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A B S T R A C T   

Precise understanding on the temperature and time-dependent deformation in lithium-metal 
anode is of compelling need for durable service of Li-based batteries. Due to both temporal and 
spatial intertwined thermal agitations and the scarcity of experiments, faithful deformation map 
of Li-metal covering a broad range of service condition is still lacking. Here we design a physics- 
driven machine learning (PD-ML) algorithm to map the temperature, stress and rate-dependent 
deformation in Li-metal. We demonstrate that the PD-ML model, fed with limited experimental 
results, can predict the mechanical response of Li-metal in a wide span of temperature and 
deformation rate, and help to realize a deformation map of Li-metal with high fidelity. A finite 
element (FE) procedure based on the PD-ML constitutive model is then developed. The integra-
tion of PD-ML with FE procedure inherits the power of FE analysis and the accuracy originated 
from PD-ML in describing temperature, stress and rate-dependent mechanical response of Li- 
metal. The method introduced here paves a new way for constitutive modelling to capture the 
complex deformation in solids involving multi-field and multiscale mechanics.   

1. Introduction 

When cataloguing deformation mechanisms and formulate physically sound and faithful constitutive laws for temperature and 
rate-sensitive deformation in solids, we ought to have deep understandings about the underlying kinetics and thermodynamics of 
deformation processes occurring in a huge span of spatial and temporal scales (Argon, 1975; Frost and Ashby, 1982; Meyers et al., 
1999; Huang et al., 2018). The lack of systematic experimental data at different temperature, stress, and strain rate often leads to an 
incomplete understanding about the underlying multi-scale deformation, and consequentially render difficulties for the development 
of predictive constitutive models with high fidelity. The plasticity and creep deformation in solids, for example, are intertwined with 
each other and are in general a function of temperature, stress and deformation rate (Johnson and Cook, 1985). A highly predictive 
constitutive model, which may be contingent on limited experimental observations on the mechanical responses at different tem-
perature and strain rate, is of compelling need for a variety of materials in engineering practice. 

Li-metal is such a typical example where temperature, stress and deformation rate are involved during its engineering service. 
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Because of its highest theoretical specific capacity (3860 mAh/g), lowest density, and most negative potential (about -3.04 V) (Lin 
et al., 2017; Wood et al., 2017), Li-metal as the preferred anode is used in many new types of battery including the Li-S battery, the 
Li-Air battery, and the solid-state battery. However, Li-metal anode gives rise to a series of problems in Li-metal batteries (LMBs), 
including interfacial contact and resistance (Zhang et al., 2020; Chen et al., 2021), dendrite growth (Xu et al., 2014; Porz et al., 2017; 
Barai et al., 2017; Wang et al., 2020), mossy and dead Li (Chen et al., 2017), and so on. It is now well known that plastic and creep 
properties of Li-metal anode have great impact on the performance of the solid-state LMBs by influencing the pressure-dependent 
interfacial contact and resistance (Krauskopf et al., 2019). Mechanical failures of the Li-metal anode also degrade the electro-
chemical performance of LMBs (Kozen et al., 2017). 

Many related investigations have been done to shed light on the reliability of Li-metal anode due to plasticity and creep at different 
temperature and strain rate. Wang et al. measured the elastic-visco-plastic mechanical properties of Li-metal by nanoindentation tests 
(Wang and Cheng, 2017; Herbert, et al., 2018a; 2018b). Masias et al. (2019) characterized stress-strain response and creep behavior of 
Li-metal in tension and compression. Xu et al. (2017) and Fincher et al. (2020) explored the influence of size and strain-rate on 
plasticity of Li-metal. Its dependence on both strain rate and temperature was further investigated comprehensively by LePage et al. 
(2019). Narayan and Anand (2018) formulated a large deformation isotropic elastic–viscoplastic constitutive model for Li-metal. 
Those experimental investigations and modelling deepen our understanding on the mechanical response of Li-metal anode in 
variant conditions. There however remain challenges to construct a complete deformation map of Li-metal subject to different tem-
perature and strain rate, or creep at different stress and temperature. 

Recent rapid development of the ML method in engineering problems where patterns or scientific principles may be extracted from 
big data or from strong nonlinear problems. For example, ML method, fed with data from experiments, can be adopted to describe the 
constitutive behavior of materials. Mozaffar et al. (2019) and Gorji et al. (2020) offers an effective method to predict path-dependent 
plasticity through deep learning. ML has also been used for new material design (Shi et al., 2019; Bessa et al., 2017; Curtarolo et al., 
2013), structural optimization (Liu et al., 2020), property prediction (Kozuch et al., 2018; Hsu et al., 2020), multiscale modeling 
(Karapiperis et al., 2021), and its development and applications in special domains are rapidly growing (Li et al., 2018). 

In the paper, we introduce a new, robust, and accurate constitutive model by combining physical laws with orchestrated ML al-
gorithm for temperature-, stress-, and rate-dependent deformation in Li-metal. We organize the paper as follows. In Section 2, the PD- 

Fig. 1. The conventional vs the PD-ML based constitutive modelling for Li-metal. (a) Stress-strain curves at different temperature and at a constant 
strain rate 3 × 10− 5/s, and (b) those at different strain rate at a constant temperature 298 K (experimental data from LePage et al., 2019, replotted). 
(c) and (d), modelling strategies: (c) A conventional method with explicit formula for plastic flow as a function of stress and temperature. (d) The 
PD-ML approach, where plastic flow is learned from the numerical algorithm. 
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ML model of Li-metal and its numerical algorithm is introduced. In Section 3, we verify the PD-ML model using experimental results 
and demonstrate its robustness and accuracy. The PD-ML model is then implemented in the commercial FE package ABAQUS (DS 
Simulia Corp., 2020) as a user-material subroutine (UMAT), and we further explore the applicability of the PD-ML-FEM algorithm for 
the deformation of Li-metal in Section 4. We conclude in Section 5 with final remarks and discussions. 

2. Physics-driven machine learning algorithm 

To construct a faithful constitutive model which satisfying the thermodynamic principles and conservation laws, we often need 
systematic experimental observations to shed light on the underlying deformation process, to reveal the dependence of all variates, to 
calibrate unknown constants in the equations, and to validate the predictability of the constitutive model. As shown in Fig. 1, with 
experimental data given in Figs. 1a and b (LePage et al., 2019), we may either adopt a conventional modelling approach or a PD-ML 
algorithm, as to be explained next. 

For the conventional constitutive model on Li-metal, the dependence of plastic flow on stress and temperature is known as a prior. 
As seen in Fig. 1a, the stress-strain curves of the bulk Li-metal under uniaxial tension exhibit typical elastic-plastic response of 
polycrystalline metals, yielding and irrecoverable plastic deformation after the initial elasticity. The isotropic linear elastic response is 
characterized by a Young’s modulus E and a Poisson’s ratio ν. After yielding, the Li-metal may sustain a large amount of plastic 
deformation with tensile failure-strain up to 30% (Hull and Rosenberg, 1959). Li-metal has a low melting temperature (453 K) and low 
activation energy for self-diffusion (50 kJ ⋅ mol− 1) (Messer and Noack, 1975; Hao et al., 2018). The dominant mechanism accounting 
for the plasticity is due to the coble creep at its working temperature for electric vehicle batteries, in the range of 233 to 323 K (Chen 
et al., 2020; Wang et al., 2020; Zhang, 2011). It therefore leads to a highly rate-sensitive deformation, as seen in Fig. 1b. 

In the conventional approach, we use the von Mises-based visco-plastic theory with isotropic strain hardening. The Prandtl-Reuss 
laws is adopted for the plastic flow as 

ε̇p
ij = γ̇

∂σ
∂sij

, (1)  

where ε̇p
ij is the plastic strain rate tensor, γ̇ is the equivalent strain rate, σ =

̅̅̅̅̅̅̅̅̅̅
3
2sijsij

√

is the von Mises stress, sij = σij + pδij is the deviatoric 

part of the Cauchy stress σij, and p = − 1
3σijδij is the hydrostatic pressure for δij being the Kronecker delta function (δij = 1 if i = j, and 0 if 

i ∕= j). The plastic strain rate γ̇ is characterized by a set of creep constants (LePage et al., 2019; Masias et al., 2019), 

Table 1 
The material parameters of Li-metal, from (Krauskopf et al., 2019; LePage et al., 2019).  

E (MPa) v γ̇0 s− 1  σ0 (MPa) m Qc (kJ ⋅ mol− 1) RJ/(mol ⋅ K)

6200 0.401 3.06×104 1.0 6.6 37.0 8.314  

Fig. 2. Predictability of the conventional model on the σ − ε response of Li-metal under uniaxial tension. (a) The temperature dependence of σ − ε 
curves at a constant strain rate ε̇ = 3 × 10− 5/s, predictions from the conventional model vs. experiments; (b) Rate effects predicted by the con-
ventional model vs. experiments (T = 298 K). 
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γ̇ = γ̇0(σ/σ0)
me

(

−
Qc
RT

)

, (2)  

which includes a creep component m, an activation energy Qc, a kinetic constant γ̇0, the corresponding reference stress σ0, the gas 
constant R, and the absolute temperature T. 

We implemented the conventional constitutive model shown in Fig. 1c in the commercial finite-element (FE) software Abaqus as a 
user material subroutine (DS Simulia Corp., 2020). With parameters listed in Table 1, we obtain the tensile stress-strain curves at 
different temperature and a constant strain rate from FE calculations in Fig. 2a, and the rate-sensitivity of the mechanical response at a 
given temperature in Fig. 2b. We can see that the conventional power-law model fails to capture the stress hardening and 
rate-dependence, which, in principle, reflects the weakness of the model (see Eq. 2) in predicting the stress- and 
temperature-dependent creep rate. It is noted that improvements to the fitting may be possible through the use of more complicated 
hardening or by using series solution in the power-law creep. The hardening behavior in Li-metal may be included in the power-law 
creep by formulating σy as σy = H(T,γ̇)εn(T,γ̇)

p , where H(T, γ̇) and n(T, γ̇) are respectively the strain hardening modulus and exponent. We 

may alternatively employ series solutions and write the collective power-law flow rate as γ̇ =
∑M

i=1 γ̇0,i

[
σ

σ0,i

]mi

, where (γ̇0,i,σ0,i,mi, i = 1,

…, M) are variables to be fitted. Nevertheless, determining these parameters are not trivial. In most circumstances, they are not 
universal and cannot be quantified uniquely. It becomes worse when experimental data is limited. 

To better capture the stress- and temperature-dependent plastic flow, we adopt a PD-ML model to supplant the regular power-law 
flow in Li-metal, as shown in Fig. 3. As the prior physical knowledge (physics driven, PD), those variables (σ, ε,T, ε̇), acquired from 

experimental data, are selected as inputs, where ε̇ =

̅̅̅̅̅̅̅̅̅̅̅
2
3ε̇ijε̇ij

√

is the equivalent strain rate and ε =
∫

ε̇dt is the equivalent strain, and ε̇ij 

and t are the strain rate tensor and time, respectively. The outputs include the plastic strain rate γ̇ and the strain hardening H (H = ∂σ
∂γ). 

In brief, the learning algorithm is a function to realize the following mapping through machine learning (ML) 

(γ̇,H) = f (σ, ε,T, ε̇), (3)  

Note that f(⋅), in contrast to have an explicit expression in terms of its variables, represents a black-box function embedded in the PD- 
ML algorithm. The learned γ̇ will be used for stress update, and H is needed for the consistence condition on the yield surface. The 
plastic flow in Li-metal (see Eq. 3) is multi-factor influenced and highly nonlinear. Given there are only a small amount of experimental 
data, we choose the tree-based ML algorithm over other ML algorithms (e.g., the support vector machine, the tree-based ML algorithm, 
and the artificial neural network). A complete description about the learning algorithm is supplied in Appendix A. 

Fig. 3b gives the iterative process to ensure convergence. The numerical procedure composes of standard elastic predictor and 
visco-plastic updating. From time t to t+ Δt, an initial predictor, by assuming the incremental strain being elastic, we obtain a trial 

Fig. 3. The integrated ML algorithm with physical assumptions. (a) Diagram to show the input to and the output from the ML model, and (b) the 
numerical algorithm for the constitutive model integrating PD-ML. 
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elastic strain εe,trial
ij at current time step, 

εe,trial
ij = εt+Δt

ij − εp,t
ij (4a)  

and update the trial stress σtrial
ij as 

σtrial
ij = Dijklεe,trial

kl (4b)  

where Dijkl is the four order elastic constant tensor. Once visco-plastic deformation involves, the implicit return-mapping PD-ML al-
gorithm takes over to update γ̇ and H. With σtrial

ij being the first guess, we proceed with an iterative process by taking the current von 
Mises stress σt+Δt, equivalent strain εt+Δt, temperature Tt+Δt, and equivalent strain rate ε̇ as inputs to the PD-ML and update γ̇ and H, see 
Fig. 3b for illustration. The standard associative flow rule in Eq. (1) is then used to update the plastic strain rate ε̇p

ij. Sequentially, we 
may write the current elastic strain and stress tensor as 

εe
ij = εt+Δt

ij − εp,t
ij − ε̇p

ijΔt (5a)  

and 

σt+Δt
ij = Dijklεe

ij (5b) 

Fig. 4. Predictability of the conventional model and the PD-ML model on γ̇/ε̇ − σ relation at different temperatures. (a) Traditional model vs. 
experiments. (b) to (d) Trained and predicted results from PD-ML model vs experiments: (b) The predicted curves at temperatures (348 and 398 K) 
higher than those of the trained ones. (c) The predicted curves at temperatures (273 and 298 K) within the trained temperature range. (d) The 
predicted curves at temperatures (198 and 248 K) lower than those of the trained ones. 
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respectively. The iteration continues till γ̇ satisfying the following criterion. The difference of γ̇ between this step and the previous one, 
dγ̇, is infinitesimal, i.e., dγ̇/γ̇ < ζ for ζ being a small tolerance. With known dγ̇, we may proceed to update strains at time t + Δt, εp,t+Δt

ij =

εp,t
ij + ε̇p

ijΔt, εe
ij = εt+Δt

ij − εp,t+Δt
ij , and σt+Δt

ij before the next time increment. 

3. Results with the PD-ML model 

We now apply both the conventional model and the PD-ML model to the viscoplastic deformation of Li-metal, and demonstrate 
their predictability in comparison with available experimental data. Both temperature and strain rate factors are taken into account in 
the two types of models. 

3.1. Temperature-dependence 

As seen in Fig. 4, we first show the normalized plastic strain rate γ̇/ε̇ as a function of stress σ from experiments at six temperatures 
(Fig. 4a). It is seen that γ̇ increases slowly under low stress, followed by a rapid ascending at intermediate to high stress. At the late 
stage, plastic strain γ̇ dominates and approaches to the applied strain rate ε̇, i.e., γ̇/ε̇ → 1. There is a strong nonlinear dependence of γ̇ 
and σ on temperature. The traditional power law model with Eq. (2) assumes intrinsically a linear relationship in the log-log scale of γ̇ 

vs. σ (curves with asterisks in Fig. 4a, and the maximum root mean square error (RMSE) is about 75%. Here RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1

(ri − r̂ i)
2

N

√

, for 

r = γ̇/ε̇and ̂r being the predicted value and the experimental value, respectively, and N the number of data points. It fails to capture the 
real experimental observations. 

For verifying the predictability of the PD-ML model at a series of stress and temperature range, we next divide the experimental 
data into two datasets: curves at four temperatures out of six are adopted for training, and the rest two are used for prediction. Here 
three different types of sampling are used, and the corresponding errors at different temperature are shown in Figs. 4b to d. In Fig. 4b, 
we choose the curves at 348 K and 398 K for prediction, which are higher than those four temperatures used for training. The 
extrapolated prediction leads to a prediction error about 0.3% at 348 K and 0.5% at 398 K. While the RSME error is significantly higher 
than those of the training dataset (in comparison with experimental data), the absolute errors are rather small, indicating the excellent 
capability for extrapolating beyond the higher end of temperature. When we choose to predict the γ̇-σ curves at temperatures falling 
within those of the training dataset as shown in Fig. 4c, the predicted curves at 273 K and 298 K match very well with experimental 
results, and the error are about 0.3% and 0.2%, respectively. We show in Fig. 4d the predictions at temperatures lower than those of the 
four in the training dataset. Corresponding errors are 1.2% at 248 K and 1.6% at 198 K. Although the predictions from the PD-ML 
model exhibit different level of errors based on the selection of training dataset and prediction dataset, the three characteristic 
sampling methods demonstrate high fidelity of the PD-ML model to capture existing experimental data. We also explored the sensi-
tivity of the training dataset on the predictability of the learning algorithm for γ̇/ε̇ − σ relationship. As shown in Fig. B1 (see 
Appendix B), the accuracy increases as the training dataset increases, and a minimum of stress-strain curves at three different tem-
perature should be given. Furthermore, the model exhibits very good accuracy when generalizing to temperatures beyond the range of 
the training dataset, which is essential for deformation mapping as experimental data are insufficient to cover a wide range of tem-
perature, stress and strain rate, respectively or in combination. We then used all available data at six temperatures for training, and 
construct the deformation map of Li-metal in Fig. 5a, where the relationship of γ̇/ε̇ and σ at a wide range of temperatures is presented. 

Fig. 5. Deformation map of Li-metal. (a)γ̇/ε̇ vs. σ for a wide range of temperatures. (b) A three-dimensional diagram to show the temperature T, 
stress σ, and plastic flow γ̇/ε̇ relationship. It covers a wide temperature span from 173 to 423 K. 
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Also, a three dimensional diagram to show the temperature T, stress σ, and plastic flow γ̇/ε̇ is seen in Fig. 5b. The deformation map 
covers a wide temperature span from 173 K to 423 K, which covers most environmental conditions for Li-metal in engineering service. 

3.2. Strain-rate sensitivity 

Li-metal’s deformation is closely subject to the time during charging and discharging process, and may be subject to dynamic 
loading. Rate sensitive deformation in Li-metal plays an important role on the performance of LMBs. The conventional visco-plastic 
constitutive model fails to capture the influence of strain rate. In the σ - γ̇ curves, the maximum RMSE is about 92%, as shown in Fig. 6a. 

By adding the applied strain rate ε̇ as an input to the PD-ML model (see Eq. 3), we may learn from the γ̇/ε̇ − σ curves at certain 
loading rates and therefore predict the curves at other rates. Following the learning-prediction method we adopted for temperature 
dependence, we take the γ̇/ε̇ − σ curves at three different strain rate as training dataset, and the rest for prediction. The strain rate of 
the experimental curve for prediction may be higher than, within, or lower than those rates in the training dataset. The learning vs 
experimental curves and the predicted one for these three sampling method are also shown in Figs. 6b to d, respectively. In Fig. 6b, we 
choose the curve at the strain rate 4 × 10− 5/s for prediction. The extrapolated prediction has an RSME error about 0.092%. When we 
choose to predict the γ̇-σ curves at the strain rate 3 × 10− 4/s which is within those of the training dataset (Fig. 6c), the error is about 
0.27%. We show in Fig. 6d the predictions at strain rate higher than those of the three in the training set. The corresponding error is 

Fig. 6. Predictability of the conventional model and the PD-ML model on γ̇/ε̇ − σ relationship at different strain rate. (a) Traditional model vs. 
experiments. (b) to (d) Trained and predicted results from PD-ML model vs experiments: (b) The predicted curves at strain rate (4 × 10− 5 /s) lower 
than those of the trained ones. (c) The predicted curves at strain rate (3 × 10− 4/s) within the trained rate range. (d) The predicted curves at 2 ×

10− 2/s, which is higher than those of the trained ones. 

J. Wen et al.                                                                                                                                                                                                            



Journal of the Mechanics and Physics of Solids 153 (2021) 104481

8

0.33%. Although the predictions from the PD-ML model exhibit different errors based on the selection of training dataset and pre-
diction dataset, the three characteristic sampling methods demonstrate the high fidelity of the PD-ML model to capture existing 
experimental data. 

3.3. Temperature and rate-dependent response 

With the stress-strain curves reported by LePage et al. (2019), we can now examine the predictability of the PD-ML model for a 
variety of temperatures and strain rates. We show in Fig. 7a the σ − ε curves under uniaxial tensile test from both the PD-ML model and 
experiments at different temperature and at a constant strain rate of ε̇ = 3 × 10− 5/s. In contrast to the same prediction from the 
conventional model shown in Fig. 2a, we see that at all temperatures the former performs better to capture not only the nonlinear 
strain-hardening at small strains, but also the stress plateau at large strains. In Figs. 7b and 2b, predictions on the stress-strain responses 
at different strain rate and at constant temperature T = 298 K from the PD-ML model and the conventional model are shown, 
respectively. The conventional model fails to capture the distinct strain hardening at different strain rate; the PD-ML model leads to 
good agreement with experiment curves for training and those for prediction. Therefore, it is capable of predicting the stress-strain 
behavior of Li-metal at arbitrary temperatures and at strain rates of engineering interest. 

4. Finite-element implementation of the PD-ML model 

In Section 3, we have shown that the PD-ML model is more accurate and robust than the conventional constitutive model for 

Fig. 7. Predictability of the PD-ML model on σ − ε curves under uniaxial tension. (a) Training and prediction results from PD-ML model vs. ex-
periments at different temperature (ε̇ = 3 × 10− 5 /s); (b) Training and prediction from PD-ML model vs. experiments at different strain rate (T =
298 K). 

Fig. 8. Schematic diagram to show the integration of physics-driven machine learning based constitutive modelling with finite element procedures.  
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describing the temperature and strain-rate dependent deformation in Li-metal. It is then promising to implement the PD-ML consti-
tutive model in FE procedures, as we do for conventional flow rules (Eq. 2 for example), and using the power of FE method to compute 
complex boundary-value problems. In Fig. 8, we show a schematic diagram to integrate the PD-ML constitutive modelling with FE 
procedures. 

We illustrate the displacement based incremental PD-ML-FEM model as follows: At time t and material point xi, input variables 
(ut

i ,T, εt
ij, σt

ij, εp,t
ij and other inner variables) are given, and the incremental displacements Δui = ut+Δt

i − uΔt
i from time t to t +Δt are 

known from the solution of global equilibrium. The current strain εt+Δt
ij is updated. The PD-ML constitutive model is then applied to 

update the current stress tensor σt+Δt
ij , the current plastic strain εt+Δt,p

ij , and related inner variables. With the updated stress status at 
element level, the equilibrium condition solved by the finite element procedure leads to an updated displacement incremental Δui. We 
show next the application of the implemented PD-ML-FEM model in ABAQUS (DS Simulia Corp., 2020). 

In Fig. 9, we examine the predictability of the PD-ML-FEM model on the σ − ε response of Li-metal under uniaxial tension. Here we 
firstly select the sampling strategy that the temperatures of the predicted curve are falling within those of the training dataset, which 
has the best predictability for γ̇-σ curves (RMSE<0.3%), as seen in Fig. 9a. We can see that the trained results from the PD-ML-FEM 
model agree well with experimental results, in contrast to the conventional power-law constitutive model in Fig. 2a. At a given 
temperature, the predictability of the PD-ML-FEM model on the strain-rate sensitivity of σ − ε curves is examined and the results is 
shown in Fig. 9b. Here the curve at the strain rate 4 × 10− 5/s is chosen for prediction, and its corresponding predicted error (RMSE) is 
lower than 0.1%. We can see that both the trained and the predicted results demonstrate the high fidelity of the PD-ML-FEM model to 
capture existing experimental data, and the model is also capable of generalizing to predict the mechanical response beyond exper-
imental observations. 

5. Conclusions 

While deformation map is of prominent significance in nearly all engineering materials, constructing a faithful map of a particular 
material subject to deformation at a wide variety of temperature and strain rate is a grand challenge. The intertwined deformation 
mechanisms in a huge span of spatial and temporal scale may change their dominance abruptly or gradually in response to temperature 
and rate variation. In this paper, we focus on the deformation of Li-metal, and develop a PD-ML algorithm to map the temperature, 
stress and rate-dependent deformation in Li-metal. It has been demonstrated that the PD-ML model, in contrast to conventional 
models, show great precision enhancements when mapping temperature, stress and rate-dependent deformation of Li-metal. Its 
predictability in a wide span of temperature and deformation rate is essential to realize a deformation map of Li-metal with high 
fidelity. The PD-ML constitutive model is then implemented in a commercial finite element software. We demonstrate that a well 
orchestrated ML algorithm can be adopted to develop constitutive models of high efficacy. In combination with powerful FE pro-
cedures, the novel modelling strategy may then be used to simulate complex deformation in systems involving multi-physics process 
and subject to a variate of boundary conditions. The method can also be conveniently generalized to ubiquitous engineering materials 
with temperature, stress, strain-rate dependent deformation, and paves a way for the development of data-driven constitutive 
modelling. 

Fig. 9. Predictability verifications of the PD-ML-FEM model on the σ − ε curves under uniaxial tensile testing. (a) Trained and predicted results from 
PD-ML-FEM model vs. experiments at different temperature (ε̇ = 3 × 10− 5 /s); (b) Training and prediction from PD-ML-FEM model vs. experiments 
at different strain rate (T = 298 K). 
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Appendix A. The tree-based learning algorithm 

We adopt the tree-based algorithm for regression (Gradient boosting regression), which is composed of multiple regression trees to 
capture the nonlinear interaction relationship between the features and the target (Natekin and Knoll, 2013; Friedman et al., 2000), 
and its algorithm structure is summarized in Fig. 3a. We arrive with the dataset (x, y)N

i=1, where xi = (σ, ε,T, ε̇) and yi = (γ̇,H) refer to 
the input variables and its corresponding output variables, respectively, and N is the total number of samples. In order to reconstruct 
the unknown functional dependence between x and y with our estimate F(x), the initial model with a constant value is given as 

F0(x) = arg minθ0

∑N

i=1
L(yi, θ0), (A1)  

which satisfies the loss function minimization. In the paper, the classic squared-error L2 loss function is used as L(yi,θ) = 1
2(yi − θ)2. We 

set M tree base learners in the model, in which the m-th tree base learner Tm(xi, θm) is estimated by the gradient descent procedure on 
the residuals as 

rim = −

{
∂L[yi,F(xi)]

∂F(xi)

}

F(xi)=Fm− 1(xi)

, for i = 1, 2…N, (A2)  

and the parameters of the m-th tree base learner, θm, are given as 

θm = arg minθ

∑N

i=1
L[rim,T(xi, θ)], (A3)  

and the multiplier wm are 

wm = arg minw

∑N

i=1
L[yi,Fm− 1(xi)+wT(xi, θm)]. (A4)  

And finally, we update the model as 

Fm(x) = Fm− 1(x) + wmT(xi, θm). (A5) 

In this tree-based learning algorithm, the number of trees M, the maximum depth of individual regression estimators and the 
minimum number of samples in a node for controlling over-fitting, and the learning rate for the impact of each tree on the final 
outcome, are tuned to minimize the L2 loss function. Those hyper-parameters are optimized by using the grid-search strategy, and the 
experimental data are splitting into a training dataset and a prediction dataset, as we introduced in Section 3. 

Appendix B. The sensitivity of training dataset on the predictability of the learning algorithm for the visco-plastic 
response in Li-metal 

Fig. B1 
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Porz, L., Swamy, T., Sheldon, B.W., Rettenwander, D., Frömling, T., Thaman, H.L., Berendts, S., Uecker, R., Chiang, Y.M., 2017. Mechanism of lithium metal 

penetration through inorganic solid electrolytes. Adv. Energy Mater. 7 (20), 1701003. 
Shi, Z., Tsymbalov, E., Dao, M., Suresh, S., Shapeev, A., Li, J., 2019. Deep elastic strain engineering of bandgap through machine learning. Proc. Natl. Acad. Sci. 116 

(10), 4117–4122. 
Wang, Y., Cheng, Y.T., 2017. A nanoindentation study of the viscoplastic behavior of pure lithium. Scr. Mater. 130, 191–195. 
Wang, Z., Li, X., Chen, Y., Pei, K., Mai, Y.W., Zhang, S., Li, J., 2020. Creep-enabled 3D solid-state lithium-metal battery. Chem. 6 (11), 2878–2892. 
Wood, K.N., Noked, M., Dasgupta, N.P., 2017. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical 

behavior. ACS Energy Lett. 2 (3), 664–672. 
Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V., Greer, J.R., 2017. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and 

its implications for Li metal anodes. Proc. Natl. Acad. Sci. 114 (1), 57–61. 
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., Zhang, J.G., 2014. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7 (2), 513–537. 
Zhang, W.J., 2011. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 196 (6), 2962–2970. 
Zhang, X., Wang, Q.J., Harrison, K.L., Roberts, S.A., Harris, S.J., 2020. Pressure-driven interface evolution in solid-state lithium metal batteries. Cell Rep. Phys. Sci. 1 

(2), 100012. 

J. Wen et al.                                                                                                                                                                                                            

http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0021
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0021
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0022
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0022
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0023
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0024
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0025
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0025
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0026
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0026
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0027
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0028
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0029
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0029
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0030
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0031
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0032
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0032
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0033
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0033
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0035
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0036
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0037
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0037
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0038
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0038
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0039
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0040
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0041
http://refhub.elsevier.com/S0022-5096(21)00150-2/sbref0041

	Physics-driven machine learning model on temperature and time-dependent deformation in lithium metal and its finite element ...
	1 Introduction
	2 Physics-driven machine learning algorithm
	3 Results with the PD-ML model
	3.1 Temperature-dependence
	3.2 Strain-rate sensitivity
	3.3 Temperature and rate-dependent response

	4 Finite-element implementation of the PD-ML model
	5 Conclusions
	Declaration of Competing Interest
	Author statement
	Acknowledgements
	Appendix A The tree-based learning algorithm
	Appendix B The sensitivity of training dataset on the predictability of the learning algorithm for the visco-plastic respon ...
	References


