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A B S T R A C T   

Contact detection algorithm is a critical constituent of discontinuous calculation method, the accuracy of contact 
detection directly affects the simulation results. Algorithms for contact detection between irregular blocks are 
difficult to achieve because of the complexity of geometry and the diversity of contact types. A half-space based 
contact detection algorithm is proposed, it can accurately identify the contact relationship between convex 
polygonal and polyhedral blocks. The proposed contact detection approach is implemented into continuum- 
discontinuum element method. This contact detection algorithm consists of two stages: first to identify poten-
tial contact pairs and then to judge the contact status by half-space. Half-space is defined by the boundary of the 
block, by judging the half-space inclusion relation between potential contact pairs, the contact status between 
two blocks can be detected, there is no need to calculate the distance between blocks in the process of contact 
state detection. This algorithm is realized through programming, several examples validated the accuracy of this 
algorithm.   

1. Introduction 

Contact detection plays an important role in virtual reality (Bovet 
et al., 2018; Garbaya and Zaldivar-Colado, 2007; Zhang et al., 2007), 
robot motion planning (Barraquand and Latombe, 1991; Aceituno et al., 
2018), engineering analysis (Redon et al., 2010; Marques et al., 2020), 
numerical simulation (Park and Song, 2009; Tan et al., 2016; Mai et al., 
2017) and other fields (Yang et al., 2020; Khishvand et al., 2017). 
Contact detection algorithm is important to numerical simulation of 
geological hazards, for landslides (Davies and McSaveney, 2009) and 
debris flows (Coussot and Meunier, 1996), a large number of irregular 
rock mass contact during their movement, blocks contact with neighbor 
blocks thus changing the motion patterns. The contact state is changed 
and needs to be updated for numerical simulations consider the inter-
action of different blocks. 

Contact detection are widely used in discontinue calculation, such as 
discrete element method (DEM) (Cundall, 1971), continuum dis-
continuum element method (CDEM) (Li et al., 2015; Zhang et al., 2020) 
and discontinuous deformation analysis (DDA) (Hatzor et al., 2017; Shi, 
1992). In recent years, continuous-discontinuous coupling numerical 
simulation methods have been widely used in solid collisional crushing 
field (Lin et al., 2021). The accurate description of the fracture cracking 
process (Zhang et al., 2020; Zhang and Zhuang, 2018; Mu and Zhang, 

2020; Zhang and Zhuang, 2019; Zhang and Mang, 2020) and high- 
precision contact detection methods between complex blocks are the 
challenges of continuous-discontinuous coupling methods. Rigorous 
contact detection algorithm is necessary for numerical methods 
considering the discrete characteristics of blocks. The accuracy of con-
tact detection directly affects the reliability of the numerical simulation 
results. 

DEM using spheres to simulate the movement of objects in the early 
stage (Cundall and Strack, 1979), the contact relationship between 
spheres can be directly judged by the distance between centers, and the 
contact detection algorithm is simple. Since it is difficult for spherical 
particles to express the true shape of irregular objects, the interactions of 
objects during the movement process are hard to simulate. With the 
development of discrete elements, irregular elements such as ellipsoid 
(Zhou et al., 2018; Peng and Hanley, 2019; Römer et al., 2018), 
polygonal and polyhedral blocks (Boon et al., 2012; Boon et al., 2013; 
Stühler et al., 2016; Wu, 2008) have been developed. Irregular elements 
are more suitable to simulate objects in the real world. However, due to 
the complexity of geometry and the diversity of contact types, algo-
rithms for complete contact identification and efficient contact retrieval 
between irregular blocks are difficult to achieve. 

The contact algorithm is the most time-consuming part of the 
discrete element calculation (Shire et al., 2020; Lubbe et al., 2020), 
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contact relationship between blocks needs to be identified and updated 
constantly during the calculation process. Neighbor search is a rough 
contact search (Liu and Lemos, 2001; Zhong and Nilsson, 1989) aim to 
find blocks in close proximity to each other that have possible to contact, 
it can greatly reduce the number of blocks that need to be detected 
(Wang et al., 2020; Wang et al., 2019). Then use delicate search to 
determine whether those blocks screened out by the neighbor search are 
contact or not. Delicate search is aim to determine the specific contact 
status and contact relationship between two blocks, the accuracy of this 
method is highly requirement. 

There are numerous methods for delicate contact detection. The 
common plane (CP) method (Cundall, 1988) detect two blocks contact 
status by judging whether there is a common plane between them. The 
efficiency of CP is highly dependent on the initially common plane 
normal. The fast common plane (FCP) (Nezami et al., 2004) algorithm 
and the shortest link method (SLM) (Nezami et al., 2006) can improve 
CP efficiency by reduce the search space for the common plane. The 
semi-spring and semi-edge contact model (Feng et al., 2014) and the 
shrunken edge algorithm (Wang et al., 2015) are useful to detect rela-
tionship between neatly stacked blocks. However, the contact status is 
usually judged by the distance between blocks, when the distance be-
tween blocks is less than the tolerance value, the two blocks are 
recognized as contact. The calculation of the nearest distance between 
blocks is complicated, and the contact status between blocks is influ-
enced by the tolerance value, which may lead to misjudgment. Recently, 
a rigid contact theory named the entrance block theory (Shi, 2015) 
transforms the contact relationship between two blocks into the contact 
relationship between a point and a block, it provides an efficient contact 
detection method. Contact detection algorithms based on this theory 
(Zhuang et al., 2020; Zheng et al., 2019; Zheng et al., 2018a; Zheng 
et al., 2017a; Wang et al., 2020; Jafari and Keneti, 2013; Zhang et al., 
2016; Fan et al., 2018; Zheng et al., 2017b; Zheng et al., 2018b) are 
widely used in DDA. For irregular blocks (e.g., blocks with small angles 
or edges), the contact force are obtained by the potential-based penalty 
function approach (Zheng et al., 2020a; Zheng et al., 2020b) show good 
robustness and efficiency. 

A half-space based contact detection algorithm is proposed in this 
paper, this algorithm is based on the entrance block theory. Two basic 
conception are defined for the contact detection: potential contact pair 
and half-space inclusion relation. This paper uses explicit solution 
approach to solve the block movement, two blocks are considered as 
contact when they have an overlapping area. The contact status between 
two blocks is judged by the half-space inclusion relation of potential 
contact pair. Potential contact pairs are identified through the rela-
tionship between the surface normal vector and the common vertex 
vectors. Half-space inclusion relation is determined by judging whether 
one block is located in the half-space divided by the outer boundary of 
the other block. The contact relationship between convex blocks can be 

identified thought this algorithm. 
This paper is organized as follow. Section 2 provides the theoretical 

basis of contact detection, and introduces the contact detection algo-
rithm for two-dimensional (2D) and three-dimensional (3D) blocks. 
Section 3 introduces the contact force calculation method. Section 4 
verifies the robustness and accuracy of the algorithm through several 
examples. The main conclusions are drawn in Section 5. 

2. Contact detection algorithm 

In Section 2.1, the basic theory for contact detection is introduced. 
The newly developed algorithm for contact detection is then described 
in Section 2.2 based on this prior knowledge. The contact detection al-
gorithm for convex polygonal and polyhedral blocks are proposed in 
Section 2.3 and Section 2.4 respectively. Section 2.5 introduces the 
recognition of contact type. 

2.1. Basic theory 

2.1.1. Minkowski sum 
Given two blocks A and B, the Minkowski sum (Varadhan and 

Manocha, 2006; Bekker and Roerdink, 2001; Barki et al., 2009) of A and 
B is defined as a set with the sum of all pairs of points in A and B: 

A+B = {a + b|a ∈ A, b ∈ B}, (1)  

where a is the point from A, and b is the point from B. 
The Minkowski sum of A and B is the sum of A and B, it can be ob-

tained by sweeping one block B (with a fixed orientation) along the 
other block A (see Fig. 1(a)). Minkowski Sum of convex blocks is still a 
convex block. 

Denoted -B as the symmetric block of B with respect to the origin, the 
Minkowski sum of A and -B is: 

A+( − B) = {a + ( − b)|a ∈ A, b ∈ B }. (2)  

From the above statement, the Minkowski sum of A and -B can be ob-
tained by sweeping -B along A (see Fig. 1(b)). If the region contains the 
origin, it means A and B have points with same coordinates, and there is 
contact between A and B (Gilbert et al., 1987). Through Minkowski sum, 
the contact problem between A and B is transformed into the problem of 
whether the Minkowski sum of A and -B contains the origin. 

The Minkowski sum of A and -B can also be obtained by moving B 
around the outer boundary of A, and tracking the movement path of a 
fixed point in B (see Fig. 1(c)). The tracking point is defined as the 
reference point. If the reference point is located in the Minkowski sum 
region of A and -B, the two blocks have points with the same coordinates 
and there is contact between A and B. The contact relationship between 
A and B is transformed into the relationship between the reference point 
and the Minkowski sum of A and -B. 

Fig. 1. The Minkowski sum of A and B.  
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2.1.2. Entrance block theory 
The entrance block theory use Minkowski Sum for algebraic opera-

tions of blocks (Shi, 2015). For block A and block B, given a reference 
point a0 on block A. The relationship between A and B transfer to the 
relationship between a0 and entrance block E(A,B) . Entrance block E(A,
B) is defined as: 

E
(

A,B
)

=
⋃

a∈A,b∈B

(

b − a+ a0

)

= B − A+ a0. (3)  

If A and B are 2D convex polygons, the boundary of E(A,B) is ∂E(A,B) , 
which is defined as: 

∂E(A,B) = C(0, 1) ∪ C(1, 0), (4)  

where C(0,1) is the set of contact edges formed by the points of block 
Aand the edges of block B,C(1,0) is the set of contact edges formed by 
the edges of block Aand the points of block B. 

If Aand Bare 3D convex polyhedrons, the boundary of E(A,B) is ∂E(A,
B), which is defined as: 

∂E(A,B) = C(0, 2) ∪ C(2, 0) ∪ C(1, 1), (5)  

where C(0,2) is the set of contact polygons formed by the points of block 
Aand the surface of block B,C(2,0) is the set of contact polygons formed 
by the faces of block Aand the points of block B,C(1,1) is the collection 
of the contact polygons formed by the edge of block Aand the edge of 
block B. 

2.1.3. Continuum-discontinuum element method 
In this paper, the movement of blocks are calculated using 

continuum-discontinuum element method (CDEM). CDEM is an explicit 
solution approach based on finite difference principles, FEM and DEM 
are combined in this method, and forward-difference approximation is 
adopted to calculate the progressive process (Feng et al., 2014). 
Convergence is achieved in a reasonable time with small time steps 
using the dynamic relaxation method. 

The calculation flowchart of the CDEM is shown in Fig. 2. Contact 
forces are calculated by using the contact algorithm in this paper. By 
using small time steps, the maximum displacement in one step is limited 
to be smaller than the smallest edge in the block system. The influence of 
blocks with small edges or small angles on contact detection can be 
eliminated. 

2.2. Contact detection based on the half-space 

When the outer boundaries of two blocks are in touch or when there 
is an overlap of two blocks, the two blocks are considered to be in 
contact. Two blocks are considered to be in initial contact relationship 
when their outer boundaries are in contact, the contact geometry ele-
ments in initial contact blocks are contact pairs. Identifying potential 
contact pairs and detecting the relationship of potential contact pairs 
can simplify the detection progress. Considering the process of con-
structing the Minkowski sums of two blocks, one block is moving around 
the boundary of the other. Position relationships between two blocks 
when they constructing a Minkowski sum can be considered as the set of 
their initial contact position, the contact geometry elements when one 
block is moving around the other block are contact pairs. There are 
certain conditions between contact pairs, taking polygons for example, 
the Minkowski sum of two polygons is constructed by moving vertices 
along edges. When the direction vectors of the vertex point outside from 
edge, the vertex can move along the edge, then the vertex and the edge 
can be considered as contact pairs. 

Two basic conceptions are proposed in this algorithm for the contact 
detection between two blocks: potential contact pairs and half-space 
inclusion relation. Geometry elements from different blocks have the 
possibility to contact first are defined as potential contact pairs. The 
relative relation between the two geometry elements in potential con-
tact pair is half-space inclusion relation. This contact detection algo-
rithm determines contact status between two blocks by detecting the 
half-space inclusion relation of potential contact pairs, Fig. 3 presents 
the procedure of contact detection. 

For polygons, the contact type can be divided into vertex-vertex 
contact, vertex-edge contact and edge-edge contact. There must be 
vertex-edge contact when two blocks have vertex-vertex contact or 
edge-edge contact. Therefore, all three types of contact can be attributed 
to vertex-edge contact (see Fig. 4(a)). The contact detection of polygons 
requires the identification of vertex-edge potential contact pairs. The 
half-space inclusion relation of vertex and edge is the relative relation of 
vertex and edge in potential contact pair. It is determined by judging 
whether the vertex is located in the half-space defined by the edge. 

For polyhedrons, the contact type can be divided into vertex-vertex 
contact, vertex-edge contact, vertex -face contact, edge-edge contact, 
edge-face contact and face-face contact. In the process of contact 
detection, the above six contact types can be summarized into two basic 
contact types: vertex-face contact and edge-edge contact (see Fig. 4(b), 
Fig. 4(c)). Therefore, there are vertex-face potential contact pairs and 

Fig. 3. Flowchart of contact detection.  Fig. 2. Calculation flowchart of CDEM.  
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edge-edge potential contact pairs in polyhedrons contact detection. The 
half-space inclusion relation of vertex and face is the relative relation of 
vertex and face in vertex-face potential contact pair. It is determined by 
judging whether the vertex is located in the half-space defined by the 
face. The half-space inclusion relation of edge and edge is the relative 
relation of two edges in edge-edge potential contact pair. It is deter-
mined by judging whether the edge is located in the half-space defined 
by those two edges. 

The identification of potential contact pairs and their relative posi-
tion relationships can be achieved through vector calculations. It does 
not require the calculation of the distance between blocks in the process 
of contact status determination. The specific contact algorithm is dis-
cussed in detail in Section 2.3. 

2.3. Contact detection algorithm for convex polygonal blocks 

2.3.1. Geometrical description of convex polygon 
A convex polygon is defined as a simple polygon (not self- 

intersecting) with all interior angles less than 180◦. A convex polygon 
can be defined by the set of its vertices. A convex n-polygon Acan be 
stated as: 

A = eiei+1…en, (6)  

where ei(i = 1,…, n) is the vertex of polygon A. There are two direction 
vectors for this vertex, respectively eiei+1

̅̅̅→ and eiei− 1
̅̅̅→. The edge with 

vertices ei and ej is denoted as eiej. Vertex is the intersection point of two 
edges, normal vector of edge eiej is represented as nij

̅→. 
Each edge of a convex polygon can define a half-space. For an edge 

with normal vector n1
̅→ , given a point a1 on the edge, the half-space 

defined by this edge can be represented as: 

(p − a1)⋅n1
→⩾0, (7)  

where pis a point in the half-space. The convex polygon is completely in 
a half-space defined by each of its edge. 

The convex polygon is the intersection of all that half-spaces. A 
convex n-polygon can be defined as 

(p − ai)⋅ni
→⩾0 (i = 1,…, n), (8)  

where ai is the point on the ith edge of polygon, and ni is the normal 
vertex of the ith edge. 

2.3.2. Vertex-edge potential contact pair 
For polygon Aand polygon B, denote ei as a vertex of A, eiei− 1

̅̅̅→ and 
eiei+1
̅̅̅→ are two direction vectors of this vertex respectively. Denote ejek as 

a edge of B, njk
̅→ is the inner normal vector of this edge. If vertex ei and 

edge ejek satisfy: 

eiei− 1
̅̅̅→⋅ njk

̅→⩽0, eiei+1
̅̅̅→⋅ njk

̅→⩽0, (9)  

then the vertex ei and the edge ejek is defined as vertex-edge potential 
contact pair(see Fig. 5). 

2.3.3. Half-space inclusion relation of vertex and edge 
For a vertex-edge potential contact pair with vertex ei form polygon 

A and edge ejek from polygon B, njk
̅→ is the inner normal vector of this 

edge. If the relation between vertex ei and edge ejek satisfy 

eipi
̅→⋅ njk

̅→⩽0, (10)  

where eipi
̅→ is the direction vector of the line form ei to a point pi on the 

edge ejek. Then the vertex ei is locate inside the half-space defined by the 
edge ejek. The vertex-edge potential contact pair satisfies the half-space 
inclusion relation. 

For blocks that are initially stacked neatly, they are in contact with 
their neighbors blocks along their boundaries. All contact pairs satisfy 
the half-space inclusion relation at the first time step. In that case, initial 
contact pairs can not be recognized properly by conventional methods. 

To deal with this problems, the tolerance to define half-space in-
clusion relation is altered in the first step, Eq. (10) is changed into 

eipi
̅→⋅ njk

̅→ < 0. (11) 

Fig. 4. Basic contact types.  

Fig. 5. Vertex-edge potential contact pair.  
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In this way, adjacent blocks are not recognized as contact, thus forming 
initial contact pairs. 

2.3.4. Contact detection 
As shown in Fig. 6, for convex polygons, if the vertex is located 

outside the half-space defined by edge, there is no possibility of contact 
between Aand B. If the vertex is located inside the half-space, there is a 
possibility of contact. That is 

¬(∃ Satisfy half − space inclusion relation)⇒¬ Contact. (12)  

Consider the relationship between original proposition and converse- 
negative proposition: 

Contact⇒∀ Satisfy half − space inclusion relation. (13)  

Form above discussion, for polygons, all the contact types can be 
attributed to vertex-edge contact, it means there are only vertex-edge 
potential contact pairs in polygons. When two blocks do not contact, 
there must be vertex-edge potential contact pairs do not satisfy the half- 
space inclusion, that is 

¬ Contact⇒¬(∃Satisfy half − space inclusion relation). (14)  

By the relation between original proposition and converse-negative 
proposition: 

∀ Satisfy half − space inclusion relation⇒Contact. (15)  

In conclusion 

∀ Satisfy half − space inclusion relation ⇔ Contact. (16)  

If all vertex-edge potential contact pairs between the two blocks satisfy 
the half-space inclusion, the two blocks are in contact. If there are 
vertex-edge potential contact pairs do not satisfy the half-space inclu-
sion, the two blocks are not in contact. In contact status judgment, only 
when the previous vertex-edge potential contact pair satisfy the half- 
space inclusion relation, the next vertex-edge potential contact pair is 
judged, which saves the time of contact detection. 

The contact status of two blocks is judged by the above method, and 
the contact relationship can be identified when the contact occurs. The 
vertex-vertex contact, vertex-edge contact and edge-edge contact are 
identified after two blocks are judged to be in contact, the contact type is 
judged according to the position of the contact, and the corresponding 
contact force is applied. 

2.4. Contact detection algorithm for convex polyhedral blocks 

2.4.1. Geometrical description of convex polyhedron 
A convex polyhedron is a 3D object with flat polygonal faces, straight 

edges and sharp corners or vertices. Faces of polyhedron are the poly-
gons cover the polyhedron. The common edge of two faces is the edge of 
the polyhedron, and the common point of edges is the vertex of the 
polyhedron. 

The face of the polyhedron is denoted as Afi, the inner normal vector 
of face Afi is denoted as nfi

̅→. Edge evievj is the intersection of face Afm and 
Afn, the direction vector of this edge is evievj

̅̅→ , the vertices at the ends of 
the edge are evi and evj respectively. Vertex is the intersection point of 
different edges. Vertex evi is the intersection point of edge evievj, …and 
edge evievk, the direction vectors of this vertex are evievj

̅̅→, …and evievk
̅̅̅→. 

Each face of a convex polyhedron can define a half-space. For an face 
with normal vector n1

̅→, given a point a1 on the face, the half-space 
defined by this face can be represented as 

(p − a1)⋅ nf 1
̅→⩾0, (17)  

where pis point in the half-space. The convex polyhedron is completely 
in a half-space defined by each of its face. 

The convex polyhedron is the intersection of all that half-spaces. A 
convex n-polyhedron can be defined as 

(p − ai)⋅nfi
→⩾0 (fi = 1,…, n), (18)  

where ai is the point on the ith face of polyhedron, and ni is the normal 
vertex of the ith face. 

2.4.2. Vertex-face potential contact pair 
For polyhedron Ω1 and polyhedron Ω2, evi is a vertex of Ω1, direction 

vectors of this vertex are evievj
̅̅→, …, evievk

̅̅̅→ respectively. Afm is a face of Ω2,

nfm
̅→ is the inner normal vector of this face. If vertex evi and face Afm 

satisfy: 

evievj
̅̅ →⋅ nfm

̅→⩽0,…, evievk
̅̅→⋅ nfm

̅→⩽0, (19)  

then the vertex evi and the face Afm is defined as vertex-face potential 
contact pair(see Fig. 7). 

2.4.3. Edge-edge potential contact pair 
Given two polyhedrons Ω1 and Ω2, evievj is a edge of Ω1 and evkevm is a 

edge of Ω2. evievj is the intersection of face Afi and Afj, the direction 
vector of edge evievj is evievj

̅̅→ , the inner normal vector of face Afi is nfi
̅→, the 

inner normal vector of face Afj is nfj
̅→. evkevm is the intersection of face Afk 

and Afm, the direction vector of edge evkevm is evkevm
̅̅̅ →, the inner normal 

Fig. 6. Vertex located outside the edge.  

Fig. 7. Vertex-face potential contact pair.  
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vector of face Afk is nfk
̅→, the inner normal vector of face Afm is nfm

̅→. 

Direction vectors normal to edge evievj in face Afi and face Afj are hvi
̅→

and hvj
̅→

respectively, which are computed as 

hvi
̅→

= evievj
̅̅ →× nfi

→, hvj
̅→

= nfj
→× evievj

̅̅ →. (20)  

Direction vectors normal to edge evkevm in face Afk and face Afm are hvk
̅→

and hvm
̅→

respectively, which are computed as 

hvk
̅→

= evkevm
̅̅̅→× nfk

̅→, hvm
̅→

= nfm
̅→× evkevm

̅̅̅→. (21)  

When move edge evievj and edge evkevm to the same plane, define nee
̅→ as 

the normal vector of this plane: 

nee
̅→ = evkevm

̅̅̅→× evievj
̅̅ →. (22)  

If 

nee
̅→× hvi

̅→⩽0, nee
̅→× hvj

̅→⩽0, nee
̅→× hvk

̅→⩾0, nee
̅→× hvm

̅→⩾0, (23)  

or 

nee
̅→× hvi

̅→⩾0, nee
̅→× hvj

̅→⩾0, nee
̅→× hvk

̅→⩽0, nee
̅→× hvm

̅→⩽0, (24)  

then edge evievj and edge evkevm is edge-edge potential contact pair (see 
Fig. 8). 

2.4.4. Half-space inclusion relation of vertex and face 
After identifying vertex-face potential contact pairs and edge-edge 

potential contact pairs, the half-space inclusion relation between ver-
tex and face in vertex-face potential contact pairs and the half-space 
inclusion relation between edge and edge in edge-edge potential con-
tact pairs are detected. 

For a vertex-face potential contact pair with vertex evi form poly-
hedron Ω1 and face Afk from polyhedrons Ω2, the inner normal vector of 
face Afk is nfk

̅→. If the relation between vertex evi and face Afk satisfy 

evipi
̅̅→⋅ nfk

̅→⩽0, (25)  

where evipi
̅̅→ is the direction vector of the line form evi to a point pi on the 

face Afk. Then the vertex evi is locate inside the half-space defined by the 
face Afk. The vertex-edge potential contact pair satisfies the half-space 
inclusion relation. 

For blocks that are initially stacked neatly, the tolerance to define 
half-space inclusion relation is altered in the first step, Eq. (25) is 
changed into 

Fig. 8. Edge-edge potential contact pair.  
Fig. 9. Vertex located outside the face.  

Fig. 10. Edge located outside the edge.  

Fig. 11. Contact type recognition in 2D polygons.  
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evipi
̅̅→⋅ nfk

̅→ < 0. (26)  

With the above change, adjacent blocks are not recognized as contact, 
thus forming initial contact pairs. 

2.4.5. Half-space inclusion relation of edge and edge 
For a edge-edge potential contact pair with edge evievj form poly-

hedron Ω1 and edge evkevm form polyhedron Ω2, the direction vector of 
edge evievj is evievj

̅̅→ , the direction vector of edge evkevm is evkevm
̅̅̅ → . Two 

direction vectors normal to edge evievj in face Afi and face Afj are hvi
̅→

and 

hvj
̅→

respectively. Two direction vectors normal to edge evkevm in face Afk 

and face Afm are hvk
̅→

and hvm
̅→

respectively. nee is the normal vector of the 
face defined by edge evievj and edge evkevm. If edge evievj and edge evkevm 

satisfy 

nee
̅→× hvi

̅→⩽0, nee
̅→× hvj

̅→⩽0, piqi
̅→⋅ nee

̅→⩾0, (27)  

or 

nee
̅→× hvi

̅→⩾0, nee
̅→× hvj

̅→⩾0, piqi
̅→⋅ nee

̅→⩽0, (28)  

where piqi
̅→ is the direction vector of line form point pi on edge evievj to 

point qi on the edge evkevm. Then the edge evievj or the edge evkevm is 
locate in the half-space defined by edge evievj and edge evkevm. The edge- 
edge potential contact pair satisfies the half-space inclusion relation. 

For blocks that are initially stacked neatly, the tolerance to define 
half-space inclusion relation is altered in the first step, Eqs. (27) and (28) 
are changed into 

nee
̅→× hvi

̅→⩽0, nee
̅→× hvj

̅→⩽0, piqi
̅→⋅ nee

̅→ > 0, (29)  

and 

nee
̅→× hvi

̅→⩾0, nee
̅→× hvj

̅→⩾0, piqi
̅→⋅ nee

̅→ < 0. (30) 

Fig. 12. Contact type recognition in 3D polyhedrons.  

Fig. 13. Model of a slider sliding along the slope.  
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With the above changes, adjacent blocks are not recognized as contact, 
thus forming initial contact pairs. 

2.4.6. Contact detection 
As shown in Fig. 9 and Fig. 10, for convex polyhedrons, there is no 

possibility of contact between Ω1 and Ω2 if the vertex is located outside 
the half-space or the edge is located outside the edge. That is 

¬(∃(vertex − face ∨ edge − edge satisfy half

− space inclusion relation) )⇒¬ Contact. (31)  

Consider the relationship between original proposition and converse- 
negative proposition: 

Contact⇒∀(vertex − face ∧ edge − edge satisfy half

− space inclusion relation). (32)  

Form above discussion, for polyhedrons, all the six contact type can be 
attributed to vertex-face contact and edge-edge contact. When two 

blocks do not contact, there must be vertex-face potential contact pair or 
edge-edge potential contact pair do not satisfy the half-space inclusion 
relation, that is 

¬ Contact⇒¬(∃(vertex − face ∨ edge − edge satisfy half

− space inclusion relation) ), (33)  

therefore 

∀(vertex − face ∧ edge − edge satisfy half

− space inclusion relation)⇒Contact. (34)  

In conclusion 

∀ Satisfy half − space inclusion relation ⇔ Contact. (35)  

If all potential contact pairs between two blocks satisfy the half-space 
inclusion relation, the two blocks are in contact. If any potential con-
tact pair does not satisfy the half-space inclusion relation, the two blocks 
are in contact. 

Because of the complexity of recognition and relative relation judg-
ment of the potential contact pairs between edges, the potential contact 
pairs between vertices and surfaces of polyhedrons are firstly identified 
and judged in calculation. If all judgments between vertex and face are 
satisfied, then take edge-edge potential contact pairs into calculation. If 
any potential contact pair does not satisfy the half-space inclusion 
relation, it can be judged as not contact. 

Specific contact type (vertex-vertex contact, vertex-edge contact, 
vertex -face contact, edge-edge contact, edge-face contact and face-face 
contact) are identified when two blocks are judged to be in contact, and 
the corresponding contact force is applied. 

2.5. Contact type recognition 

To simplify the contact condition detecting process, the three contact 
types (vertex-vertex contact, vertex-edge contact, edge-edge contact) 
between 2D blocks are all identified by vertex-edge potential contact 
pairs. The six contact types (vertex-vertex contact, vertex-edge contact, 
vertex -face contact, edge-edge contact, edge-face contact and face-face 
contact) between 3D blocks are identified by vertex-face potential 
contact pairs and edge-edge potential contact pairs. After the contact 
status is detected, it is necessary to further identify the contact types 
between blocks and calculate the contact position between blocks, so as 
to calculate the contact area and apply the corresponding contact force. 

Potential contact pairs that do not satisfy the half-space inclusion 
relation in the previous moment of contact occurrence are initial contact 

Fig. 14. The comparison between numerical results and analytical results.  

Fig. 15. Model of 3D collision blocks.  
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pairs. For example, if contact occurrence at time tn+1, potential contact 
pairs that do not satisfy the half-space inclusion relation at time tn are 
initial contact pairs. There may be several initial contact pairs. The 
specific contact type between blocks is determined by the type, number 
and location of initial contact pairs. 

For polygons, there are only vertex-edge potential contact pairs. 
Fig. 11 presents the procedure of contact type recognition. The position 
relation between the vertex and the edge in initial contact pair is 
calculated to identify the specific contact type. If there is a parallel 
relation between vertex vector and edge vector, then edge- edge contact 
occurs. If there is no parallel relation, calculate the contact point be-
tween the vertex and the edge. If the contact point is located in the 
vertex area, the vertex-vertex contact occurs. If the contact point is 

located outside the vertex area, the vertex-edge contact occurs. 
For polyhedrons, there are vertex-face potential contact pairs and 

edge-edge potential contact pairs. Fig. 12 presents the procedure of 
contact type recognition. If the initial contact pair is a vertex-face con-
tact pair, calculate the specific position relation between the vertex and 
the face. If any face of the vertex is parallel to the corresponding face, the 
face-face contact occurs. If there is no face parallel, the edge of the 
vertex is parallel to the face, the edge-face contact occurs. If there are no 
parallel faces and parallel edges, then calculate the contact point be-
tween the vertex and the face. If the contact point is located in the vertex 
area, the vertex-vertex contact occurs. If the contact point is located on 
the edge areas, the vertex-edge contact occurs. If the contact point is 
located outside the vertex and the edge area, the vertex-face contact 
occurs. If the initial contact pair is edge-edge potential contact pair, the 
edge-edge contact occurs. 

After identifying the contact type, define the contact plane for con-
tact force calculation. For polygons, the contact plane is the edge of the 
half-space. For polyhedrons, the contact plane is the face of the half- 
space. The contact normal vector is the unit vector of the contact 
plane which point outside the half-space. For some special contact types, 
like vertex-vertex contact in polygons and vertex-edge contact in poly-
hedrons, the contact normal vector is the unit vector of the sum of half- 
spaces vector. 

For hybrid continuous-discontinuous numerical methods like NMM 
and CDEM, blocks are initially neatly stacked. The blocks move against 
each other only after fracture, then the contact detection needs to be 
introduced. The contact area at the initial moment is the area of block 
boundary. When blocks fracture, the strength between blocks disappears 
and the contact area no longer considered. 

3. Contact force 

Contact force is calculate based on the penalty spring. The normal 
and shear contact springs are created on the contact position to calculate 
the contact force. 

3.1. Normal contact force 

Use linear penalty law to calculate normal contact force Fn
→ : 

Fig. 16. Simulation results at different instants.  

Fig. 17. Model of 3D collision blocks.  
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Fn
̅→

= Kn⋅dn⋅nf
→, (36)  

where Kn is the normal contact spring stiff, dn is the normal embedded 
depth, nf

→ is the unit normal vector of the contact plane. 

3.2. Shear contact force 

Use incremental method is to calculate shear contact force. The shear 
contact force increment ΔFs

→ is calculated as 

ΔFs
→

= Ks⋅Δds
→
, (37)  

where Ks is the shear contact spring stiff, Δds
→

is the shear displacement 
increment. 

The total shear force is the sum of current shear force increment and 
existing shear forces. At time t + Δt, the total shear force Fs

→
(t + Δt) is 

calculated as 

Fs
→
(t + Δt) = Fs

→
(t)+ΔFs

→
(

Fs
→
(t) = 0when time t do not have contact

)
.

(38)  

When the shear contact force satisfies 

∣Fs
→
(t + Δt)∣ > ∣ Fn

̅→
(t + Δt)∣⋅tanφ+ c⋅AC, (39) 

Fig. 18. Simulation results at different instants.  

Fig. 19. Two collision cases of blocks with small edges: (a) case 1: contact of vertex and small edge; (b) case 2: contact of vertex and neighboring edge of the 
small edge. 
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where φ is the friction angle of the block, c is the cohesion of the block 
and AC is the contact area, shear failure occurs, the shear contact force is 
updated to 

∣Fs
→
(t + Δt)∣ = ∣ Fn

̅→
(t + Δt)∣⋅tanφ. (40)  

4. Numerical cases 

Spatial grid method is adopted for neighbor search. Map blocks to 
different cells based on their centroid. There are 8 adjacent cells in 2D 
space and 26 adjacent ells in 3D space, blocks in the same and adjacent 
cells are potential contact blocks. Detecting the contact relationship 
between potential contact blocks. The above-mentioned contact detec-
tion algorithm is programmed by VC++. Several examples validated the 
reliability and accuracy of this algorithm. 

4.1. Block sliding 

When a slider slides along the slope, there is friction force and sup-
porting force between the slider and the slope. The slope angle is θ, the 
friction angle between the slider and the slope is φ. When the friction 

angle is smaller than the slope angle, the slider will move downward 
along the slope. According to the theoretical solution, the relationship 
between the displacement of the slider along the slope surface sand the 
time tcan be expressed as: 

s(t) =
1
2
at2,

a = gsinθ − gcosθ⋅tanφ,
(41)  

where ais the acceleration along the slide direction, gis the acceleration 
of gravity. 

The process of the slider sliding along the slope is simulated. Based 
on Mohr–Coulomb criterion, failure state between blocks are judged. 
Contact relationship and contact force are update when there is slip 
between blocks. The angle of slope is 30◦, and the model of slider is 
established by a hexahedron with a length of 5m × 5m × 4m (see 
Fig. 13). The mechanical parameters of blocks are set as: density ρ =

2500kg/m3, elastic modulus E = 1GPa, Poisson’s ratio υ = 0.15. The 
normal spring and shear spring stiffness are both 1× 1010N/m. The time 
step of numerical simulation is 10 μs, and the total calculation time is 5 s. 
Set the friction Angle as 15◦, 20◦, 25◦ and 30◦ respectively for simulated. 

Compare the numerical simulation results with theoretical solutions 
(see Fig. 14). It can be found that the numerical calculation results are 
consistent with the theoretical solution. The accuracy of the algorithm 
for calculating 3D contact forces is verified. 

4.2. Collision between two convex polyhedral blocks 

The collision between 3D blocks is simulated. The model is estab-
lished as shown in the Fig. 15. Block Bis fixed, block Amoves downward 
under the force of gravity. The mechanical parameters of blocks are set 
as: density ρ = 2500kg/m3, elastic modulus E = 2GPa, Poisson’s ratio 
υ = 0.2, friction angle φ = 30∘. The normal spring and shear spring 
stiffness are both 2× 1010N/m. The time step of numerical simulation is 
10μs. 

Block Ais in free fall and then bounced off after contact with block B, 
and finally falls steadily on block B. The vertical displacement during the 
movement of the block are shown in the Fig. 16. The accuracy of vertex- 
face contact, edge-face contact and face-face contact occur during the 
falling process is verified. 

The model as shown in the Fig. 17 is established. The block D is fixed, 
while block C moves downward under the force of gravity. The me-
chanical parameters of blocks are set as: density ρ = 2500kg/m3, elastic 
modulus E = 20GPa, Poisson’s ratio υ = 0.2, friction angle φ = 30∘. The 
normal spring and shear spring stiffness are both 2× 1011N/m. The time 
step of numerical simulation is 10μs. The vertical displacement during 
the movement of the block are shown in the Fig. 18. Block A bounced off 
after the edge of block A contacts with the edge of block B, and then 
continues to move downward. The accuracy of edge-edge contact is 
verified. 

4.3. Block with small edges 

Two collision cases for blocks with small edges are simulated. This 
validation case is the same as one of the cases in Zheng’s article (Zheng 
et al., 2020b). Two models are established as shown in the Fig. 19. For 
case 1, the vertex of the upper block will contact with the small edge. For 
case 2, the vertex of the upper block will contact the edge to the right of 
the small edge. The mechanical parameters of blocks are set as: density 
ρ = 2000kg/m3, elastic modulus E = 1GPa, Poisson’s ratio υ = 0.25. 
The normal spring stiffness is 5 × 106N/m and shear spring stiffness is 
1× 106N/m. The time step of numerical simulation is 20 μs. 

The vertical velocity during the movement of the block are shown in 
the Fig. 20. For case 1, the upper block collides with the small edge and 
then moves upward vertically. For case 2, the upper block collides with 
the edge right to the small edge and then moves to the right side. The 

Fig. 20. Velocity at different instants: (a) result of case 1 at 0.2s; (b) result of 
case 2 at 0.2s (The red triangle is the result of Zheng et al. (2020b)); (c) result of 
case 2 at 0.3s; (d) result of. case 2 at 0.4s. 

Fig. 21. Bulk material model.  
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simulation result of case 2 at 0.2s is compared with Zheng’s result. The 
movement of the vertex is identical. Robustness of this algorithm for 
blocks with small edges is verified. 

4.4. Measurement of the angle of repose 

The measurement process of the angle of repose of bulk material is 
simulated. The bulk material model is established as shown in the 
Fig. 21. The width Lof bulk material is 1m and the height His 1.2m. A 
bottom plate is set at the bottom of the bulk material, and baffles are set 
on both sides of the bulk material, the thickness of the bottom plate and 
the baffles is 0.1m. The material is meshed by 5788 triangular elements 
with an average size of 0.02m. The bottom plate and baffles is meshed by 
440 quadrilateral elements with a size of 0.05m to divide this area. 

The mechanical parameters of material are set as: density ρ =

2500kg/m3 , elastic modulus E = 10MPa , Poisson’s ratio υ = 0.3 , fric-
tion angle φ = 25∘, cohesion C = 0MPa . The time step of numerical 
simulation is 10 μs. The mechanical parameters between the material 
and the baffles are set as: friction angle φb = 0∘, cohesion C = 0MPa. 
The mechanical parameters between the material and the bottom plate 
are set as: friction angle φc = 25∘, cohesion C = 0MPa. The normal 
spring and shear spring stiffness are both 1× 108N/m. The time step of 
numerical simulation is 20 μs. 

Taking the measurement procedure of the angle of repose for refer-
ence (Chen et al., 2015), the baffles on both sides move upward at a 
speed of 0.1m/s. As the baffles rise, the material flows out from both 
sides. When calculated to 1.0s, the material reaches a stable state, 
forming a certain accumulation angle, as shown in the Fig. 22 The repose 
angle θ of the accumulation body is 25◦, same as the set friction angle 
between the material. The accuracy of this algorithm in calculating the 
2D problem is verified. 

5. Conclusion 

This paper presented a new contact detection algorithm to detect the 
contact status between convex polygons and convex polyhedrons. Two 
conceptions are proposed for the contact detection: potential contact 
pairs and half-space inclusion relation. This contact detection algorithm 
determines contact status between two blocks by judging half-space 
inclusion relation. Potential contact pairs are identified by the relation 
between face normal vector and vertex vectors. Vertex-edge potential 
contact pairs are defined for polygons, vertex-face potential contact 
pairs and edge-edge potential contact pairs are defined for polyhedrons. 
Half-space inclusion relation is the relative positional relation between 
the two geometry elements in potential contact pair. The three contact 
types between polygon are all detected through vertex-edge potential 
contact pairs, and the six contact types between polyhedrons are all 
detected through vertex -face potential contact pairs and edge-edge 
potential contact pairs, thus simplifying the progress of contact detec-
tion. Potential contact pairs and half-space inclusion relation are both 
identified by the calculate of vectors, distance calculation between 
blocks are not involved in the progress of contact status detection. 

Simulation results validate the accuracy and robustness of this al-
gorithm. Several cases are given to verify that all contact types between 
two convex polygons or two convex polyhedrons can be recognized 
through the basic potential contact pairs, and collision of polygons with 
small edges can be detected. The accuracy of this algorithm is verified by 
the simulation results. 

This contact detection algorithm can also be used to detect the 
contact between concave blocks which is still in development. 
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Fig. 22. Simulation of the angle of repose.  
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Marques, F., Magalhães, H., Pombo, J., Ambrósio, J., Flores, P., 2020. A three- 
dimensional approach for contact detection between realistic wheel and rail surfaces 
for improved railway dynamic analysis. Mech. Mach. Theory 149, 1–28. https://doi. 
org/10.1016/j.mechmachtheory.2020.103825. 

Mu, L., Zhang, Y., 2020. Cracking elements method with 6-node triangular element. 
Finite Elem. Anal. Des. 177, 103421. https://doi.org/10.1016/j.finel.2020.103421. 

Nezami, E.G., Hashash, Y.M.A., Zhao, D., Ghaboussi, J., 2004. A fast contact detection 
algorithm for 3-d discrete element method. Comput. Geotech. 31, 575–587. https:// 
doi.org/10.1016/j.compgeo.2004.08.002. 

Nezami, E.G., Hashash, Y.M.A., Zhao, D., Ghaboussi, J., 2006. Shortest link method for 
contact detection in discrete element method. Int. J. Numer. Anal. Methods 
Geomech. 30, 783–801. https://doi.org/10.1002/nag.500. 

Park, J.W., Song, J.J., 2009. Numerical simulation of a direct shear test on a rock joint 
using a bonded-particle model. Int. J. Rock Mech. Min. Sci. 46, 1315–1328. https:// 
doi.org/10.1016/j.ijrmms.2009.03.007. 

Peng, D., Hanley, K.J., 2019. Contact detection between convex polyhedra and 
superquadrics in discrete element codes. Powder Technol. 356, 11–20. https://doi. 
org/10.1016/j.powtec.2019.07.082. 

Redon, S., Kheddar, A., Coquillart, S., 2010. Fast continuous collision detection between 
rigid bodies. Comput. Graph. Forum. 21, 279–287. https://doi.org/10.1111/1467- 
8659.t01-1-00587. 
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