of the staggered structure
composites with different strain gradient effects. As shown in Fig. 9,
when the surface modulus decreases, the effective modulus increases.
The reason for this is that the shear force applying on the organic
matrix decreases with the decrease of the surface modulus. Namely,
the smaller the surface modulus, the smaller the shear deformation
of the organic matrix and the deformation of the staggered structure
composites. Therefore, the effective modulus increases with the
decrease of the surface modulus. In addition, we need to emphasize
that the obviousness of the surface effect is affected by the strain gra-
dient. As shown in Fig. 9(a), (c) and (e), when β is taken to be 1, the
effective modulus of the staggered structure composites increases with
the decrease of the surface modulus significantly. For example, when
Em/Ep, β, ρ and ϕ are respectively 0.001, 1, 5 and 0.95, the effective
moduli are 0.49, 0.58 and 0.75 as Es/(hEp) changes from −0.4 to
0.4. The difference in effective moduli can be up to ~ 53%. However,
when β is taken to be 0.01, the effective modulus of the staggered
structure composites increases with the decrease of the surface modu-
lus slightly. For example, when Em/Ep, β, ρ and ϕ are respectively
0.001, 0.01, 5 and 0.95, the effective moduli are 0.9426, 0.9445 and
0.9475 as Es/(hEp) changes from −0.4 to 0.4. the difference in effec-
tive moduli is ~ 0.52%. The above results give us an inspiration. That
is, with the aid of strain gradients and surface interface effects, com-
posite materials with structural design from the nanoscale will have
outstanding mechanical properties at the macroscopic scale.

4. Model validation

In this section, the effective moduli predicted by our trans‐scale
shear‐lag model are compared with the experiments to verify the effec-
tiveness of the model. In our model, there are two key parameters that
need to be decided. They are the characteristic length scale of the
e results at different β = d/l; (b) the results at different Es/(Eph).



Fig. 8. The effective moduli of the staggered structure composite under the influence of the strain gradient. (a) The relationship between Ec/Ep and Em/Ep; (b) the
relationship between Ec/Ep and ρ; (c) the relationship between Ec/Ep and ϕ.
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organic matrix, l, and the surface Young’s modulus, Es. Their values
have been studied by previous researchers. For example, based on
an elegant micromechanical model, Nikolov et al. estimated that the
non‐local length scale of the rubbers is in the neighborhood of 5 nm
[44]; Lam et al. suggested that materials like epoxy have a length scale
of 10 μm based on experiments and strain gradient theory [45]. The
characteristic scale of polymer has a large span (5 nm ~ 10 μm). As
we all know that the organic matrix belongs to polymer compounds.
Therefore, referring to the characteristic length of polymers, we take
the characteristic length of the organic matrix as 0.1 μm. In addition,
due to lack of the work about the surface modulus of the biological
materials, we can estimate it based on the studies about the ceramic
interface or metal. Following the works [46,47], taking Es as
−100 ~ 100 N/m is reasonable, which is also adopted by the previous
researcher [34]. According to the references, we take Es as 50 N/m in
the following results. The geometry and mechanical parameters used
in calculations are selected from previous researches, which are list
in Table 1. It should be noted that due to lack of the exact modulus
of the platelets and organic matrix of pinctada and red abalone, the
previous researcher estimated Ep = 94 GPa and Em = 0.1 GPa based
on Voigt model [24], which is also adopted by us. For the selection of
the parameters of the bone, we adopt them based on references [6,7].

The predicted effective moduli by previous models and our trans‐
scale shear‐lag model are compared with the experiment results, which
are shown in Table 2. Here, we need to explain that the longitudinal
modulus of collagen fibrils in bone is related to humidity [50]. Previ-
ous researches have shown that the lower the relative humidity, the
8

higher the modulus of the collagen fibrils in bone. Therefore, accord-
ing to previous researches [6,7,48,49], the modulus of the collagen fib-
rils in bone is usually between 10 GPa and 20 GPa. First of all, from
Tab. 2, we can know that the effective moduli predicted by our model
is closer to that of the experiment than other models, which verifies
the effectiveness of our model. Secondly, as you know, the work about
the characteristic length scale of the organic matrix is none. In our
paper, referring to the characteristic length of polymers
(5 nm ~ 10 μm), the characteristic length scale of the organic matrix
is taken to be 0.1 μm, which leads to a slightly high predicted result.
But if the characteristic length scale of the organic matrix is taken as
0.01 μm, then there will be gratifying results. For example, the effec-
tive moduli predicted by our model with l = 0.01 μm for pinctada,
abalone and bone are 66.59 GPa, 64.94 GPa and 15.04 GPa, respec-
tively. At this time, it can be found that our model can well predict
the effective modulus of shell and bone. We do not know the exact
value of the characteristic length scale of the organic matrix l. What
we want to express here is that our model is more reasonable than
other models in predicting the effective modulus of the biological stag-
gered composites.

5. Conclusions

In order to understand the relationship between the micro‐nano
staggered structure of the biological composites and their excellent
mechanical properties, a trans‐scale shear‐lag model is established
based on the strain gradient theory and Gurtin‐Murdoch model in this



Fig. 9. The effective moduli of the staggered structure composite under the influences of strain gradient and surface effect. (a) and (b) are the relationship
between Ec/Ep and Em/Ep, β is 1 in (a) and 0.01 in (b); (c) and (d) are the relationship between Ec/Ep and ρ, β is 1 in (c) and 0.01 in (d); (e) and (f) are the
relationship between Ec/Ep and ϕ, β is 1 in (e) and 0.01 in (f).

Table 1
The geometry and mechanical parameters selected from experiments.

Samples L(μm) h(μm) d(nm) Ep(GPa) Em(GPa) ρ = L/l ϕ = h/(h + d)

Shell/Pinctada [4] 4 0.4 15 94 0.1 10 96.4%
Shell/Red abalone [43] 6.5 0.55 20 94 0.1 11.8 96.5%
Bone/Collagen fibrils [6,7] 0.05 0.002 3 50 0.05 25 40.0%
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paper. By theoretical analysis, two dimensionless numbers d/l and Es/
(hEp) are proposed to characterize the size effects caused by the thick-
ness of the organic matrix and the platelet, respectively. Following
9

that, the deformations and stress distribution are investigated based
on our model systematically. The results reveal that under the influ-
ence of the strain gradient and surface energy, the deformations and



Table 2
The effective moduli (GPa) predicted by previous models and our model compared with the experiment results [4,43,48,49].

SL BW TSC Dong Present model Experiments

Shell/Pinctada 16.30 16.31 17.32 17.34 87.41 70 ± 11 [4]
Shell/Red abalone 21.28 21.29 23.04 23.06 87.17 69 ± 7 [43]
Bone/Collagen fibrils 0.66 0.67 0.67 0.69 19.36 10–20 [6,7,48,49]
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stress distributions have strong size effects. For the mineral platelet,
the strain gradient and the surface energy only have influences on
the local deformations and stress distributions but have no effects on
the total tensile deformation of the platelet. For example, the total nor-
malized displacement of the platelet has no change under the influ-
ences of the strain gradient and the surface energy. However, as
regards to the organic matrix, the influences of the strain gradient
and the surface energy on the local deformations, stress distributions
and total shear deformation are significant. For example, the charac-
teristics of the shear stress applied on the organic matrix changed sig-
nificantly under the influences of the strain gradient and surface
energy. And the stronger the strain gradient effect or the surface effect,
the greater their influences on the deformation of the organic matrix.
Because the deformation of the organic matrix occupies the majority of
the deformation of the staggered structure composites, it can be con-
cluded that the strain gradient and the surface energy influence the
deformation behaviors of the staggered structure composites mainly
by influencing those of the organic matrix. Due to the strong interest
of researchers on the stiffness, the effective modulus of the biological
staggered composites is also analyzed in detail. We find that the effec-
tive modulus of the staggered structure composites also has a strong
size effect, which implies that the influences of the strain gradient
and the surface energy are important and cannot be neglected. In addi-
tion, in order to verify the effectiveness of our model, the effective
moduli predicted by our model are compared with the experimental
results. The results illustrate that the trans‐scale model in this paper
can better predict the effective modulus of the biological staggered
composites. Our model provides a chance to glimpse how the micro‐
nano staggered structures of the biological composites determine its
macroscopic mechanical behavior for the first time, which provides
theoretical guidance for the design of the high‐performance bionic
composite materials.
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