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We propose an efficient method to reinitialize a level set function to a signed distance 
function by solving an elliptic problem using the finite element method. The original zero 
level set interface is preserved by means of applying modified boundary conditions to a 
surrogate/approximate interface weakly with a penalty method. Narrow band technique is 
adopted to reinforce the robustness of the proposed method where a smooth initial guess 
for the nonlinear equation is given by solving a Laplace’s equation. Numerical benchmarks 
in both two dimensions and three dimensions confirm the optimal convergence rates 
under several different error measures including an interface error measure, showing that 
our method is accurate and robust. A three-dimensional genus 2 surface is adopted to 
demonstrate the capability of the method for the reinitialization of complicated geometries.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. The level set method and the signed distance function

The representation of an interface is of key importance for many numerical applications. These representations can be 
either implicit (via indicator function) or explicit (through node, edge and surface sets). In Lagrangian methods, a collection 
of points on the interface are identified such that the location of the interface in the spatial domain can be interpolated. 
Eulerian approaches employ a fixed mesh and represent the interface via a scalar-valued indicator function. The topological 
changes of the interfaces are thus handled by efficient Eulerian schemes. The level set method is based upon representing an 
interface as the zero level set of a scalar-valued function φ [1–4]. A signed distance function, which returns the Euclidean 
distance between a position to the closest interface, can be used as the indicator for interface. Suppose the interface �
divides the total problem domain � into �− and �+ , the signed distance function reads [5],

φ(x) =

⎧⎪⎨
⎪⎩

−d for x ∈ �−,

+d for x ∈ �+,

0 for x ∈ �,

(1)
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where d is the Euclidian distance from x to �. Other choices exist for the construction of a level set function φ, but for 
stability purposes, it is often preferable to keep φ as a signed distance function [6]. Note that a signed distance function 
must satisfy the Eikonal equation,

|∇φ| − 1 = 0, (2)

where ∇(·) denotes the spatial gradient operator and | · | is the Euclidean norm of a vector.
The level set interface φ(x, t) = 0 can be evolved through the solution of a scalar advection equation, e.g., the Hamilton-

Jacobi equation. As the interface evolves, φ will generally drift away from its initialized value as a signed distance function, 
causing numerical instabilities [7]. Thus, central to the level set evolution problem is how to ensure that the level set 
function keeps close to a signed distance function throughout the time iterations. Reinitialization of the level set function to 
a signed distance function periodically during the evolution has been widely adopted as a numerical remedy for tackling 
this issue and maintaining stable curve evolution.

1.2. Methods to reinitialize level set

Among various reinitialization techniques, the hyperbolic reinitialization becomes particularly popular and has been ex-
tensively used [8–11]. The procedure is based on solving the following hyperbolic PDE (or its variants):

∂φ

∂τ
+ sign(φ0)(|∇φ| − 1) = 0, (3)

where ∂φ
∂τ is the pseudo temporal derivative of φ and φ0 is the initial level set function to be reinitialized. The solution 

φ(x, t) converges to the signed distance function as τ → ∞, which can be verified by solving the characteristic ordinary 
differential equation of (3). Among various types of finite difference solvers, the essentially nonoscillatory (ENO) method [12]
with three-order accuracy and the weighted ENO (WENO) method [13,14] with fifth-order accuracy are most widely used 
for the spatial discretization. Min [15] compares the three temporal discretizations: the second-order Runge-Kutta method, 
the forward Euler method, and a Gauss-Seidel iteration of the forward Euler method and concludes that the Gauss-Seidel 
method is the best among the three. Unfortunately, if φ0 is not smooth or φ0 is much steeper on one side of the interface 
than the other, the zero level set interface of function φ can be moved incorrectly from that of φ0 [16]. As pointed out 
in [17], the perturbations to the position of the original interface can lead to unpredictable results and the generation of 
fictitious elastic waves when using the level set to recapture the interface.

In contrast to the hyperbolic reinitialization approach, Basting and Kuzmin [18] propose to perform reinitialization by 
solving the following elliptic problem:

−∇ ·
(

∇φ − ∇φ

|∇φ|

)
= 0. (4)

The elliptic reinitialization methods do not require a temporal domain and thus have gained increased attentions in recent 
years [19–21]. While (4) appears to be easier to solve, it remains challenging to accurately impose the interface-preserving 
condition. To ensure that the interface is preserved, the zero level set interfaces of φ and φ0 must be identical. As such, a 
Dirichlet boundary condition must be enforced at the location where φ0 = 0:

φ = 0 on �, (5)

where � denotes the zero level set interface of φ0.
Another class of methods enforce the Eiknoal equation constraint (2) implicitly either by imposing a penalty term [22]

or a Lagrangian multiplier [23]. It should be mentioned that the fast marching method also can be used for reinitialization 
relying upwind finite differences. However, the original fast marching method cannot guarantee interfaces to be preserved. 
Chopp [24,25] modifies a Newton-Raphson iteration as a basis for the fast marching method. Rycroft [17] employs it to 
directly update the level set field, which maintains it as a signed distance function. Since we focus on the reinitialization 
problem, the numerical treatments for evolving interface are not considered here.

The proposed method falls into the category of elliptic reinitialization methods. With special treatment given to the 
imposition of condition (5), we introduce a simple, yet effective level set reinitialization technique inspired by the Shifted 
Boundary method, as reviewed in Section 1.3.

1.3. The Shifted Boundary method

The Shifted Boundary method is a method to represent complex geometries for embedded domain computations [26,27]. 
The key feature of the approach is to replace the constraints imposed on the true boundaries with constraints imposed 
on surrogate boundaries that are often composed by facets of finite element cells. The substitute constraints are derived 
from Taylor’s series and only involve function values and their gradients on the surrogate boundaries. This method thus can 
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transfer the curved computation domain to a surrogate domain discretized with structured cells. This idea has been em-
ployed for shallow water flows [28], incompressible Navier-Stokes equations [29], Darcy flow problems [30], etc. Besides the 
finite element framework, it has also been extended and combined with other numerical frameworks, e.g., the imposition 
of Dirichlet boundary conditions for solid problems with the material point method [31].

1.4. Major objectives and overview of this article

The purpose of this paper is to introduce the Shifted Boundary concept to enable an interface-preserving reinitialization 
problem that does not require a temporal domain. As such, the zero level set interface in (5) is associated with the true 
interface �, whereas the surrogate interface is obtained from Taylor expansions. We thus propose a robust and easy-to-
implement interface-preserving method for the reinitialization of level set functions. The paper is organized as follows. 
Section 2 introduces the method and some preliminaries. Section 3 presents a detailed discussion of the method, including 
practical improvements and adjustments on the basic version of the method. Section 4 shows several numerical examples in 
both 2D and 3D, with a particular focus on the convergence rates by several error measures. The paper closes with Section 5
as a conclusion.

2. Level set reinitialization with the Shifted Boundary method

2.1. Notations

Let � ⊂Rnd (nd is the number of space dimensions) be the problem domain with boundary ∂�. Let Th be a triangulation 
of �, consisting of non-overlapping elements �e (squares for nd = 2 or cubes for nd = 3) such that � = ∪�e∈Th �e . We use 
he for the diameter of �e and denote h = max�e∈Th he .

Let W k,p(�) be the Sobolev space with norm

‖v‖W k,p(�) =

⎧⎪⎪⎨
⎪⎪⎩

(∑
|α|≤k ‖∂α v‖p

L p(�)

)1/p

, 1 ≤ p < ∞,

max|α|≤k ‖∂α v‖L∞(�), p = ∞,

(6)

where for multi-index α, ∂α v is the αth weak derivative of v . For p = 2, let Hk(�) = W k,2(�). By extension, the square-
integrable function space L2(�) = H0(�) and that ‖v‖L2(�) = ‖v‖H0(�) . Also, we have ‖v‖L∞(�) = ‖v‖W 0,∞(�) .

2.2. The Shifted Boundary method preliminaries: the surrogate interface and the map

To illustrate the ideas of Shifted Boundary method, we consider a two-dimensional circle. As shown in Fig. 1, the blue 
circle with the boundary of � is embedded in a Eulerian domain � bounded by ∂�. For each cell, we can determine 
whether the cell is inside, outside or cut by the boundary, according to the initial level set values at its vertices. If all nodal 
values for one cell are less than zero, the cell is inside the level set interface, and all inside cells collectively form a surrogate 
domain �̃ with boundary of �̃, as shown in Fig. 1. We then construct a map M between the surrogate boundary �̃ to the 
level set interface �:

M : �̃ → �, (7a)

x̃ �→ x, (7b)

which maps a point x̃ ∈ �̃ on the surrogate interface, with outward-pointing unit normal denoted by ñ, to a point x ∈ � on 
the level set interface with normal n. For convenience, the map M can also be characterized by a distance vector function

d(x̃) = x − x̃ = [M − I ](x̃), (8)

which uses the closest-point projection for points in �̃ onto �, as shown in Fig. 1.
Suppose φD(x) is the boundary condition on �, and we want φ(x) = φD(x) on �. We can consider a Taylor expansion 

centered at x̃ ∈ �̃ for x = M(x̃) ∈ �:

0 = φ(x̃) + ∇φ(x̃) · (x − x̃) − φD(x) +O
(
|x − x̃|2

)
(9a)

= φ(x̃) + ∇φ(x̃) · (M(x̃) − x̃) − φD(M(x̃)) +O
(
|M(x̃) − x̃|2

)
(9b)

= φ(x̃) + ∇φ(x̃) · d(x̃) − φD(M(x̃)) +O
(
|d(x̃)|2

)
, (9c)

where (9c) is readily on the surrogate interface �̃ to be imposed.
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Fig. 1. Left: Problem domain �, its boundary ∂�, the level set interface �, the surrogate interface �̃, and the embedded domain �̃. Right: The map M
characterized by the distance vector function d, the point x̃ ∈ �̃, the mapped point x ∈ �, the unit normal ñ with respect to �̃, and the unit normal n with 
respect to �. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Remark. For the signed distance function φ, we may obtain an extra benefit if the interface � is smooth. By nature of the 
signed distance function as shown in (1), the first order expansion of (9c) is actually exact and the following relationship 
holds for some x̃ ∈ �− close to the interface �

φ(x̃) = −d = −∇φ(x̃) · d(x̃), (10)

where we have considered that φ must satisfy the Eikonal equation |∇φ| = 1 and that ∇φ(x̃) has the same direction as 
d(x̃). Compare (10) with (9c) while knowing φD = 0, we realize that the residual O

(
|d(x̃)|2

)
is zero. The term “smooth” 

is poorly defined here, but in the extreme case that � is a straight line, it is easy to verify that (10) is indeed satisfied, a 
beneficial property that other functions may not possess.

2.3. Elliptic level set reinitialization

First proposed by [22], the elliptic reinitialization strategy seeks to minimize a functional that measures how close the 
function φ is to a signed distance function,

P(φ) =
∫
�

1

2
(|∇φ| − 1)2 d�. (11)

The functional P(φ) essentially is the squares of residual to the Eikonal equation (2). The Euler-Lagrange equation asso-
ciated with the functional (11) is computed as:

−∇ ·
(

∇φ − ∇φ

|∇φ|

)
= 0 in �, (12)

with a homogeneous Neumann boundary condition,(
∇φ − ∇φ

|∇φ|

)
· t = 0 on ∂�, (13)

where t is the outward-pointing unit normal of ∂�. To ensure that after reinitialization, the level set interface � is pre-
served, the following Dirichlet condition must be satisfied:

φ = φD on �, (14)

where φD = 0 is set for this work. Combining (12), (13), and (14), we obtain the strong formulation of the elliptic reinitial-
ization problem. (12) is a nonlinear Poisson equation such that a solution is obtained when |∇φ| = 1.

Requiring less regularity, the weak formulation states that find φ ∈ H1(�) such that, ∀η ∈ H1(�),

∫
�

(
∇φ − ∇φ

|∇φ|

)
· ∇η d� + μ

∫
�

(φ − φD)η d� = 0, (15)

where μ is a penalty parameter and the Dirichlet condition (14) is weakly imposed using a penalty term involving an 
integral on the level set interface � [18]. Also, the homogeneous Neumann boundary condition (13) is naturally satisfied in 
this formulation.
4
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2.4. The proposed discretization

Note that (15) has three main features: (1) the volume integral is performed over the entire domain �; (2) the unknowns 
can be set at the nodes of a structured grid; and (3) the surface integral is along the true boundary, which is often unfitting 
to the edges of cells. It is apparently beneficial if we modify the third feature to an integral along the surrogate boundary 
(conformal to the edges of some cells) while keeping the other two features unchanged. The problem then reduces to how 
to transfer the constraint (14) imposed on � to �̃. Based on the Taylor expansion as shown in (9), we propose to use a new 
discretization strategy. Let V h(�) ⊂ H1(�) be a discrete finite element subspace. The discretized weak formulation states 
that find φh ∈ V h(�) such that, ∀ηh ∈ V h(�),

∫
�

(
∇φh − ∇φh

|∇φh|

)
· ∇ηh d� + μ

∫
�̃

(φh + ∇φh · d − φD)(ηh + ∇ηh · d) d�̃ = 0 (16)

where d is the distance vector function introduced in (8). It is worth noting that (16) is different from the set up of the 
Shifted Boundary method originally proposed in [26,27], since the integral domain is the full domain containing the true 
interface, while it is a surrogate domain inside the true boundary in their work. However, note that a similar approach is 
used in [30] with the difference that we only have a primal variable φ to solve and there is no jump condition on the fluxes. 
The implementation of the method fits into the standard framework of the finite element methods, avoiding the need of 
any special treatment for the integral on �. The penalty parameter μ is set as

μ = α

he
, (17)

where α is a constant.
The weak form (16) is nonlinear. We use a Picard linearization to obtain simple and robust linear systems to solve for 

the reinitialization problem. Consequently, we obtain

a(φn+1
h , ηh) = l(φn

h , ηh), (18)

where

a(φn+1
h , ηh) =

∫
�

∇φn+1
h · ∇ηh d� + μ

∫
�̃

(φn+1
h + ∇φn+1

h · d)(ηh + ∇ηh · d) d�̃, (19a)

l(φn
h , ηh) =

∫
�

∇φn
h · ∇ηh

|∇φn
h | d�, (19b)

in each Picard iteration. Here, φn+1
h is the unknown variable to solve in the current iteration and φn

h is known from the 
previous iteration.

It is straightforward to see that the bilinear form a(·, ·) of (19a) is symmetric. This form results in a symmetric linear 
system, practically easy to solve:

Aφ = l, (20)

where φ is the vector of degrees of freedom, the system matrix A = (Aij) and the right hand side vector l = (li) are given 
by

Aij =
∫
�

∇ξ j · ∇ξi d� + μ

∫
�̃

(ξ j + ∇ξ j · d)(ξi + ∇ξi · d) d�̃, (21a)

li =
∫
�

∇φn
h · ∇ξi

|∇φn
h | d�, (21b)

with ξi being the finite element basis function for the ith degree of freedom.

3. Discussions on the proposed method

The goal of Section 2 is to present the essential elements constituting the proposed method for level set reinitialization in 
a concise and self-contained manner. However, various adjustments and improvements have been adopted for the method. 
5
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Fig. 2. The narrow band domain B for the gray area, its outer boundary ∂B+ , and its inner boundary ∂B− .

Before we proceed to numerical tests in Section 4, we discuss several of these adjustments crucial for the efficiency of the 
proposed method in this section.

We will first introduce a popular technique called the narrow band approach which we adapt to significantly reduce the 
computational cost. Then we give a description on the two different maps associated with the Shifted Boundary method 
(see (7)) that we use for comparative studies in the subsequent numerical experiments. Finally, we point out an adjustment 
on the objective functional (11) to improve numerical stability of the reinitialization method.

3.1. The narrow band approach

When using the level set method, it is beneficial to adopt a narrow band approach [32] that solves the problem only in 
a thin band around the level set surface. The obvious advantage of this approach is to cut the computational cost down, 
e.g., from O(N2) to O(kN) in two dimensions, where N is the number of degrees of freedom in each space dimension and 
k is the width of the narrow band.

Reducing computational cost is not the only benefit of the narrow band level set method. When the level set surface 
encloses a simply-connected region (e.g., a circle), there will always be a singularity for the signed distance function (e.g., 
the center of the circle). Numerical methods tend to be sensitive to the smoothness of the exact solution. The existence of 
singularity may deteriorate the order of convergence for a method designed to be of higher order, as studied in [21]. When 
the computation of the signed distance function is restricted to a narrow band domain that excludes the singularity point, 
the problem no longer exists.

In this work, the narrow band domain B is determined using a heuristic approach. We first identify all the elements that 
are cut by the interface �, which already forms a narrow band. Being conservative, we iteratively expand the narrow band 
by adding more elements into the set of the current narrow band collection of elements. In each iteration, those elements 
sharing a common face with any elements in the collection will be marked as to add to the collection after the iteration. A 
narrow band domain after one such iteration is illustrated in Fig. 2, with the outer boundary denoted by ∂B+ and the inner 
boundary denoted by ∂B− .

One caveat that is often times overlooked is that if the initial level set function φ0 is significantly different from a signed 
distance function, the reinitialization schemes may not be able to reinitialize the function to a signed distance function [23]. 
In the context of elliptic level set reinitialization methods, our numerical experiments have also corroborated this statement. 
A third benefit of using a narrow band approach coupled with our reinitialization method now emerges: we propose to 
mitigate this issue by using a smooth function ψ in B as to replace φ0 for the initial guess of Picard iteration (18). To 
construct ψ as a close approximation of the signed distance function, we can solve a Laplace’s equation in B. The strong 
form of the problem states that find ψ ∈ C2(�) such that,

−�ψ = 0 in B, (22a)

ψ = k/2 on ∂B+, (22b)

ψ = −k/2 on ∂B−, (22c)

where k is the band width. Note that the map M is always constructed based on φ0, but other than that, φ0 can be safely 
replaced by ψ as a good initial start. This proposed trick is practically useful and makes our reinitialization method more 
independent of the quality of φ0. However, in the full domain �, it is not immediately clear how such ψ can be constructed.
6
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3.2. Considerations for maps

It follows that when using the closest-point projection method to build M for a certain point x̃ ∈ �̃, we essentially 
require

φ0(x) = 0, (23a)

d(x) × n(x) = 0, (23b)

as illustrated in Fig. 1, where condition (23a) is equivalent to x ∈ � and condition (23b) fulfills closest-point projection. We 
can rewrite condition (23b) as

(x − x̃) × ∇φ0(x) = 0. (24)

To solve for x, we adopt an iterative procedure based on a two-step Newton’s method [24]:

δ1 = −φ0(xn)
∇φ0(xn)

∇φ0(xn) · ∇φ0(xn)
, (25a)

xn+1/2 = xn + δ1, (25b)

δ2 = (x̃ − xn) − (x̃ − xn) · ∇φ0(xn)

∇φ0(xn) · ∇φ0(xn)
∇φ0(xn), (25c)

xn+1 = xn+1/2 + δ2. (25d)

The procedure alternately updates x so that the two conditions in (23) are approximately satisfied. The convergence criterion 
is set when 

√|δ1|2 + |δ2|2 < ε , with ε > 0 being a small threshold.

3.3. Objective functionals

The proposed reinitialization method is based on the minimization of the least squares residual to the Eikonal equation, 
as presented in (11) that be rewritten as

P1(φ) =
∫
�

t1(|∇φ|) d�, (26)

where

t1(|∇φ|) = 1

2
(|∇φ| − 1)2. (27)

Correspondingly, the strong form (12) is rewritten as

−∇ · (d1(|∇φ|)∇φ) = 0 in �, (28)

where

d1(|∇φ|) = 1 − 1

|∇φ| . (29)

This formulation is natural at its appearance, but it has several intrinsic drawbacks. For instance, the diffusion term d1 be-
comes singular as |∇φ| → 0, leading to numerical difficulties. To overcome the issues, an alternative formulation is proposed 
by [18]:

t2(|∇φ|) =
{

1
2 (|∇φ| − 1)2 if |∇φ| > 1,
1
2 |∇φ|2(|∇φ| − 1)2 if |∇φ| ≤ 1,

(30)

along with

d2(|∇φ|) =
⎧⎨
⎩1 − 1

|∇φ| if |∇φ| > 1,

1 − (3|∇φ| − 2|∇φ|2) if |∇φ| ≤ 1.

(31)

The formulation introduces new issues in that the functional defined by t2 has multiple extrema. As extensively discussed 
by [21], a third formulation is proposed as
7
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t3(|∇φ|) =
{

1
2 (|∇φ| − 1)2 if |∇φ| > 1,
1
3 |∇φ|3 − 1

2 |∇φ|2 + 1
6 if |∇φ| ≤ 1,

(32)

along with

d3(|∇φ|) =
⎧⎨
⎩1 − 1

|∇φ| if |∇φ| > 1,

1 − (2 − |∇φ|) if |∇φ| ≤ 1.

(33)

In this work, we adopt t3 and d3 in all our numerical examples. Under this modification, we introduce minor revisions 
to the original formulation and adjust (16) to be∫

�

(
∇φh −

(
1 − d3(|∇φh|)

)
∇φh

)
· ∇ηh d� + μ

∫
�̃

(φh + ∇φh · d − φD)(ηh + ∇ηh · d) d�̃ = 0. (34)

The rest formulation from (18) to (21) should also be modified accordingly, whose details we omit.

4. Numerical results

4.1. Error measures

When an analytical solution φ exists, we can measure the errors in the L2, H1, L∞ and L1 norms, i.e.,

EL2 = ‖φh − φ‖L2(�), (35)

EH1 = ‖φh − φ‖H1(�), (36)

EL∞ = ‖φh − φ‖L∞(�), (37)

and

EL1 = ‖φh − φ‖L1(�). (38)

When the analytical solution is not known, we can introduce two additional metrics to measure errors [21]. The first 
one measures the degree to which the Eikonal equation (2) is satisfied, i.e.,

ESD =
(∫

�

(|∇φh| − 1)2 d�

)1/2

, (39)

which will be referred to as the signed distance error measure. The second one is a measure of the movement of the level set 
interface � in the L2 sense. We compute the surface integral of the square values of the approximate solution along �:

EInt =
(∫

�

φ2
h d�

)1/2

, (40)

which will be referred to as the interface error measure.
We further introduce the volume error measure defined as

EVol =
∣∣∣ V − V 0

V 0

∣∣∣, (41)

where V is the volume of the interior domain defined by φh , and V 0 is the volume before reinitialization defined by φ0.
When computing EL2 , EH1 EL∞ , EL1 , and ESD, we always integrate over the narrow band domain for fair comparison, i.e., 

always set � = B even if the computation itself is in the full domain. It is shown in [26] that the optimal convergence for 
a linear Poisson problem with Shifted Boundary method remains to be h2 in the L2 norm and h1 in the H1 norm. For the 
nonlinear Poisson problem discussed in this work, we expect a similar performance for the order of convergence. Besides, 
the signed distance error ESD evaluates the difference between measures of the gradient of the solution, so we expect the 
order of convergence to be similar as if measured in the H1 norm. Reference lines are added in these scenarios for better 
comparisons with the results.

The following statements are true for all subsequent numerical experiments. The domain � is set to be � = [−2,2]nd . We 
stop the Picard iteration of (18) if |φn+1 − φn| < 10−8 or the number of iterations exceeds 1000. A penalty constant α = 10
is used in (17). We perform h − convergence studies for several numerical examples. A sequence of uniform Cartesian 
meshes with square elements of size h = 0.176,0.088,0.044,0.022 are used for nd = 2 and meshes with cubic elements of 
size h = 0.216,0.108,0.054 for nd = 3. When constructing narrow band domains, a band width k = 9 is used for nd = 2 and 
k = 3 for nd = 3. The reported order of convergence (OC) is computed using the difference between the coarsest mesh and 
the finest mesh. First order continuous Galerkin finite element is used throughout the tests. The code is developed based 
on the deal.II finite element library [33,34].
8
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Fig. 3. Error measures EL2 , EH1 , EL∞ , ESD, EInt , and EVol , and convergence rates for the circular interface problem. The legend φ0 − full domain means that 
we use φ0 as the initial guess and solve the problem in the full domain. Similar for the others.

4.2. Circular interface

The first test case contains a circular interface initially described by the level set function φ0 such that

φ0 = x2 + y2 − 1. (42)

The exact signed distance function can be represented as

φ =
√

x2 + y2 − 1. (43)

Since analytical solutions exist, we use EL2 , EH1 , EL∞ , ESD, EInt, and EVol as the error estimates and report the results 
in Fig. 3. We first conduct the numerical experiments in the full domain � = [−2, 2] × [−2, 2] with φ0 as the initial guess. 
We then run the simulations with a narrow band strategy with the initial guess being φ0 or a smooth function ψ obtained 
by solving the Laplace’s equation (22). Results show that the use of ψ produces nearly the same error measures compared 
with φ0. Since errors are computed in the narrow band domain that excludes singular point, we obtain optimal convergence 
in terms of EL2 , EH1 , and ESD. Furthermore, the successful use of ψ releases us from a high demand on the quality of the 
initial level set function φ0.

4.3. Interface with four-fold symmetry

For numerical tests with more complex geometries, we propose to construct an interface with four-fold symmetry by 
considering the following initial level set function [35]

φ0 = r2 − (
1 − 0.2cos(4θ) + 0.2cos(8θ)

)
, (44)

where r ≥ 0 and θ ∈ [0, 2π) are polar coordinates:

x = rcos(θ), (45a)

y = rsin(θ). (45b)

An illustration of the interface shape is shown in Fig. 4.
The initial level set function (44) deviates from the signed distance function and an analytical solution is not known. We 

therefore use ESD and EInt as the error measures. The volume of the interior is known to be π , so we can also compute 
EVol. Fig. 5 shows the convergence of errors in both the full domain and the narrow band domain. Optimal convergence 
rates are obtained in ESD. We can also confirm the discussions in the previous circular interface case about the different 
choices for initial guesses.
9
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Fig. 4. Interface with four-fold symmetry obtained from (44). For the white area we have φ0 < 0 while for the black area we have φ0 > 0.

Fig. 5. Error measures ESD, EInt , and EVol and convergence rates for the four-fold symmetric interface problem. The legend φ0 − full domain means that we 
use φ0 as the initial guess and solve the problem in the full domain. Similar for the others.

When computing EInt, an integral over the implicit surface � is involved. An accurate estimate of this integral in the 
unfitted background mesh is nontrivial in general. However, the particular parametric form of the interface of (44) allows 
to use a simple quadrature method, hence suppressing any error associated with the methods for integration over �. For 
completeness, we show the numerical integration for an arbitrary function f (x, y) on � as∫

�

f (x, y) d� =
∫

[0,2π ]
f̂ (θ,φ)

√
r(θ)2 + r′(θ)2 dθ, (46)

where f̂ (θ) = f (x(r(θ), θ), y(r(θ), θ)), r(θ) = √
1 + c1cos(4θ) + c2cos(8θ) by (44), and d� = √

r(θ)2 + r′(θ)2 dθ is the arc 
length transformation to polar coordinates. A conservative number of 100, 000 quadrature points are used to evaluate EInt
following the trapezoidal rule, ensuring that the error associated with performing numerical integration has minimal effect 
on our convergence reports.

4.4. Interface with kinks

To show the capacity of the proposed method for the case with kinks, we consider a 2D interface formed by two 
intersected circles both with radius r and located at (±a, 0), as used in [15]. The exact signed distance function can be 
written as

φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min

(√
x2 +

(
y ± √

r2 − a2

)2
)

if
a − x√

(a − x)2 + y2
≥ a

r
and

a + x√
(a + x)2 + y2

≥ a

r
,

min

(√
(x ± a)2 + y2 − r

)
else ,

(47)

where we take r = 1 and a = 0.7. The signed distance function φ has kinks on a line segment [−a, a] along the x-axis 
as well as on intervals (−∞,−√

r2 − a2] and [√r2 − a2,∞) along the y-axis. As a result, gradient of the signed distance 
function ∇φ is not well defined on these line segments. It should be reminded that ∇φ is only required at quadrature 
points either inside the surrogate domain or on the surrogate boundary (see formulation (16)), which is typically available 
in practice.

For the initial level set function, we first set φ0,a as used in [15] to compare the proposed method and the reinitialization 
schemes with their finite difference methods such that

φ0,a = φ ·
[
(x − 1)2 + (y − 1)2 + 0.1

]
. (48)
10
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Fig. 6. Contour plots of the level set function before/after reinitialization using the method of this work with a narrow band approach (h = 0.088). The 
upper two figures show the contours of φ0,a = −0.1,0,0.1 (blue) and φ = −0.1,0,0.1 (red), where the upper right subfigure is a local magnification for 
the kink with grid on. The lower two figures show the contours of φ0,b = −0.1,0,0.1 (blue) and φ = −0.1,0,0.1 (red), where the lower right subfigure is 
a local magnification for the kink with grid on.

We then test the robustness of the proposed method with a second choice of the initial level set functions φ0,b containing 
oscillatory terms as

φ0,b = φ · [0.5sin(6πx)sin(6π y) + 1] . (49)

Fig. 6 illustrates the contours of the level set functions before/after reinitialization for both φ0,a and φ0,b using the proposed 
method. We can see that the interface is well preserved after reinitialization, even near the kink region.

To compare the accuracy, we implement classic reinitialization methods based on solving a hyperbolic PDE (see equation 
(3)) by the finite difference method. As a baseline, the original scheme proposed in [8] is employed with forward Euler 
for temporal discretization and second order ENO finite difference for spatial discretization. An improved version [15] with 
a subcell fix technique to preserve the interface is also adopted. Maintaining all other conditions the same, we perform 
reinitialization for both φ0,a and φ0,b with standard finite difference approach [8], improved finite difference method with 
subcell fix [15], and finite element method of this work, respectively. We report the error measures EL1 and EInt in Fig. 7. 
As shown, in all cases finite difference reinitialization method with subcell fix and finite element reinitialization method 
of this work achieve lower error compared with the baseline method. For both φ0,a and φ0,b , our method yields lower 
interface error compared with the subcell fix approach, while the errors are similar in the L1 norm. These results show that 
our method is competitive in terms of accuracy, especially for preserving the interface location and holding a relatively low 
interface error.

To compare the efficiency, although the reinitialization method with subcell fix scheme is effective, this is the result 
of fine tuning the time step parameter so that the method can converge relatively quickly (e.g., see Fig. 8 for the time 
evolution). In contrast, our method avoids the temporal domain, and is free from dealing with difficulties arising from time 
discretization. The proposed method is therefore efficient in its simplicity.

4.5. Spherical interface

A spherical interface in 3D is initially described by the level set function φ0 such that

φ0 = x2 + y2 + z2 − 1. (50)

The exact signed distance function can be represented as

φ =
√

x2 + y2 + z2 − 1. (51)

It should be noted that the proposed reinitialization method generalizes from 2D to 3D trivially. When implementing the 
scheme in deal.II, we only need to provide a different number for the dimensional argument in the function template 
and the library allows for dimension-independent programming for the rest of the code.
11



T. Xue, W. Sun, S. Adriaenssens et al. Journal of Computational Physics 438 (2021) 110360
Fig. 7. Error measures EL1 and EInt and convergence rates for the baseline finite difference reinitialization method (red), the finite difference reinitialization 
method with subcell fix (blue), and the finite element reinitialization method of this work (green). The upper two figures use φ0,a as the initial level set 
function, while the lower two figures use φ0,b . All results are computed with narrow band domains.

Fig. 8. Convergence in EInt for the finite difference reinitialization method with subcell fix using φ0,a as the initial level set function.

In Fig. 9, we show the cross-sectional views of the solution φh (h = 0.054) with a local magnification for the narrow 
band region. For clarification, we still use a uniform mesh for the narrow band domain B. The “adaptive mesh refinement” 
shown in Fig. 9 actually reflects a strategy we use to determine the narrow band region. In Deal.II, one may be tempted 
to start with a globally refined mesh and then search for the narrow band. We point out that this naive approach can be 
significantly expensive since the connectivity of a full mesh has to be stored, though the actual finite element computation 
should only appear in the narrow band region. Therefore we propose to use an adaptive strategy to search for the narrow 
band region. In summary, the strategy starts with a relatively coarse mesh, searches for a narrow band region containing �, 
and then only refines the cells in that region. Repeatedly, we restrict ourselves to the refined region, identify a narrow band 
and perform refinement. Fig. 9 shows the result of performing two such cycles.

As shown in Fig. 10, a complete set of error measures EL2 , EH1 , EL∞ , ESD, EInt, and EVol are available. We observe 
optimal rates of convergence for EL2 , EH1 , and ESD, similarly as in 2D examples. In particular, the order of convergence 
for EH1 = 1.52 is close to ESD = 1.50 as expected.

To evaluate EInt, we need to be able to compute integrals on �. For an arbitrary function f (x, y, z) on a spherical surface, 
it is straightforward to see that∫

f (x, y, z) d� =
∫

f̂ (β,γ )a2sin(β) dβ dγ , (52)
� [0,2π ]×[0,π ]

12



T. Xue, W. Sun, S. Adriaenssens et al. Journal of Computational Physics 438 (2021) 110360
Fig. 9. Demonstrations of a spherical surface. Left: orthogonal cross-sectional views of the solution φh . Right: a local magnification for the narrow band 
region. The “adaptive mesh refinement” is only a reflection of the strategy adopted to determine the narrow band region. The actual finite element 
computation is still performed in a uniform mesh.

Fig. 10. Error measures EL2 , EH1 , EL∞ , ESD, EInt , and EVol , and convergence rates for the circular interface problem. Results are computed using φ0 as the 
initial guess and solving the problem in the narrow band domain.

where f̂ (β,γ ) = f (x, y, z), the radius a = 1, and d� = a2sin(β) dβ dγ is the area transformation to spherical coordinates 
with

x = asin(β)cos(γ ), (53a)

y = asin(β)sin(γ ), (53b)

z = acos(β). (53c)

A relatively large number of 2, 000 ×1, 000 = 2, 000, 000 quadrature points are used to evaluate EInt , ensuring that the error 
associated with performing numerical integration has minimal affect.
13
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Fig. 11. Demonstrations of a genus 2 surface. Left: the zero level set interface φ0 = 0 by (54). Right: orthogonal cross-sectional views of the solution φh in 
the narrow band region with mesh turned off.

Fig. 12. Error measures ESD and EInt , and convergence rates for the genus 2 interface problem. Results are computed using φ0 as the initial guess and 
solving the problem in the narrow band domain.

4.6. Genus 2 interface

In topology, the genus of a surface, is the number of “holes” it has, so that a sphere has genus 0 and a torus has genus 
1 [36]. As a test bed, we consider the initial level set function φ0 whose zero contour defines the surface of a genus 2:

φ0 = 2y(y2 − 3x2)(1 − z2) + (x2 + y2)2 − (9z2 − 1)(1 − z2), (54)

where the analytical solution for the signed distance function is not known.
As an illustration, Fig. 11 shows the zero level set interface φ0 = 0 by (54) and the cross-sectional views of the solution 

φh (h = 0.054) in the narrow band region.
We use ESD and EInt as the error measures and show the results in Fig. 12. For this complex surface in 3D, we are also 

able to obtain the optimal convergence rates, showing that our reinitialization method is reliable.
In this final example, the accurate evaluation of EInt poses a challenge since the implicit surface defined by (54) may 

not have a simple parametric representation, hence the integral over � becomes nontrivial. We propose, for the first time, 
the Shifted Interface Integration Method (SIIM) to resolve this issue. We consider SIIM as an efficient, accurate, and generic 
numerical integration method for an implicitly defined interface. Since the method is rather independent of the main body 
of this work, we leave the description of the method and its full justification in Appendix A. The interface error measure 
EInt in Fig. 12 is evaluated by SIIM.
14
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5. Conclusions

In this paper, we have proposed a robust and easy-to-implement method for level set reinitialization that leverages the 
Shifted Boundary method to simplify the numerical procedures. The governing equation for the signed distance function 
fits into the class of elliptic reinitialization techniques and hence does not require the introduction of an artificial temporal 
domain. The boundary condition, i.e., φ = 0, imposed on the true boundary is weakly imposed onto a surrogate boundary 
�̃ which is composed of edges of structured cells. The map between the true boundary and the surrogate boundary is 
constructed by closest point projection using the initial level set field to ensure interface preserving. The proposed method 
is reinforced by the narrow band technique and a smooth guess for the nonlinear equation is also given to enhance the 
robustness of the method. The benchmarks show that the proposed method can preserve the interface and the errors 
follow h2 in the L2 norm and h1 in the H1 norm. A three-dimensional genus 2 surface is adopted to show the capability 
of the method for the reinitialization of complicated geometries. The future work will focus on initializing level sets and 
constructing signed distance functions from various input formats, such as binary images.
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Appendix A. The Shifted Interface Integration Method (SIIM)

Numerical integration on an implicitly defined interface is a common problem in many disciplines. In the setup of 
an unfitted background mesh, several successful strategies include subdivision based methods [37,38], Monte-Carlo tech-
niques [39], and moment fitting methods [40]. Despite their achievements, these methods may not be the most suited for 
our work due to certain limitations. Methods based on subdivision of the background mesh typically rely on a re-meshing 
procedure and create additional sub-elements conformal to the interface. This class of methods are easy to perceive but 
remain a hassle for implementation and fundamentally disagree with the unfitted nature of the background mesh. Monte-
Carlo methods suffer from being computationally prohibitive due to an excessive number of evaluations required to achieve 
a satisfactory accuracy. The moment-fitting method proposed by [40] also has certain limitations. The method requires to 
solve a potentially ill-conditioned linear system to determine the quadrature weights of each cut cell, based on a set of 
divergence-free basis functions that are subjective to construct.

In the context of the Shifted Boundary method, we propose a simple, yet efficient and robust method to perform numer-
ical integration on an implicit surface � defined by a level set function. We call the method Shifted Interface Integration 
Method (SIIM). In short, the method transforms the intractable integral on the interface � to a tractable integral on the 
shifted interface �̃, with the closest-point projection map M being the bridge. As noted in [26], the map M is actually 
smooth given certain regularity of �.

Let us consider the integral I of a given function f (x) on �

I=
∫
�

f (x) d� =
∫
�̃

f̃ (x̃)
d�

d�̃
(x̃) d�̃ ≈

∑
q

f̃ (x̃q) j̃(x̃q)w̃q =
∑

q

f (xq)wq, (A.1)

where f̃ (x̃) = f (M(x̃)), (x̃q, w̃q) are the qth quadrature point and weight on �̃, (xq, wq) are the qth quadrature point and 
weight on �, j̃(x̃) = d�

d�̃
(x̃) represents the arc length ratio (2D) or surface area ratio (3D) for the differentials. The quadrature 

points and weights (x̃q, w̃q) are standard on the surrogate interface �̃. It is also straightforward to evaluate f̃ (x̃q) and the 
only thing left is the evaluation of j̃(x̃q).
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Fig. 13. Demonstrations of SIIM. The left and right figures correspond to 2D and 3D situations, respectively. A single quadrature point x̃q on each element 
face is used in the illustration, with the corresponding quadrature point xq on �. In the 2D case, l1 and l2 denote the lengths of the two line segments. In 
the 3D case, s1, s2, s3 and s4 denote the areas of the four triangles.

Fig. 14. Relative errors Erel and convergence rates for the integrals in (A.3). The left figure shows integral (A.3a) and the right figure shows integral (A.3b)
The legend “Q 3x3” means to use 3 × 3 = 9 quadrature points per element face, similar meanings for “Q 2x2” and “Q 1x1”.

For simplicity, we assume a single quadrature point is used at each element face. As shown in Fig. 13, we approximate 
j̃(x̃q) by

j̃(x̃q) ≈ l1 + l2
l

in 2D, (A.2a)

j̃(x̃q) ≈ s1 + s2 + s3 + s4

s
in 3D, (A.2b)

where l is the element face length in 2D and s is the element face area in 3D. The presented strategy generalizes naturally 
for more quadrature points.

Another view of SIIM is through the last equation in the chain of (A.1). It is equivalent to perceive the method as 
performing quadrature integration directly on � with an automatic subdivision of the true interface �, in light of the map 
M .

To justify the accuracy of SIIM, we consider a spherical interface defined in (42). We use SIIM to compute numerical 
integration on the following integrals:∫

�

d� = 4π, (A.3a)

∫
�

(4 − 3x2 + 2y2 − z2) d� = 40

3
π. (A.3b)

As shown in Fig. 14, the two integrals report similar results for different number of quadrature points used. The conver-
gence rates are stable for all the scenarios.

To further demonstrate that SIIM produces reliable results for the evaluation of the interface error measure EInt, we show 
a comparison between SIIM and the parametric integration method by (52) for evaluating EInt in Section 4.5. The later is 
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Table 1
A comparison between SIIM (using 3 × 3 = 9 quadrature points per element face) and the parametric 
integration method by (52) for evaluating EInt in the spherical interface case.

h 0.216 0.108 0.054

SIMM (Q 3x3) 1.06671 × 10−2 2.27435 × 10−3 5.30345 × 10−4

Parametric integration method by (52) 1.06686 × 10−2 2.27603 × 10−3 5.32535 × 10−4

used to report EInt in Fig. 10. In Table 1, we show that the interface error measures EInt are close for both SIMM and the 
parametric method. Viewing the parametric method as the ground truth, we can safely consider SIMM to be accurate for 
the error estimation.

In short, we have proposed a general integration method for an interface implicitly defined by a level set function. The 
method is easy to perceive and simple to implement, while still being accurate and robust. Independent of the main body 
of this paper, SIIM can be a potential contribution to techniques of numerical integration.
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