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ABSTRACT

The spanwise oscillation provides an accessory or alternative to flapping motion toward high-efficiency bio-inspired flight. The power factor
that measures the efficiency of a gliding wing with spanwise oscillation to support a unit weight is investigated in this work. The gliding wing
model consists of a rectangular flat plate that oscillates sinusoidally along the spanwise direction in a uniform upstream flow at a post-stall
angle of attack. The unsteady flows and aerodynamic forces are obtained by numerically solving the incompressible Navier–Stokes equations
at a Reynolds number of 300 (based on the uniform upstream velocity and the chord length). It is found that the spanwise oscillation can
effectively enhance the power factor of the rectangular wing. The power factor under the optimal spanwise oscillation is 1.97 times as large as
that without spanwise oscillation. Then, we introduce an effective reduced frequency by accounting for the effect of spanwise oscillation on
the velocity encountered by the wing. The results show that the optimal effective reduced frequency locates in a narrow region from 0.47 to
0.56. Finally, the analyses of the vortex structures and the Lamb vector field indicate that the enhanced power factor results from the interac-
tion between the stable leading-edge vortex and side-edge vortices associated with the spanwise oscillation. This work is expected to be helpful
in understanding the vortex dynamics and guiding the kinematic design of the high-efficiency bio-inspired flight with spanwise oscillation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0071088

I. INTRODUCTION

Different kinds of drones have been developed to meet the
requirement for multidirectional and multilevel applications. The
micro air vehicle (MAV) is of drones with a size less than 15 cm and a
weight lower than 100 g according to the program of Defense
Advanced Research Projects Agency or with a length smaller than
100 cm and a weight lower than 2 kg according to the recent classifica-
tion of Hassanalian and Abdelkefi.1 The design of flapping-wing MAV
(FMAV) usually leans upon inspirations from biological flight to
improve the aerodynamic performances.2 The insight into the relation
between outstanding aerodynamic performances and flight kinematics
is the crucial foundation of the bio-inspired design.

The outstanding aerodynamic performances in biological flight
often result from the control of the vortices around the wings. One of
the main features of the vortex system in biological flight at low speed
is the stably attached leading-edge vortex (LEV).3,4 The experiment of
Ellington et al.5 shows that the stable LEV associated with the dynamic

stall is strong enough to explain the high lift in the flapping flight of
insects. Then, the numerical simulation of Liu et al.6 clearly detects the
details of the LEV during both the up- and downstrokes. It is also
found that the LEV has a characteristic spiral conical shape and is sta-
bilized by axial flows derived from the spanwise pressure gradient.
Dickinson et al.7 show that the strength of the LEV and the corre-
sponding aerodynamic forces depend on the angle of attack through-
out the flapping translation. Recently, the comparison of hovering
flight between a dragonfly and a damselfly shows that the damselfly
can generate higher vertical force to support the same body weight.8

The result indicates that the differences in wing kinematics and mor-
phology might create the LEVs with different strengths. Yin and Luo9

numerically investigate the effect of the wing inertia on the hovering
performance of flapping wings with chordwise flexibility. They find
that inertia-induced deformation and flow-induced deformation can
both enhance the LEV and the lift of the wing. Ryu et al.10 observe the
chordwise flexibility of wing by using Hawkmoth-like wing models
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with leading-edge veins, which reveals the LEV induced by flexibility
during the wing reversal. Zhang and Huang11 conclude that the com-
plex flexibility of wings is beneficial to maintain the stability of LEV
and reduce the maximum aerodynamic power to ensure hovering
flight. Liu et al.12 investigate the impact of wing–body interaction in
the forward flight of insects. Their simulations show that the strength
of LEV near the wing root region is enhanced by the involvement of
two body vortices. Feng et al.13 has manipulated the evolution of LEV
by controlling the secondary vortex to achieve an enhanced lift coeffi-
cient. The evolution and strength of the LEV are also found to be sig-
nificantly affected by the viscous effect14,15 and the confined space.16–18

Moreover, the evolution of the LEV is closely related to the kinematics
of the wings.19–23 For example, the evolution of the LEV strongly
depends on the stroke amplitude.24 Small stroke amplitude might
shorten the time to form the LEV, which takes different effects on the
aerodynamic force, as reported in the research on the mosquito-
inspired flat-plate wing.25 Despite that there are controversies on the
stability mechanism of the LEV,26,27 the studies above indicate that it is
possible to modulate the strength and stability of the LEV in different
ways. The strength and stability of LEV are usually tuned by modulat-
ing the wingtip vortices22,26 or spanwise flows28,29 over the wing.

Spanwise motion is an effective way to modify wingtip vortices
and spanwise flows around the wings. In the flight of birds and bats,
the spanwise motion of the wing results in the change of wingspan.30,31

Videler et al.32 investigate the flows near a gliding swift model and
detect a stable LEV on the upper surface of the hand wing. The result
indicates that the sweep of the hand wing can serve as an alternative to
flapping flight to generate LEV. In the flapping flight, the spanwise
motion serves as an accessory to enhance LEV. Wolf et al.33 measure
the kinematics of a Pallas’ long-tongued bat at different flight speeds.
They find the existence of significant spanwise motion of the
wing, since the wingspan changes dynamically during the flapping
flight. The spanwise motion results in a minimum wingspan in the
upstroke being as low as 60% of the maximum wingspan in the down-
stroke. Wang et al.34 numerically simulate the flows around a bat
model and find that the spanwise motion associated with the dynami-
cally changing wingspan significantly enhances the LEV and the vor-
tex lift.

The spanwise motion also serves as an alternative to flapping
motion to generate LEV in the gliding of flying snakes. The gliding of
a flying snake is characterized by a flattened body cross section similar
to the airfoil profile, a body planform of S shape, and a spanwise undu-
lation with a low frequency of 1–2Hz.35–37 Miklasz et al.38 investigate
the effects of the aerodynamic performance of the body cross section.
They find that a special cross section with the presence of a trailing-
edge tip generates robust gliding performance and delays the stall by
stabilizing the LEV. It is also hypothesized that the spanwise undula-
tion in flying snakes enhances the gliding performance.36,38,39 Yeaton
et al.35 measure the kinematics of the spanwise undulation of the flying
snake and build a three-dimensional mathematical model of snake
flight. Their investigation shows that the spanwise undulation mark-
edly improves gliding performance. Furthermore, they show that the
undulation can also stabilize the rotational motion. The results dem-
onstrate that the undulation of flying snakes plays a different function
than known uses of undulation in other animals.

The spanwise oscillation is also related to the morphing wing
drones. The wing with a long span produces good endurance and fuel

efficiency but shows poor maneuverability. In contrast, the wing with
a short span is more maneuverable but leads to deficient aerodynamic
efficiency.40 The span morphing wing integrates the advantages of
both configurations into a single drone. The drone can alter the wing-
span dynamically to adapt to different flight conditions. The transient
process during morphing presents the features of spanwise motion.
The span morphing concept is realized via some novel solutions, such
as the gear driven autonomous twin spar of Ajaj et al.40 The quasi-
static and dynamic effects of span extension on aerodynamic perfor-
mance are inquired in the experiment of Ajaj and Jankee,41 where the
symmetrical and asymmetrical span morphing is operated through the
telescopic mechanism. The aeroelastic properties of a span morphing
wing are also discussed.42,43

The effects of spanwise motion on the evolution of LEV have
been investigated in detail by using a simplified rectangular flat-plate
wing with dynamically changing wingspan.44 The flat-plate wing flaps
in a uniform upstream flow with its wingspan varying sinusoidally
throughout each flapping period. The evolution of LEV is numerical
simulated and analyzed during downstroke and upstroke. The results
show that the LEV on the upper surface of the wing is significantly
intensified by the spanwise motion during the downstroke, which
enhances the positive lift. In the meantime, the spanwise motion
results in shorter and weaker LEV on the lower surface of the wing,
which suppresses the negative lift during the upstroke. The analyses of
the Lamb vector show that the spanwise motion enhances the vortex
lift associated with the LEV. The mechanism of spanwise oscillation
enhancing vortex lift is further confirmed by another research on a
simplified rectangular flat-plate wing with spanwise motion.45 The
wing employed in the research45 oscillates sinusoidally along the span-
wise direction with a constant wing area. It is found that the spanwise
oscillation generates a strong and stable LEV by promoting the vortic-
ity transport along the spanwise direction. All of the above researches
indicate that the spanwise oscillation can serve as an accessory or alter-
native to flapping motion in generating LEV and enhancing aerody-
namic performance. It is well known that the flapping wings have an
optimal Strouhal number (combination of the flapping frequency and
amplitude) around 0.30 for high propulsive efficiency.46–48 Since the
spanwise oscillation has a function similar to flapping motion in gen-
erating LEV, it is hypothesized that there is an optimal parameter anal-
ogous to the Strouhal number for the high-efficient flight with
spanwise oscillation. However, the power efficiency of the flight with
spanwise oscillation and the optimal parameter has never been investi-
gated in detail.

The aim of this work is to investigate the power efficiency of the
flight with spanwise oscillation and identify the optimal parameter of
spanwise oscillation for high power efficiency. Inspired by the simpli-
fied wing model used in exploring the optimal Strouhal number in
heaving and pitching motion,46,47 we employ a low-aspect-ratio rect-
angular flat-plate wing model to explore the mechanism of the optimal
kinematics. The pure translating low-aspect-ratio flat-plate wing at
large angles of attack has been systematically investigated as the sim-
plified wing model for the MAV design.49–53 We superpose a spanwise
oscillation to the low-aspect-ratio rectangular flat-plate wing as that
utilized in the work of Wang et al.45 The differences between the cur-
rent work and the previous work are that: (1) the current work focuses
on the power efficiency while the previous work with the same model
focuses on the aerodynamic forces, and (2) the current work proposes
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an effective reduced frequency and identifies the optimal effective
reduced frequency which has not been reported in the previous work.
We apply numerical simulations and a Bayesian optimization method
to determine the optimal combination of oscillating frequency and
amplitude. This optimal motion parameter is expected to be helpful in
guiding the kinematic design of bio-inspired flight with spanwise
oscillation.

The remainder of this paper is organized as follows. The numeri-
cal model and methods used in the present work are reported in Sec.
II. The distribution of power factor (PF) and the competition among
powers are shown in Sec. III together with the analysis of the vortex
structures and the Lamb vector components. Finally, the conclusions
are drawn in Sec. IV.

II. NUMERICAL MODEL ANDMETHOD
A. Spanwise oscillating wing model

The present research uses the same oscillating wing model uti-
lized in the work of Wang et al.45 The oscillating wing is a rectangular
flat plate with an aspect ratio of AR¼ 2. The wing model is placed in a
uniform flow with a constant angle of attack (AoA), as shown in Fig. 1.
We use a global reference system o-xyz fixed in space for the numeri-
cal simulations, as shown in Fig. 1(a), where the axes of o-x, o-y, and
o-z are parallel to the uniform upstream flows, the spanwise direction
of the wing, and the vertical direction of space, respectively. We also
employed a local reference system oc-xcyczc moving with the wing to
analyze the flows around the wing, as shown in Fig. 1(b). The wing
center is at the origin of the fixed reference system o-xyz at the initial
time (t¼ 0). The harmonic oscillation of the wing center along the
wingspan direction is prescribed as follows:

y tð Þ ¼ A sin 2ktð Þ; (1)

where y is the non-dimensional coordinate in the spanwise direction, t
the non-dimensional time, A the non-dimensional oscillating ampli-
tude. The reference length and time are the chord length c and c=Uþ,
respectively, where Uþ is the velocity of the uniform upstream flow
along the streamwise direction. k ¼ pf þc=Uþ is the reduced fre-
quency, where fþ is the dimensional frequency of the spanwise

oscillation. The spanwise position of the wing center from the Nth to
the ðN þ 1Þth oscillating period N � t=T � N þ 1 is sketched in
Fig. 1(c), where T ¼ p=k is the non-dimensional oscillating period.
The positions of the wing center at five time moments are shown in
Fig. 2. The wing center moves periodically along the axis of spanwise
direction (y-axis) between the positive and negative maximum dis-
placement positions. The wing center is located in the oscillating equi-
librium position at the time moments of t¼NT, t ¼ ðN þ 1=2ÞT ,
and t ¼ ðN þ 1ÞT , the positive maximum displacement position at
the time moment of t ¼ ðN þ 1=4ÞT , and the negative maximum dis-
placement position at the time moment of t ¼ ðN þ 3=4ÞT . We
investigate the cases with the angle of attack at 25 degrees which is a
typical post-stall angle of attack to generate separated flows at the lead-
ing edge.45 With the purpose of finding the optimal oscillating param-
eters to produce high power efficiency, we set the non-dimensional
amplitude A and reduced frequency k to vary in the range of ½0; 1�.

B. Unsteady flow

We evaluate the aerodynamic performances of the wing by
numerically solving the incompressible Navier–Stokes equations as
follows:

r � v ¼ 0; (2)

@v
@t

þ v � rv ¼ �rpþ 1
Re

r2v þ fb; (3)

where v is the non-dimensional velocity vector normalized by Uþ,
and p is the non-dimensional pressure normalized by qUþ2, where q
is the fluid density. Re ¼ Uþc=� is the Reynolds number where � is
the kinematic viscosity of fluid. We set Re ¼ 300 considering that45

(1) the Reynolds number has little effect on the separation point since
a flat-plate wing at a post-stall angle of attack is used in the current
work, and (2) the Strouhal number (or the reduced frequency) domi-
nants the unsteady flows. The body force fb represents effects of the
moving boundary on the flow in the framework of immersed bound-
ary method. Specifically, we employ the immersed boundary method
in the formulation of exact projection method,54 which ensures the

FIG. 1. Schematic of the oscillating wing
model and its kinematics. (a) The rectan-
gular flat-plate wing with spanwise oscilla-
tion in an uniform upstream flow and the
global reference system o-xyz fixed in
space for numerical simulations. (b) The
local reference system oc-xcyczc moving
with the wing for analyzing the results and
three typical sections (xc¼ 0, yc¼ 0,
zc¼ 0) across the wing. (c) The spanwise
position of the wing center from the Nth to
the ðN þ 1Þth oscillating period,
N � t=T � N þ 1, where T ¼ p=k is
the non-dimensional oscillating period.
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divergence-free constraint to the machine zero. A second-order finite
volume method is used for the spatial discretization. The time
advancement is handled by the three-step, second-order, and low-
storage Runge–Kutta scheme. We treat the diffusion term implicitly
and the convection term explicitly in each sub-step. More details of
the numerical method can be found in our previous work.45,54,55

In our previous work,45 the validation of numerical methods is
conducted based on the available benchmarks that have the same/sim-
ilar features in geometry, kinematics, or vortex dynamics. According
to the experiments of Taira and Colonius,49 we have simulated the
flow around a translating rectangular flat-plate wing with aspect ratio
of 2, which has the same geometry with the model used in this work.
It is found that the lift and drag coefficients agree well with those of
the experimental measurements. Referring to the work of Shyy et al.,56

we have performed another simulation on the flow around a flapping
flat plate, which has the same cross section of the wing and similar
vortex structures. The results show that the time history of lift coeffi-
cient is in good agreement with that in the referenced work.

The simulations are conducted in a non-dimensional domain of
½�6; 12� � ½�9; 9� � ½�9; 9� normalized by the chord length in the
streamwise, spanwise and vertical directions, respectively. The unit
normal velocity component and the zero tangential velocity compo-
nents are specified at the inlet. The normal velocity component is cal-
culated from the stream functions and the tangential velocity
components are zero-gradient at the outlet. The non-slip boundary
condition is enforced on the wing surface in the immersed boundary
method. The free-slip boundary conditions are used on the other
boundaries of the computational domain. The computational domain
is discretized by using local refined Cartesian grid with a minimum
grid length of c=40. The grid length for discretizing the wing in the
framework of immersed boundary method is equal to the minimum
grid length in the computational domain.

The test of grid independence is conducted by examining the
effect of mesh resolution on the average lift and drag coefficients at
three different angles of attack.45 The tested case is the spanwise oscil-
lation with oscillating amplitude of 1.00 and reduced frequency of
0.50. Both the wing model and the kinematics formulation of the span-
wise oscillation are exactly the same with those used in this work. The
present mesh has a minimum grid length of c=40. One mesh to test
the effect of grid resolution is refined, resulting in the minimum grid

length of c=80. We have also tested the effect of computational domain
on the results, The mesh to test domain size has the non-dimensional
computational domain of ½�12; 18� � ½�15; 15� � ½�15; 15� and the
minimum grid length of c=40. The test results show that the differ-
ences among the three cases are less than 3%.

The aerodynamic force coefficient Caero in this work is computed
by

Caero ¼ Faero
1=2qUþ2c2AR

; (4)

where Faero is the vector of total aerodynamic force acting on the wing.
The components of the vector Caero in streamwise, spanwise, and verti-
cal directions are drag coefficient CD, side-force coefficient CS, and lift
coefficient CL, respectively.

The aerodynamic efficiency is commonly investigated aerody-
namic performance in biolocomotion.57–61 We investigate the power
factor which measures the aerodynamic efficiency of the oscillating
wing to support a unit weight.45,57 For the current spanwise oscillating
motion, we quantify the power factor as

PF ¼ Pz
Px þ Py

; (5)

where Px; Py , and Pz are the non-dimensional powers of drag, side
force and lift, respectively. Here, the drag, side force, and lift are the
forces along the streamwise, spanwise, and vertical directions, respec-
tively. The non-dimensional powers of the force components are com-
puted as follows:

Px ¼ U � 1
T

ðT
0
CD tð Þdt

 !
¼ U � CD ; (6a)

Py ¼ �2Ak � 1
T

ðT
0
CS tð Þcos 2ktð Þdt

 !
; (6b)

Pz ¼ U
3
2 � 1

T

ðT
0
CL tð Þdt

 !3
2

¼ U
3
2 � CL

3
2; (6c)

where CL ; CD , and CS are the time-averaged lift coefficient, time-
averaged drag coefficient, and instantaneous side-force coefficient,
respectively. Here, U¼ 1 is the non-dimensional freestream velocity.

FIG. 2. Schematic of the harmonic spanwise oscillation from the Nth to the ðN þ 1Þth oscillating period. The wing center moves periodically along the axis of spanwise direc-
tion (y-axis) between the positive and negative maximum displacement positions. The wing center is located in the oscillating equilibrium position at the time moments of
t¼NT, t ¼ ðN þ 1=2ÞT , and t ¼ ðN þ 1ÞT , the positive maximum displacement position at the time moment of t ¼ ðN þ 1=4ÞT , and the negative maximum displacement
position at the time moment of t ¼ ðN þ 3=4ÞT .
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The variables related to spanwise oscillation and power efficiency are
summarized in Table I for clarification. In the corresponding descrip-
tion, the quantities marked with “[1]” are non-dimensional.

C. Bayesian optimization

To find the optimal spanwise oscillating kinematics, we apply
the Bayesian optimization method,62 where a Gaussian process (GP)
is used to generate the probabilistic regression from the design vector
n 2 v to the noisy observation q 2 R, where v is the oscillating
parameter space. In this study, the design vector n ¼ ½A; k�T consists
of the non-dimensional amplitude A and the reduced frequency k,
the observation q¼ PF is the power factor. The GP model makes
observations on new points from the known training set
d1:n ¼ ðni; qiÞ

� �
i¼1:n, where n is the number of training points. We

utilize the statistical information provided by the model to create the
acquisition function aðnÞ. And maximizing aðnÞ can help search the
promising optimal point, namely,

nnþ1 ¼ argmaxn2va n;d1:nð Þ: (7)

We adopt a hybrid acquisition strategy63,64 consisted of several
acquisition functions to improve the robustness. The acquisition func-
tion portfolio includes probability of improvement (PI), expected
improvement (EI), and upper confidence bound (UCB). To trade off
between global exploration and local exploitation, three different bal-
ance parameters are assigned to each type of acquisition function. As a
result, the best promising point is selected from the set of candidates
produced by the acquisition functions ajðnÞðj ¼ 1; 2;…; 9Þ. Note that
the selection criterion is different between the initial iteration and the
subsequent iterations. The memory factor is utilized to modulate the
effect of the past cumulative gains for each acquisition function.

The initial surrogate model is constructed using twenty training
points in the initialization process, and fifteen suggested points are
added to update the surrogate model in the iteration process. To
explain the flow characteristics under the optimal oscillating parameter
configuration, three reference points with distinctive features relative
to the optimal point (detailed in Sec. III) are selected for comparison.
These estimated points and their observations form the data set to
construct the final Gaussian process model of power factor. Refer to
the work of Wang et al.65 for more details of the optimization method.

III. RESULTS
A. Power factor at different oscillating frequencies
and amplitudes

Figure 3(a) shows the distribution of the power factor at different
oscillating frequencies and amplitudes. The standard deviation is less
than 0.01 in the most of the parameter space (k,A) displayed in Fig. 3
(b), which implies that the prediction uncertainty of the model is low.
The power factor exhibits a unimodal distribution in the investigated
parameter space. A maximum power factor of 1.65 is achieved when
the oscillating frequency is 0.49 and the oscillating amplitude is 1.00.
The maximum power factor is reported to be approximately 0.84
when the same wing model is gliding purely.45 The power factor
under the optimal spanwise oscillation is 1.97 times as large as that
without spanwise oscillation. It is noticed that the power factor is not
lower than 90% of the maximum value for the configurations of
0:40 < k < 0:60 and 0:70 < A < 1:00 which composes a promi-
nently high power efficiency region.

We use the root-mean-square oscillating velocity Vrms (usually
referred to as vibration severity66) to measure the spanwise oscillating
level. From the spanwise motion Eq. (1), it can be derived that
Vrms ¼

ffiffiffi
2

p
Ak. Therefore, motions with the equal product of the oscil-

lating amplitude and oscillating frequency have the same vibration
severity. It is noted that the spanwise oscillation can also be measured
by a Strouhal number St ¼ 2f þAþ=Uþ, where fþ and Aþ are the
dimensional frequency and amplitude of oscillation, respectively.
Considering the linear relation between the Strouhal number and the
vibration severity (St ¼ ffiffiffi

2
p

Vrms=p), the discussion in this work only
focuses on the vibration severity (Vrms). Figure 4 shows the distribu-
tion of power factor relative to vibration severity and oscillating ampli-
tude, which has the similar feature to that in Fig. 3(a). As shown in
Fig. 3(b), the straight line A¼ k (red dotted line) divides the parameter
space (k, A) into an amplitude-dominant configuration region (A> k)
and a frequency-dominant configuration region (A< k). The main
peak of the power factor is located in the amplitude-dominant region,
which indicates that under the same vibration severity, the amplitude-
dominant parameter configuration is easy to obtain a high power fac-
tor. The advantage of the amplitude-dominant parameter configura-
tion can be clearly seen by analyzing the power factor distribution
along the three contours in Fig. 3(b) (the vibration severities are 0.20,
0.45, and 0.70, respectively). In Fig. 5(a), the power factor in the
amplitude-dominant region (solid segment on the left-hand side of the
circle) is greater than that of the frequency-dominant region (dashed
segment on the right-hand side of the circle), except for some low fre-
quency cases (k < 0.26 when Vrms ¼ 0:20). Figure 5(b) shows the var-
iation in the power factor with Vrms in the amplitude-dominant region
[solid line in Fig. 5(b)] and frequency-dominant region [dashed line in
Fig. 5(b)]. The power factor curve for the configurations with A> k is

TABLE I. Variables related to spanwise oscillation and power efficiency.

Symbol Expression Description

c (-) Chord length (m)
Uþ (-) Upstream velocity (m/s)
Aþ (-) Oscillating amplitude (m)
fþ (-) Oscillating frequency (Hz)
U 1 Upstream velocity [1]
A Aþ=c Oscillating amplitude [1]
k pf þc=Uþ Reduced frequency [1]
T k=p Oscillating period [1]
St 2f þAþ=Uþ Strouhal number [1]
Vrms

ffiffiffi
2

p
Ak Vibration severity [1]

kve Eq. (8) Modified reduced frequency [1]
k�ve Eq. (10) Effective reduced frequency [1]
CDðS;LÞ Eq. (4) Force coefficients [1]
Pxðy;zÞ Eq. (6) Powers of force components [1]
Pxðy;zÞ� Eq. (11) Normalized powers [1]
Pin Px þ Py Input power [1]
Pout Pz Output power [1]
PF Eq. (5) Power factor [1]
PF� Eq. (9) Effective power factor [1]
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higher than that for configurations with A< k. The gap between the
two curves is the largest when Vrms is approximately 0.60. The obser-
vations for Fig. 5(b) further confirm that the amplitude-dominant
configuration is better than the frequency-dominant configuration
under the same root-mean-square oscillating velocity.

From the definition of the power factor in Eq. (5), it is clear that
the powers of the force components in the three spatial directions
determine the value of the power factor. For generating the lift to sup-
port the weight, the input power Pin is Px þ Py , and the output power
Pout is Pz . Figure 6(a) shows the power of each force component
within the spanwise oscillating parameter space (k, A). In the most
part of the parameter space (0:25 < k < 1:00 and 0:30 < A < 1:00),
the powers of the force components have the relation of
Pz > Px > Py . The power Pz grows rapidly, but the power Px grows
slowly as the vibration severity increases, as shown in Fig. 6(b). The
power Py is close to zero in the low vibration severity region of
Vrms < 0:30, while it increases rapidly in the high vibration severity
region, reaching 0.50 when Vrms ¼ 1:13. The changes of powers can
be clearly seen by fixing the oscillating amplitude at A¼ 1.00, as

shown in Fig. 7(a). All the powers of the force components increase
monotonically as the reduced frequency k increases. The output power
Pz increases convexly, since the derivative of the output power @Pz=@k
decreases with the reduced frequency k, as shown in Fig. 7(b). The
input power Pin ¼ Px þ Py increases convexly when k< 0.35 and con-
cavely when k> 0.35, since the derivative of the input power @Pin=@k
is dominated by Px when k< 0.35 and by Py when k> 0.35. The deriv-
ative of the power of drag @Px=@k decreases monotonically as the
reduced frequency k increases, while the derivative of the power of
side force @Py=@k increases monotonically, as shown in Fig. 7(b).
Therefore, the high power efficiency region (0:40 < k < 0:60)
reported in Fig. 3(a) results from the convex increase in the output
power and the concave increase in the input power.

B. Effective reduced frequency

Figure 8(a) shows the variations in the power factor with the
reduced frequency when the oscillating amplitude is fixed at different
values. Each of these power factor curves in Fig. 8(a) has only one peak.

FIG. 3. The distribution of (a) the power factor and (b) its uncertainty in the spanwise oscillating parameter space (k, A). In the right subplot (b), the red dotted line represents
k¼ A, the black dashed line is k ¼ 0:14=A (Vrms ¼ 0:20), the black dashed-dotted line is k ¼ 0:32=A (Vrms ¼ 0:45), and the black dashed-dotted-dotted line is k ¼ 0:49=A
(Vrms ¼ 0:70).

FIG. 4. The distribution of power factor at
different vibration severities (Vrms ¼ pSt=ffiffiffi
2

p
) and amplitudes (A) for the configura-

tions reported in Fig. 3(a). The red dotted
line denoting k¼ A corresponds to that in
Fig. 3(b).
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When the amplitude A varies from 0.50 to 0.80, the power factor peak
shifts toward the right. When the amplitude A changes from 0.80 to
1.00, the power factor peak shifts quickly toward the left. Figures 8(b)–
8(d) give the variations in powers of drag, side force and lift with the
reduced frequency. All the three groups of power curves increase
monotonously with the reduced frequency increasing. The powers Px
and Pz increase convexly, and the power Py increases concavely.
Notably, the power Py is very small at the low oscillating frequency.
However, it increases rapidly as the reduced frequency increases.

The power factor and powers of force components vary with the
reduced frequency k. The classical reduced frequency (k ¼ pf þc=Uþ)
measures the unsteadiness related to a flapping wing by comparing the
characteristic wavelength of the disturbed flow with the chord
length.67,68 The reduced frequency has been successfully used as the

unsteadiness indicator to investigate the wake structure features of
four-flapping-wing-configuration MAV.69 The increase in the reduced
frequency usually causes an enhanced unsteadiness of the wake behav-
ior with a short wavelength. The reduced frequency identifies the indi-
vidual effects of flapping frequency from the Strouhal number and has
shown its advantages in analyzing the formation of vortical wake of a
heaving foil.70 In the present work, we modify the reduced frequency
as

kve ¼ pf þcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ2 þ ffiffiffi

2
p

f þAþ� �2q ¼ pf þcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ2 þ VrmsUþ=pð Þ2

q : (8)

Compared with the classical reduced frequency, the characteristic
wavelength of the disturbed flow Uþ=ðpf þÞ is replaced with

FIG. 6. (a) The powers of the force com-
ponents change with the oscillating fre-
quency and amplitude. (b) The powers of
the force components change with the
vibration severity. Px (blue), Py (gray),
and Pz (red) are the powers of the force
components in the streamwise, spanwise
and vertical directions, respectively. The
sum of Px and Py is equal to the input
power, and Pz is equal to the output
power.

FIG. 5. (a) The change in the power factor with the oscillating frequency k along the vibration severity contours. (b) The change in the power factor with the vibration severity
Vrms in the amplitude-dominant and frequency-dominant configuration regions. In subplot (a), the vibration severities of 0.20 (triangle symbol), 0.45 (square symbol), and 0.70
(diamond symbol) correspond to the three contours of k ¼ 0:14=A; k ¼ 0:32=A, and k ¼ 0:49=A, respectively, in Fig. 3(b). The solid segment of the power factor curve rep-
resents the amplitude-dominant configuration region, while the dashed segment represents the frequency-dominant configuration region. In addition, the two parts are divided
by a red hollow circle (k¼ A). In subplot (b), the solid line and the dashed line represent the distribution of the power factor relative to the vibration severity in the amplitude-
dominant and frequency-dominant configuration regions, respectively.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uþ2 þ ffiffiffi

2
p

f þAþ� �2q
=ðpf þÞ by introducing an effective spanwise

velocity associated with the spanwise oscillation. The effective span-
wise velocity is computed by

ffiffiffi
2

p
f þAþ ¼ VrmsUþ=p. The modified

reduced frequency takes into account the effects of spanwise oscillation
on the flow velocity encountered by the wing and represents the ratio

of the wavelength of the disturbed spanwise and streamwise flow to
the chord length.

We further keep the oscillating amplitude constant and
normalize the power factor and the modified reduced frequency
by their current maxima (hereafter referred to as effective

FIG. 7. (a) The input and output powers
at different reduced frequencies, and (b)
the derivative of power at different
reduced frequencies. The oscillating
amplitude is fixed at A¼ 1.00. Px (blue
solid line with the circle symbol), Py (gray
dashed-dotted line with square symbol),
and Pz (red dashed line with triangle sym-
bol) are the powers of the force compo-
nents in the streamwise, spanwise and
vertical directions, respectively. The input
power Pin (black dashed-dotted-dotted line
with inverted triangle symbol) is equal to
the sum of Px and Py , and the output
power Pout (red dashed line with triangle
symbol) is equal to Pz .

FIG. 8. The variations in the power factor
and the three powers of force components
with the reduced frequency when the
oscillating amplitude is fixed at a series of
values. (a) The power factor curves. (b)
The power Px curves. (c) The power Py
curves. (d) The power Pz curves. The
oscillating amplitude ranges from 0.50 to
1.00, and the increase interval is 0.10 for
the power factor and the powers of force
components.
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power factor and effective reduced frequency, respectively) as
follows:

PF� ¼ PF

max PF A ¼ const; kð Þ� � ; (9)

k�ve ¼
kve

max kve A ¼ const; kð Þ� � : (10)

After the normalization, it is observed that the curves of the effec-
tive power factor PF� under different oscillating amplitudes almost
collapse with each other except in the high reduced frequency region.
The peaks of the effective power factor correspond to the effective
reduced frequency within a narrow region between k�ve ¼ 0:47 and
k�ve ¼ 0:56, as shown in the local enlarged view of Fig. 9(a). In other
words, the spanwise oscillating wing obtains the maximum power fac-
tor when the effective reduced frequency has a value in the interval of
0:47 < k�ve < 0:56.

Figure 9 also shows the normalized results of the three powers of
force components depicted in Fig. 8 with local enlarged views for clar-
ify. The normalized powers P�

x ; P
�
y , and P�

z of force components are
defined in the same way to compute the normalized power factor
PF�, i.e.,

P�
xðy;zÞ ¼

Pxðy;zÞ
max Pxðy;zÞ A ¼ const; kð Þ� � : (11)

It can be found that the curves of the normalized power P�
x of drag

and the curves of the normalized power P�
z of lift are dispersed in

the middle-frequency and low-frequency regions, but they collapse
with each other well in the high-frequency region. This is reason-
able since the spanwise oscillation dominants the generation of
drag and lift only at high-frequency region in the current condi-
tion. In contrast, the curves of the normalized power P�

y of side
force collapses with each other well in the entire frequency region,
since the spanwise oscillation dominates the generation of side
force for all considered configurations.

C. Vortex structures

We detail the vortex structures corresponding to the maximum
power factor (or the optimal point in the oscillating parameter space)
in this subsection. In addition to the optimal point in the parameter
space (k, A), we also selected three reference points (R1, R2, and R3),
as shown in Table II. Compared with the optimal configuration (Opt),
the R1 (0.30, 0.50) configuration has an approximately same oscillating

FIG. 9. The variations in the effective
power factor and the three normalized
powers of force components with the
effective reduced frequency when the
oscillating amplitude is fixed at a series of
values. (a) The curves of the effective
power factor. (b) The curves of the nor-
malized power P�

x . (c) The curves of the
normalized power P�

y . (d) The curves of
the normalized power P�

z . The four sub-
plots share the same legend in subplot
(c). The oscillating amplitude ranges from
0.50 to 1.00, and the increase interval is
0.10 for the effective power factor and the
normalized powers of force components.
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frequency, but its oscillating amplitude is only 30% of that under the
Opt configuration. R2 (1.00, 0.20) and R3 (1.00, 0.80) configurations
have equal oscillating amplitudes, but their oscillating frequencies are
arranged on different sides of the optimal frequency. The oscillating
parameter configurations corresponding to these four points in the
parameter space (k, A) lead to different flow patterns. According to the
relative relationship in the oscillating amplitude and frequency, we
describe these motion configurations as high-amplitude and medium-
frequency parameter configuration (Opt), low-amplitude and
medium-frequency parameter configuration (R1), high-amplitude and
low-frequency parameter configuration (R2), and high-amplitude and
high-frequency parameter configuration (R3). The power factor, the
powers of force components, and the period-averaged force coeffi-
cients under these configurations are also given in Table II.

The power factor of the R1 configuration is 1.06, which is lower
than the optimal value of 1.65. This is mainly due to the low period-
averaged lift coefficient CL ¼ 0:68 which is only 54% of that under the
Opt configuration. The R2 configuration has a higher power factor of
1.24 than the R1 configuration because of its larger period-averaged
lift coefficient CL ¼ 0:78. For the R3 configuration, although its aver-
age lift coefficient CL ¼ 1:50 is greater than that (CL ¼ 1:25) of the
Opt configuration, its power factor of 1.42 is still 14% smaller than the
optimal value because of its larger power of side force Py ¼ 0:45.

For the case without spanwise oscillation, the spanwise vorticity
accumulated in the LEV attaching on the current wing can only be
released through the viscous dissipation and the shedding of vortex
structures.49 The spanwise motion provides a way to stabilize the LEV.
The spanwise oscillation of the plate causes the generation and shed-
ding of LEV, the trailing-edge vortex (TEV) and tip vortex (or side-
edge vortex, SEV) in each oscillating period. Here, we select the half
period when the plate has a positive oscillating displacement (the posi-
tive direction of the y-axis is the positive direction of oscillation) as a
representative stage to illustrate the evolution of the flow structures in
detail. The chosen motion moments with equal intervals are shown in
Fig. 1(c).

The flow structures at the corresponding moments under the
optimal parameter configuration are shown in Fig. 10, where the vor-
tex structures are identified by the Q-criterion (Q¼ 0.75). For simplic-
ity of notation, L, T, and S are used in the following to denote the LEV,
TEV, and SEV, respectively. In addition, the prefix d is used to denote
the detached vortex structure, the prefixes l and r are used to represent
the left and right side-edge vortices on both sides of the plate, respec-
tively. The subscripts N and N − 1 indicate the vortices generated in
the Nth and ðN � 1Þth oscillating periods, respectively. The super-
script 1hð2hÞ is used to imply that a vortex structure develops into a
distinct and mature morphology in the first (rear) half of the oscillat-
ing period.

As shown in Fig. 10(a), the plate is located at the equilibrium
position at the beginning of theNth oscillating period, and it is moving
in the positive y-axis direction at this time. The vortex sheet that pro-
vides vorticity for the LEV LN covers the entire leading edge, but the
main part of the LEV LN undergoes spanwise deformation following
the spanwise relative incoming flow direction (negative y-axis direc-
tion). The wing tip vortex on the windward side of the plate is also
stretched in the spanwise direction to form the flat SEV rSN , which is
still isolated from the deformed LEV LN , while the wing tip vortex (or
the SEV lSN ) on the leeward side has been entrapped by the deformed
LEV LN . The TEV T2h

N�1 formed in the previous period also undergoes
spanwise asymmetrical distortion. In the movement stage from t=T
¼ N to t=T ¼ N þ 1=4 as shown in Figs. 10(a)–10(c), the plate
moves from the oscillating equilibrium position to the positive maxi-
mum displacement position, and its oscillating velocity decreases from
the maximum to zero. In this stage, the spanwise deformations of the
LEV LN and the SEV rSN reduce, while the SEV lSN is gradually iso-
lated from the influence of the LEV LN , which is manifested as the
spatial separation of the structures. In the movement stage from
t=T ¼ N þ 1=4 to t=T ¼ N þ 1=2 as shown in Figs. 10(c)–10(e), the
plate returns to the oscillating equilibrium position from the maxi-
mum displacement position in the positive direction, and its oscillating
velocity increases from zero to the maximum. The acceleration of the
plate makes the LEV LN and the SEV lSN gradually increase their
deformations in the spanwise direction. On the other hand, the SEV
rSN and the rear part of the LEV LN have stronger interference effects
due to the shortening of the distance. When t=T ¼ N þ 3=8, a new
TEV T1h

N has been formed, and now the TEV T2h
N�1 changes to the

detached TEV dT1h
N , as shown in Fig. 10(d). In the above oscillating

process, the reversal of the movement direction causes the LEV LN to
detach the slender subvortex dL1hN in the spanwise direction [see
Fig. 10(d)], which is significantly different from the phenomenon
observed under the same Reynolds number and angle of attack in the
case of no spanwise oscillation.45,49

By analyzing the flow field under the optimal parameter configu-
ration, we capture the main features of flow around a spanwise oscil-
lating plate, especially the periodic deformations and motions of the
main vortex structures. Compared with the optimal configuration, the
evolutions of the flow structures under the three reference configura-
tions have similar patterns, but there are differences in spatial mor-
phology and interaction. Figure 11 compares the vortex structures at
the oscillating equilibrium position and the maximum displacement
position under the reference configurations. Under the R1 configura-
tion, due to the lower oscillating amplitude, the spanwise deformations
and motions of the vortices are greatly weakened. The flow field
changes obviously relative to that in the high-amplitude condition. For
example, even at the moment when the velocity of the spanwise

TABLE II. The setups and aerodynamic performances of the four typical configurations.

Parameter configuration A k Vrms PF Px Py Pz CD CL

Opt High-amplitude, medium-frequency 1.00 0.49 0.70 1.65 0.74 0.11 1.41 0.74 1.25
R1 Low-amplitude, medium-frequency 0.30 0.50 0.21 1.06 0.51 0.01 0.56 0.51 0.68
R2 High-amplitude, low-frequency 1.00 0.20 0.28 1.24 0.55 0.01 0.69 0.55 0.78
R3 High-amplitude, high-frequency 1.00 0.80 1.13 1.42 0.85 0.45 1.84 0.85 1.50
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FIG. 11. Vortex structures (identified by Q¼ 0.75) at the oscillating equilibrium position (upper subplot) and the positive maximum displacement position (lower subplot). (a) The R1 config-
uration. (b) The R2 configuration. (c) The R3 configuration. The isosurfaces of Q¼ 0.75 are colored by the spanwise velocity. The direction of incoming flow is from left to right.

FIG. 10. Vortex structures at different moments in a half oscillating period under the optimal parameter configuration. (a) t=T ¼ N. (b) t=T ¼ N þ 1=8. (c) t=T ¼ N þ 1=4.
(d) t=T ¼ N þ 3=8. (e) t=T ¼ N þ 1=2. The flow structures are identified by the Q-criterion, and the isosurfaces of Q¼ 0.75 are colored by the spanwise velocity. The direc-
tion of incoming flow is from left to right.
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movement is the largest, there is still a clear boundary between the
LEV and the leeward SEV, as shown in the upper subplot of Fig. 11(a).
This indicates that the spanwise motion effect under low-amplitude
oscillation is restrained, and the structural characteristics of the
attached vortices are similar to those in the case without oscillation.
However, the high-amplitude oscillation can exert the spanwise
motion effect, which is embodied in that both the LEV and the wind-
ward SEV have sufficiently large deformations. We can perceive that
the greater the vibration severity is, the larger the spanwise deforma-
tion becomes among these configurations. Furthermore, the longer
oscillation period of the R2 configuration makes the flow field rela-
tively smooth and sparse, while the shortening in the oscillation period
of the R3 configuration makes the flow structures more distorted and
compact, as shown in Figs. 11(b) and 11(c).

For the configurations investigated in this work, the LEV and the
windward SEV are the main flow structures that affect the aerody-
namic forces and the aerodynamic efficiency (the windward SEV may
be lSN or rSN depending on the direction of oscillation). Therefore, we
analyze the features of the attached vortex structures containing
LN ; lSN , and rSN in more detail. Figure 12 shows their morphological
changes in a half oscillating period under the optimal parameter con-
figuration. Here, the angle between the leading edge (black solid line)
and the windward side edge (black dashed line) of each attached vor-
tex is used to measure the amount of deformation. The deformation

angles of the LEV and the windward SEV are denoted by hL and hS,
respectively. During the deceleration process from t=T ¼ N to
t=T ¼ N þ 1=4, the LEV deformation angle hL increases from 34.88�

to 46.08�, and the LEV LN tends to be symmetrical about the center
plane of the flat plate. The SEV deformation angle hS decreases from
39.20� to 29.49�, and the SEV rSN becomes irregular after disturbance
by the LEV LN . The core of the SEV lSN gradually moves close to the
upper surface of the plate after being isolated from the interference of
the LEV LN . At time t=T ¼ N þ 5=16, the attached vortex system
develops into a symmetrical shape similar to that under the non-
oscillation condition. This means that the time when the symmetrical
shape appears lags behind the time when the plate has the maximum
displacement, and the time difference is approximately T=16. During
the reverse acceleration from t=T ¼ N þ 5=16 to t=T ¼ N þ 1=2,
the LEV LN deforms in the positive y-axis direction, and the deforma-
tion angle hL is reduced to 34.88� equal to that at t=T ¼ N . The pre-
sent windward SEV lSN develops into a flat structure snuggling close
to the wall, and the SEV deformation angle hS increases to 39.20�. The
distance between the leeward SEV rSN and the deformed LEV LN
reduces, resulting in the vortex rSN being entrapped.

Figure 13 shows the distributions of the Q-value and the stream-
wise velocity at the oscillating equilibrium position in different span-
wise slices. These slices are extracted from three spanwise positions of
yc ¼ 0:50; yc ¼ 0, and yc ¼ �0:50 in the reference system moving

FIG. 12. The attached vortex structures at different moments in a half oscillating period under the optimal parameter configuration. The isosurfaces of Q¼ 0.75 are colored by
the spanwise velocity. The direction of incoming flow is from left to right.
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with the plate [see Fig. 1(b)]. The flow patterns are similar under dif-
ferent oscillating parameter configurations. The LEV originates from
the leading edge point and curves downward to form a spiral shape,
and the region between the LEV and the flat plate is a recirculation
zone. From the windward side to the leeward side along the spanwise
direction, the size of the LEV increases almost linearly, and the normal
distance from the vortex core to the plate also increases, as shown in
Fig. 13(a). In the plane of symmetry (yc ¼ 0), the LEV is weaker under
low-amplitude oscillation (R1), the LEV and the plate cannot fully
enclose the recirculation zone [see Fig. 13(b)], while the LEV becomes
stronger under high-amplitude oscillation (Opt, R2, and R3), and the
recirculation zone is confined to a small area [see Figs. 13(a), 13(c),
and 13(d)]. For the high-amplitude configurations, the LEV distributes
in a large area with a low strength under the low-frequency R2 config-
uration, while this vortex has a high strength with a small concentra-
tion area under the high-frequency R3 configuration. Nevertheless, the
strength and the distribution area of the LEV are both at a moderate
level under the medium-frequency Opt configuration.

Figure 14 shows the distributions of the Q-value and the span-
wise velocity at the oscillating equilibrium position in different stream-
wise slices. These slices are extracted from three streamwise positions
of xc ¼ �0:25 cos ðAoAÞ 	 �0:23; xc ¼ 0, and xc ¼ 0:25 cos ðAoAÞ
	 0:23 in the reference system moving with the plate [see Fig. 1(b)].

Due to the spanwise motion, the spanwise velocity in the near-wall
zone is larger. A bulging high-speed zone appears on the windward
side of the upper surface. From the windward side to the leeward side
along the streamwise direction, the size of the SEV pair and the normal
distance from either vortex core to the plate increase. In the vertical
section xc ¼ 0, as the vibration severity increases, the windward SEV
gradually approaches the upper surface, and the interference between
the leeward SEV and the LEV increases continuously, causing their
shapes to become irregular.

D. Discussion

The aerodynamic force is closely related to the integral of the
Lamb vector.45,71,72 Therefore, the flow structures identified from the
Lamb vector field can be used to further analyze the aerodynamic per-
formances. The Lamb vector c is defined as the cross product of the
flow velocity v¢vx ex þ vy ey þ vz ez and the vorticity x¢xx ex
þxy ey þ xz ez , namely,

c¢cx ex þ cy ey þ cz ez ¼ v � x ¼ v � r� vð Þ; (12)

where cx, cy, and cz are the components of the Lamb vector in the
streamwise, spanwise and vertical directions, respectively. Here, ex; ey ,
and ez are the orthogonal unit vectors along the axes of the global

FIG. 13. Distributions of the Q-value and the streamwise velocity at the oscillating equilibrium position in the side view. (a) The Opt configuration. (b) The R1 configuration. (c)
The R2 configuration. (d) The R3 configuration. Under each typical configuration, the three subplots from left to right correspond to the slice positions of yc ¼ 0:50; yc ¼ 0,
and yc ¼ �0:50.
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reference system. The integral of c results in vortex forces acting on
the wing.71 From the power curves shown in Fig. 7(a), the variation of
output power is completely determined by the power of lift, while the
variation of input power is mainly affected by the power of side force.
The relative change in the two powers leads to the change of the power
factor. Thus, here, we are primarily concerned with cy related to the
side force and cz related to the lift. After expanding Eq. (12), we can
obtain cy ¼ vzxx � vxxz and cz ¼ vxxy � vyxx . As displayed in Fig.
12, the structures of the LEV and the windward SEV present high self-
similarity in the cross sections (except for the zones where the interfer-
ence effect is large) at each moment during the motion. In light of this
feature, we carry out the analysis as follows from the view of the repre-
sentative section [refer to Fig. 1(b)].

Figure 15 shows the distributions of the flow variables
xy; vxxy;�vyxx , and vxxy � vyxx in the symmetrical section
(yc ¼ 0) when the plate moves to the oscillating equilibrium position.
These variables are related to the Lamb vector component cz . It is
observed that the positive values of the flow variable vxxy are pro-
duced in the vicinity of the leading edge of the plate, and negative val-
ues are mainly distributed in the near-wall zone below the lower
surface, as shown in the second column of Fig. 15. The magnitude and
area of the positive values of vxxy are much larger than those of nega-
tive values. The flow variable �vyxx is concentrated in the symmetri-
cal areas near the upper and lower surfaces of the plate with opposite
signs and close amplitudes (see the three subplots in the third column
of Fig. 15), which indicates that the contribution of the flow variable
�vyxx to the lift is small. In other words, the spatial integral value of

the Lamb vector component cz is dominated by the distribution of the
flow variable vxxy , which is supported by the similar patterns of the
second and fourth columns in Fig. 15. We find that the flow variables
xy reflecting the LEV and vxxy have similar layouts, and the differ-
ence is manifested in the distinguishing amplitudes in the two concen-
tration areas by comparing the first and second columns in Fig. 15. As
a consequence, through the decomposition of the Lamb vector field, it
is confirmed that the LEV is the main flow structure that generates lift,
which is consistent with the high lift mechanism in most unsteady
motions.28

Figure 15 also compares the spanwise vorticity fields under differ-
ent oscillating frequencies. When the reduced frequency of the span-
wise oscillation increases from 0.20 to 0.49, the strength of the LEV
increases significantly, and the distance from the LEV to the wall
decreases, which indicates that the lift has a greater increase.45 When
the oscillating frequency increases from 0.49 to 0.80, the strength and
position of the LEV have small changes, which gives rise to a small
increase in the lift. The change characteristics of the lift reflected by
the LEV are accordant with the convex increase feature of the power
Pz displayed in Fig. 7(a).

In the similar way, we can investigate the distributions of the
flow variables xx; xz; vzxx;�vxxz , and vzxx � vxxz to identify the
factors that dominate the generation of the side force, because the
spanwise component of Lamb vector cy equals to vzxx � vxxz and
the integral over cy results in the vortex force along the spanwise direc-
tion. Figure 16 shows the distributions of these variables in the section
xc ¼ 0 [visualized by the shade (orange online) plane in Fig. 16(f)]

FIG. 14. Distributions of the Q-value and the spanwise velocity at the oscillating equilibrium position in the back view. (a) The Opt configuration. (b) The R1 configuration. (c)
The R2 configuration. (d) The R3 configuration. Under each typical configuration, the three subplots from left to right correspond to the slice positions of xc ¼ �0:23; xc ¼ 0,
and xc ¼ 0:23. The plate oscillates from left to right.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 111908 (2021); doi: 10.1063/5.0071088 33, 111908-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


when the plate is at the equilibrium position of the spanwise oscilla-
tion. The positive streamwise vorticity xx concentrates above the
upper surface of the plate, while the negative streamwise vorticityxx is
mainly concentrated below the lower surface, as shown in Fig. 16(a).
The vertical vorticity xz has similar distribution but with the negative
values above the upper surface and positive values below the lower sur-
face, as shown in Fig. 16(b). The distributions of the combined vortic-
ity and velocity in the streamwise and vertical directions vzxx and

�vxxz are shown in Figs. 16(c) and 16(d), respectively. It is observed
that the flow variable vzxx is much weaker than the flow variable
�vxxz , particularly in the areas near the two side edges of the plate.
The flow variable vxxz reflects the vertical vorticity field modulated by
the streamwise velocity, which causes similar distribution pattern to
the flow variable xz . In addition, the flow variable �vxxz has similar
distribution to that of the flow variable vzxx � vxxz , as exhibited in
Fig. 16(e). The comparison shows that the distribution of the flow

FIG. 16. Distributions of the flow variables
related to the Lamb vector component
cy ¼ vzxx � vxxz in the section xc ¼ 0
at the oscillating equilibrium position under
the optimal configuration. (a) The stream-
wise vorticity xx. (b) The vertical vorticity
xz . (c) The flow variable vzxx . (d) The
flow variable �vxxz . (e) The flow variable
vzxx � vxxz . (f) The visualization of the
section by an shade (orange online)
plane. The isosurface of Q¼ 0.75 is col-
ored by the Lamb vector component cy .

FIG. 15. Distributions of the flow variables related to the Lamb vector component cz ¼ vxxy � vyxx in the section yc ¼ 0 at the oscillating equilibrium position. (a) The R2
configuration (A¼ 1.00, k¼ 0.20). (b) The Opt configuration (A¼ 1.00, k¼ 0.49). (c) The R3 configuration (A¼ 1.00, k¼ 0.80). The four subplots from left to right in each
row correspond to the flow variables xy ; vxxy ;�vyxx , and vxxy � vyxx .
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variable�vxxz dominates the distribution of the Lamb vector compo-
nent cy , which indicates that the vertical vorticity dominates the gener-
ation of side force.

Figure 17 shows that the vertical component of vorticity xz near
the wing mainly origins from the attached vortex structures including
the LEV and the SEV pair, which are usually identified with the
Q-criterion.49 Figure 17(a) displays the LEV and the SEV pair reflected
by isosurface of Q¼ 0.75 when the wing moves in half of the oscillat-
ing period NT � t � ðN þ 1=2ÞT . It is observed that the conical LEV
and windward SEV stably attach on the upper surface of the wing near
the leading edge and side edge, respectively. Figure 17(b) presents the
isosurfaces jxzj ¼ 5 of vertical vorticity. When the wing moves to the
equilibrium position of spanwise motion, the vorticity component xz

has a distinct distribution on the middle part and two sides of the
wing. When the wing locates at the positive maximum displacement
position, there is less vorticity component xz produced on the side

edges. Figure 17(c) shows that the isosurfaces of the vertical vorticity
can almost be covered by the LEV and the SEV pair during the half
oscillating period NT � t � ðN þ 1=2ÞT , which indicates that the
vertical vorticity xz is mainly generated within the attached LEV and
SEV pair. Therefore, the production of the side force is closely related
to the deformations of both the LEV and the SEV pair.

IV. CONCLUSION

We investigated the power efficiency of a rectangular flat-plate
wing. The rectangular wing oscillates sinusoidally along the spanwise
direction in a uniform upstream flow at a post-stall angle of attack.
The power factor (PF) that measures the power efficiency of a wing to
support a unit weight is obtained by numerically solving the incom-
pressible Navier–Stokes equations. We have computed the power fac-
tors of the wing with spanwise oscillation of different reduced
frequencies (k) and non-dimensional amplitudes (A). It is found that

FIG. 17. The attached vortex structures
and the concentrated areas of the vertical
vorticity xz at different moments in a half
oscillating period under the optimal config-
uration. (a) Attached vortex structures
only. (b) xz-concentrated areas only. (c)
Attached vortex structures overlapped
with xz-concentrated areas. The red,
blue, and gray isosurfaces are determined
by xz ¼ 5; xz ¼ �5, and Q¼ 0.75,
respectively.
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the spanwise oscillation can effectively enhance the power factor of the
rectangular wing. The maximum power factor can be 1.97 times as
large as the power factor of the wing without spanwise oscillation. The
region of 0:40 < k < 0:60 and 0:70 < A < 1:00 in the oscillating
parameter space (k, A) is a prominently high power efficiency region
where the power factor is larger than 90% of the maximum value. For
the spanwise oscillations with the same root-mean-square oscillating
velocity Vrms, the amplitude-dominant configuration is better than the
frequency-dominant configuration to generate high power factor. For
a given oscillating amplitude, the power factor has a single peak in the
amplitude-dominant configuration region of the oscillating parameter
space (k, A). The single peak of power factor is caused by the convex
increase in the output power and the concave increase in the input
power. We introduced an effective reduced frequency (k�ve) after taking
the effective velocity encountered by the wing into account and found
the almost collapsed power factor curves in the amplitude-dominant
configuration region. The peaks of the power factor correspond to the
effective reduced frequency within a narrow region of
0:47 < k�ve < 0:56. Compared with the pure translating wing at the
same angle of attack, the gliding wing with spanwise oscillation creates
significantly different attached vortex system including the leading-
edge vortex and the side-edge vortices. The enhancements of lift and
output power are dominated by the stable leading-edge vortex. The
increases of side force and input power are dominated by both the
leading-edge vortex and the side-edge vortices. The angle of attack
investigated in this work is a typical post-stall angle of attack. The
dominated flow structures are similar at different post-stall angles of
attack, because the flat-plate wing used in this work has a sharp lead-
ing edge and the separation points are independent of the angle of
attack. Therefore, we think that the physics reported in this work
should be valid for setups with different angles of attack. However, the
values of maximum power factor and the ranges of optimal reduced
frequency might vary with the angle of attack. We would like to give a
more detailed investigation for the effects for angle of attack in future
work.
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