
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 71, 2022 3525910

Multiresolution Hypergraph Neural Network
for Intelligent Fault Diagnosis

Xunshi Yan ( ) , Yang Liu ( ) , and Chen-An Zhang ( )

Abstract— Intelligent fault diagnosis has made significant
progress, thanks to machine learning, particularly deep-learning
algorithms. However, most machine-learning algorithms treat
samples as independent and ignore the correlations between sam-
ples that contain valuable information for creating discriminative
features. In recent years, graph neural networks have increased
diagnostic performance by capturing the correlation between
samples according to establishing the inherent structure of data,
but they also suffer from two shortcomings. First, a simple graph
only represents pairwise relationships of samples and cannot
depict complex higher-order structures. Second, the generated
graph structure is insufficient to characterize the data without
an explicit structure. To address the above two issues, this article
proposes a multiresolution hypergraph neural network, a novel
algorithm that can discover higher-order complex relationships
between samples, and mine the structure hidden in data by estab-
lishing and fusing hypergraph structures at multiple resolutions.
Experiments are conducted on three datasets to demonstrate the
effectiveness of the proposed algorithm.

Index Terms— Fault diagnosis, graph convolutional network
(GCN), hypergraph, hypergraph neural network (HGNN),
multiresolution.

I. INTRODUCTION

W ITH the development of artificial intelligence tech-
nology, intelligent fault diagnosis has become a hot

topic in the engineering field. As a typical pattern recognition
issue, fault types are identified employing signals captured by
vibration, current, or other kinds of sensors installed on the
rotating machinery or its components such as bearings and
gearboxes. Due to the scarcity of fault samples, as well as
their nonlinearity and nonstationarity, it is a great challenge to
extract effective features of faults. Therefore, many researchers
pay much attention to obtaining more information from fault
signals to create discriminative features.

End-to-end learning [1], [2], multisensor fusion [3]–[5], and
transfer learning [6], [7] techniques bring more information
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to the fault feature representation than manually designed
features, but all regard the samples as independent and ignore
the correlation between samples, which is an important factor
in distinguishing fault types. In recent years, deep-learning-
based graph neural networks (GNNs), such as CheyGNN [8],
graph convolutional networks (GCNs) [9], GraphSAGE [10],
and graph attention networks [11], have been developed
successively and effectively capture the correlation between
samples and improve the recognition performance of the data
with graph structures.

GNNs have been applied in fault diagnosis of rotating
machinery [12] and the related literature can be clustered into
two categories. In the first category, each sample is treated as a
node on the graph, and the fault diagnosis task is transformed
into a node classification problem. Gao et al. [13] considered
fault samples as nodes on a graph and directly classified faults
in a semisupervised manner using GCNs. Li et al. [14] set
up three graph receptive fields and used GCNs to fuse the
three graphs to form fault representations. Yang et al. [15]
proposed to modify GCNs into a multibranch structure, where
each branch was trained using a graph generated from one
sensor’s data. The output of the branches was fused through a
fully connected layer to achieve diagnosis results. To enhance
the recognition accuracy, Zhou et al. [16] developed a dynamic
graph model based on GCNs. A graph is manually constructed
from samples, the GCN was trained for a specified num-
ber of epochs, and then the graph was reconstructed using
the updated features. The process is repeated several times
until the updated graph approximated the dataset’s inherent
structure.

In the second category of literature, each fault sample is
considered a graph, and the fault diagnosis task is converted
to a graph classification problem. Li et al. [17] transformed a
sample of 1024 points into a graph consisting of 1024 nodes,
where the weights of the edges were determined by the tem-
poral distance between two nodes, and the graph isomorphic
network was used for graph classification. Yang et al. [18]
segmented each sample into pieces to build a spatial–temporal
graph based on the frequency bands of the short-time Fourier
transform spectrum and then applied the Laplacian transform
to the graph to produce graph representation for classifica-
tion. Zhang et al. [19] rearranged the fault signals into a
60 × 60 node matrix, considering the pairwise relationship
between the central node and its eight neighbors, and then
used GNNs for classification.

However, each edge in the graph connects two nodes,
indicating pairwise relationships between nodes, and is unable
to explain higher-order relationships or complex correlations
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between multiple nodes. Furthermore, unlike social networks,
citation networks, and so on, the data for fault diagnosis
tasks has no explicit graph structure and the graphs are
generated manually. The performance of GNNs is heavily
dependent on whether the constructed graphs can truly capture
the correlations hidden in data, however, the existing methods
limit the ability of constructed graphs to represent the inherent
structure in fault data.

This article proposes a novel multiresolution hypergraph
neural network (MrHGNN) to tackle the two aforementioned
challenges. A hypergraph is adopted to build higher-order
complex relationships between fault samples. A multireso-
lution hypergraph (MrHG) with the idea of coarse-to-fine
descriptions is to approximate the potential structure in fault
data, and a hypergraph neural network (HGNN) based on
MrHG is designed for fault classification. The contributions
of this article are primarily three folds.

1) Instead of a simple graph, a hypergraph is utilized to
model the relationship between fault samples and mine
higher-order correlations of multiple nodes, which is
the first time that a hypergraph has been used in a
mechanical fault diagnosis task to our best knowledge.

2) MrHG is proposed. A series of hypergraphs are con-
structed from samples with varying resolutions to
describe the inherent structure of fault data from coarse
to fine. The structure information in fault data can be
represented by fusing the multiple hypergraphs, thus
compensating for the inadequate capability of traditional
graph generation methods.

3) A neural network on MrHG is designed to achieve
fault classification based on the hypergraph learn-
ing mechanism, thus establishing a framework for
hypergraph-based fault diagnosis research, which is val-
idated on three datasets.

The rest of this article is mainly divided into four sections.
Section II introduces the basic theory of the hypergraph and
HGNN. The proposed algorithm is detailed in Section III.
The experiments are presented in Section IV to verify the
effectiveness of the proposed algorithm on three datasets.
Section V concludes the whole paper and shows the future
research directions.

II. BASIC THEORY OF HYPERGRAPH NEURAL NETWORK

A. Hypergraph

Hypergraph G = (V , E, W) is a kind of data struc-
ture that represents multiple complex correlations and con-
sists of nodes V = {v1, v2, v3, . . . , vN }, hyperedges E =
{e1, e2, e3, . . . , eM }, and hyperedge weight W. In contrast to
a simple graph, each hyperedge can connect more than two
nodes to model higher-order relationships, suggesting that
these nodes as a subset share common properties. For example,
considering the citation network as a simple graph, each paper
is treated as a node on the graph, and each edge in the
graph indicates that two papers have coauthors; however, if the
citation network is depicted as a hypergraph, a hyperedge
can connect all papers with the same coauthors. Hence,
hypergraphs can describe complex higher-order relationships

Fig. 1. Comparison between a simple graph and a hypergraph. (a) Graph
and adjacent matrix. (b) Hypergraph and incident matrix.

beyond pairwise correlation between two nodes and discover
the common properties of nodes on the same hyperedge.

Similar to the adjacent matrix used to represent a simple
graph, the incident matrix H ∈ R|V |×|E | describes the con-
nectivity between nodes in the hypergraph. Each column and
each row of H corresponds to one hyperedge and one node,
respectively, with the element value set to 1 or 0, indicating
whether the corresponding node lies on the corresponding
hyperedge, as illustrated in

H(v, e) =
{

1, if v ∈ e

0, if v /∈ e.
(1)

The weight matrix W = diag(w1, w2, . . . , w|E |) ∈ R|E |×|E |
is a diagonal matrix and represents the weight of each hyper-
edge. The larger the weight wi , the greater the influence of
the hyperedge ei . The diagonal elements de and dv of the
hyperedge degree matrix DE and node degree matrix DV

denote the number of nodes connected to each hyperedge and
the number of hyperedges met in each node, respectively, as

de =
∑
v∈V

H(v, e) (2a)

dv =
∑
e∈E

we ∗ H(e, v). (2b)

A hypergraph is a generalized form of a simple graph. When
all hyperedges satisfy de = 2, a hypergraph degenerates to
a simple graph. Due to de ≥ 2, hypergraphs can describe
more complex relationships than simple graphs and generate
powerful node representations based on the information aggre-
gated from the nodes on the hyperedges. Fig. 1 depicts the
comparison of a simple graph and a hypergraph as well as the
meaning of the adjacent matrix and incident matrix.

B. Hypergraph Learning

Similar to graph learning, hypergraph learning is employed
to solve three basic problems [20], including node classifi-
cation, hyperedge prediction, and hypergraph classification.
In this article, the task of fault diagnosis is treated as a node
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classification problem. Hypergraph learning is widely used in
3-D object recognition [21], action recognition [22], document
classification [23], image retrieval [24], and medical image
analysis [25].

Based on hypergraph cut theory, Zhou [26] first proposed
a regularization framework for hypergraph node classification,
which led to the development of hypergraph learning during
the next ten years as

arg min
f

{
Remp( f ) + μ�( f )

}
(3)

where Remp( f ) is a supervised loss and f (·) is a classification
function. The number μ > 0 is the regularization parameter.
�( f ) is a regularizer on the hypergraph. Based on the nor-
malized hypergraph cut, �( f ) is defined as

�( f )

= 1

2

∑
e∈E

∑
{u,v}∈V

w(e)h(u, e)h(v, e)

de

(
f (u)√
dv(u)

− f (v)√
dv(v)

)2

.

(4)

Let � = D−1/2
V HWD−1

e HT D−1/2
V and � = I−� a simplified

form of �( f ) and is written as

�( f ) = f T � f (5)

where � ∈ RN×N is named as hypergraph Laplacian as a pos-
itive semidefinite matrix. Perform eigendecomposition � =
�T �� and the orthonormal eigenvectors and eigenvalues are
got as � = [φ1, φ2, . . . , φN ] and � = diag(λ1, λ2, . . . , λN ).

The above approach has a high cost when dealing with
large-scale hypergraphs because it involves the eigendecom-
position of matrices. Inspired by the creation of graph convo-
lution in GNNs, designing a low-cost hypergraph convolution
and establishing a neural network becomes a solution to the
hypergraph learning challenge. Similar to the definition of
graph convolution, the spectral convolution on the hypergraph
can be defined as

h ∗ x = �
((

�T h
) � (

�T x
)) = �h(�)�T x (6)

where � represents the element-wise product and h is a
hypergraph convolution filter.

Due to the high computational cost of (6) which still needs
to eigendecomposition of a large matrix, according to the
operation on graph convolution in [8], Chebyshev polynomials
are used to parameterize h(�) and the convolution of a signal
on the hypergraph is modified as

h ∗ x =
K∑

k=0

θk Tk
(
�̃

)
x (7)

where �̃ = (2/λmax)�− I is scaled hypergraph Laplacian and
Tk(�̃) is the Chebyshev polynomials of order k.

Inspired by [9], Feng [27] further let K = 1 and simplified
(7) as

h ∗ x = θ0x − θ1�x

= θD−1/2
V HWD−1

E HT D−1/2
V x (8)

Fig. 2. HGNN. HConv represents hypergraph convolution.

where θ1 = −(1/2)θ and θ0 = (1/2)θD−1/2
V HD−1

E HT D−1/2
V ,

both of which are replaced by single parameter θ to avoid
overfitting. W is initialized as I.

Let the hypergraph node features as X ∈ R|V |×|C1|, the
hypergraph convolution is reformed as

Y = σ
(

D−1/2
V HWD−1

E HT D−1/2
V Xθ

)
(9)

where Y is the updated node features after hypergraph con-
volution and θ is a learnable parameter. σ is an activation
function.

C. HGNN

HGNN first proposed by [27] consists of a series of a
hypergraph convolution layer (see Fig. 2), and each layer is
denoted as

X(l+1) = σ
(

D−1/2
V HWD−1

e HT D−1/2
V X(l)θ (l)

)
(10)

where X(l) ∈ R|V |×|C1| and X(l+1) ∈ R|V |×|C2| are the input and
output of the lth hypergraph convolution layer. The learnable
parameter is θ(l) ∈ R|C1 |×|C2|. If the lth layer of HGNN is not
the last layer, C2 is preset as the hidden dimension.

The input of HGNN is initialized node features X ∈ R|V |×d

and incident matrix H ∈ R|V |×|E |, where d is the dimension of
node features. Softmax is adopted as the activation function
of the last layer in HGNN and the final output is Y ∈ R|V |×C ,
where C is the number of fault types. The hidden dimension
in each layer is defined in advance. The cross-entropy function
is chosen as the loss function.

D. Discussion

In our research, hypergraph learning is applied to the fault
diagnosis of rotating machinery, mainly for the following three
reasons.

First, fault samples are cut from signals captured during the
operation of the machines. Due to the continuity and peri-
odicity of the signals, there are potential complex correlations
between the samples. By constructing a hypergraph with signal
pieces as nodes, the complex correlations can be described to
fully mine the characteristic information between samples.

Second, compared with the problems with a large number
of samples such as images and text, the cost of acquiring
fault signals is high, resulting in the scarcity of fault samples.
A crucial technical route is to extract additional information
from limited fault samples. Most machine-learning algorithms,
including convolutional neural networks (CNNs), obey the
assumption of independent and identical distribution (IID),
ignoring the correlations between data, which is helpful for
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improving diagnostic accuracy. Hypergraph learning can break
the assumption of IID and capture the correlation between
samples, thereby improving diagnostic performance.

Third, unlike graph-based methods, hyperedges in a hyper-
graph can connect more than two nodes and describe
the high-order correlation between samples. The common
attributes shared among multiple samples are extracted layer
by layer through hypergraph learning to obtain a more effective
feature representation.

III. PROPOSED ALGORITHM

In the fault diagnosis task, the fault samples are unstruc-
tured, making it challenging to use a single manually designed
hypergraph to characterize the structure hidden in the data.
To address the above issue, MrHG is proposed to model data
structure between fault samples from coarse to fine, and a
corresponding neural network based on MrHG is developed
for fault identification.

A. Hypergraph Generation

In this study, the fault diagnosis task is considered a node
classification problem, where each fault sample acts as a node
on a hypergraph. Since there is no explicit structure among
fault samples, the hypergraph should be generated from the
samples first.

The signals gathered by the machine’s sensors are split
into a set of equal-length samples. Because the raw samples
have a limited ability to discriminate faults and are prone to
noise interference, they are processed by fast Fourier transform
(FFT) as the initial node representations which are normalized
with the minimum–maximum way to unify the feature value
to [0,1].

To construct the hypergraph, it is critical to establish the
connection between nodes to determine the hyperedges. For
each sample, K -nearest neighbor (KNN) is employed to create
hyperedges. The sample and its K neighboring samples in
Euclidean space are grouped to form a hyperedge, resulting in
one hypergraph containing N hyperedges. The incident matrix
H ∈ RN×N can be written as follows:

Hi j =
{

1, xi ∈ K N N
(
x j

)
or i = j

0, others
(11)

where N is the number of samples in the dataset, and
K N N(x j ) represents the K samples closest to the central node
sample x j .

To simplify the problem, all hyperedges are assigned to the
same weights, that is, W = I ∈ RN×N .

B. MrHG

To take benefit of the hypergraph and enhance its effec-
tiveness, it is required to design a hypergraph that approx-
imates the inherent structure hidden in the data without
implicit connections between samples. On the premise of the
determined node feature representation, the raw data X =
{x1, x2, x3, . . . , xN } is processed using the multiresolution

Fig. 3. Node feature representation with multiple resolutions.

features technique. The raw samples are resampled at various
sampling rates as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

XR1 =
{

x R1
1 , x R1

2 , x R1
3 , . . . , x R1

N

}
XR2 =

{
x R2

1 , x R2
2 , x R2

3 , . . . , x R2
N

}
...

XRs =
{

x Rs
1 , x Rs

2 , x Rs
3 , . . . , x Rs

N

}
(12)

where R1, R2, . . . , Rs are various sampling rates and R1

denotes the basic sampling rate, R2 = (1/2)R1, R3 =
(1/4)R1, . . . , Rs = (1/2s−1)R1. XR1 is the raw dataset
X, and XRp is the resampling result of X under sam-
pling rate Rp, then the raw dataset turns into s subdatasets
{XR1, XR2 , XR3, . . . , XRs }.

Perform FFT on {XR1, XR2 , XR3 , . . . , XRs } and obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

XR1
f =

{
x R1

1 f , x R1
2 f , x R1

3 f , . . . , x R1
N f

}
XR2

f =
{

x R2
1 f , x R2

2 f , x R2
3 f , . . . , x R2

N f

}
...

XRs
f =

{
x Rs

1 f , x Rs
2 f , x Rs

3 f , . . . , x Rs
N f

}
(13)

where x
Rp

i f denotes the FFT feature representation of the i th
sample under sampling rate Rp.

Define the node feature representation X f = {xi f , 1 ≤
i ≤ N}, where xi f = x R1

i f �x R2
i f �x R3

i f . . . .�x Rs
i f and ·||· is the

concatenation operation. Here, the nodes are denoted by the
union of multiresolution features (see Fig. 3).

Based on the referred hypergraph generation method,
XR1

f , XR2
f , . . . , XRs

f are transformed to s hypergraphs as subhy-
pergraphs, respectively, and the corresponding incident matri-
ces are H1, H2, . . . , Hs ∈ RN×N . The s subhypergraphs are
concatenated into one hypergraph as MrHG. The incident
matrix of MrHG is

H = H1||H2|| . . . ||Hs (14)

where H ∈ RN×Ns .
Fig. 4 expresses the procedure of the generation of MrHG.

Since MrHG is made up of s subhypergraphs and Ns
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Fig. 4. Generation of MrHG.

hyperedges that are built from raw signals of various resolu-
tions, it depicts the correlation between samples from coarse
to fine to approach the inherent structure hidden in the data.

C. MrHGNN

MrHGNN aims to implement MrHG learning by stacking a
series of hypergraph convolution layers. In our study, we fix
the number of layers of hypergraph convolution to 2. The
inputs to MrHGNN are the incident matrix H and the node
representation X f with multiresolution features. In the first
layer of MrHGNN, the learned parameter is θ(1) ∈ RD×h , and
the activation function is the LeakyReLU function, where D
is the node feature dimension and h is the output dimension
defined as the hidden dimension. In the second layer, the
learned parameter is θ(2) ∈ Rh×C , where C is the number of
fault types and Softmax is adopted as the activation function.
The final output of MrHGNN is computed as (15)

X(2) = Softmax
(
HConv

(
LeakyReLU

(
HConv

(
X f , H

)
, H

)))
(15)

where X(2) is the final output of MrHGNN.

D. Pipeline

The pipeline of the proposed algorithm is depicted in Fig. 5
and the process is listed as follows.

1) Collect the fault signals acquired from the machine’s
sensors and cut them into N equal-length samples to
form the dataset X.

2) Resample X with different sampling rates
R1, R2, . . . , Rs , transform each sample into a group
of subsamples with various resolutions, and form
subdatasets {XR1, XR2 , XR3 , . . . , XRs }.

3) Perform FFT on samples in {XR1, XR2 , XR3 , . . . , XRs },
respectively, and obtain {XR1

f , XR2
f , XR3

f . . . , XRs
f }. Node

representation is X f = {xi f , 1 ≤ i ≤ N}.
4) Construct s hypergraphs from {XR1

f , XR2
f , XR3

f . . . , XRs
f }

base on KNN principle and get the corresponding inci-
dent matrices H1, H2, . . . , Hs . Form the incident matrix
of MrHG as H = H1||H2|| . . . ||Hs .

5) Build a two-layer MrHGNN, taking X f and H as inputs.

6) Set a part of the samples for training and the other as
testing samples, then train MrHGNN with hypergraph
learning.

7) Test the trained model and get the corresponding fault
types of testing samples.

E. Discussion

After exhibiting the principle and process of the algorithm,
there are still some details worth discussing.

First, MrHGNN is a node classification algorithm in essence
where each fault sample is viewed as a node on the hyper-
graph. The multiresolution feature vectors of all nodes on the
hypergraph and the incident matrix of MrHG serve as the two
inputs of MrHGNN. As a type of neural network, MrHGNN is
composed of a series of hypergraph convolution layers, and the
backpropagation method is used to optimize the parameters.

Second, from the perspective of spatial graph approaches,
each hypergraph convolution layer implements a smooth oper-
ation on the hypergraph, which aggregates the information
of the neighbor nodes on the hyperedge. The performance
of MrHGNN will decline as the structure becomes deeper
due to the consistency of all node features in oversmoothing.
Therefore, the number of hypergraph convolution layers in
MrHGNN is fixed to 2, which is consistent with ref [9], [27].

Third, there is only one matrix parameter to learn in each
layer of MrHGNN. Regarding the time complexity analysis,
according to ref [23], the computation upper bound of each
hypergraph convolution layer is O(2N2 M + 2M2 N), where
N is the number of nodes and M represents the number of
hyperedges. In MrHGNN, M = Ns, hence the computation
upper bound turns to be O(2N3(s + s2)). In practice, the
algorithm will run much faster because the matrix is sparse
and the computation operations are matrix multiplication that
can run on GPU.

IV. EXPERIMENTS

In this section, a series of experiments are carried out to
verify the effectiveness of the proposed algorithm.

A. Datasets

Three datasets including CWRU, Paderborn, and AMB-
Y2 datasets are introduced. The first two datasets are often
employed in many literature [28], while the third one is
acquired from an industrial machine equipped with active
magnetic bearings [13].

The CWRU dataset [29] is widely used in fault diagnosis,
and the data is collected from a horizontal rotating machine
(see Fig. 6). In this article, 10 data files are selected to
create the dataset, which corresponds to 10 classes: 1) normal;
2) inner race-D0.007; 3) inner race-D0.014; 4) inner race-
D0.021; 5) ball-D0.007; 6) ball-D0.014; 7) ball-D0.021;
8) outer race-D0.007; 9) outer race-D0.014; and 10) outer race-
D0.021, for example, where the inner race-D0.007 represents
that fault occurs in the inner race of the bearing and the fault
diameter size is 0.007 In. Ninety-four training samples and
24 testing samples are cut from a file with no overlap between
samples. The sample length is 1024 points and the sampling
rate is 12k. The CWRU dataset setting is detailed in Table I.
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Fig. 5. Pipeline of the proposed algorithm.

Fig. 6. Platform of the CWRU dataset [29].

TABLE I

CWRU DATASET SETTING

The Paderborn dataset [30] is obtained from a horizontal
rotating machine (see Fig. 7) equipped with a variety of
bearings and sensors, including artificial and natural faults
under various working conditions. In our experiments, the
dataset is set closer to engineering applications and the
c1 current signals are selected instead of the vibration signal,
making the dataset more difficult to distinguish. The fault
types include normal, inner ring faults, and outer ring faults.
In each fault type data, five bearing data are selected under the
working condition of rotational speed 1500 rpm, load torque
0.1 N.m, and radial force 1000 N. Twenty tests are performed
on each bearing, four of which are used for testing, and the
other for training. The samples are cut from signals in turn
and each sample has 5120 points with 1024 points overlapping
the previous sample. The sampling rate is 64k. The collected
dataset is marked as Paderborn-c1. The detail of the dataset is
shown in Table II.

Fig. 7. Platform of the Paderborn dataset [30].

TABLE II

PADERBORN-C1 DATASET SETTING

TABLE III

AMB-Y2 DATASET SETTING

The AMB-Y2 dataset is collected from a vertical machine
supported with active magnetic bearings (as shown in Fig. 8).
Four types of faults including normal, rotor unbalance,
misalignment, and rub impact are captured from the Y2
displacement sensor. The sampling rate is 25k, and each
sample contains 4096 points with 462 points overlapping. For
each class, the number of samples for training is 450, and
the test number is 1190, 1582, 838, and 370, respectively
(see Table III).

B. Experimental Setting

Each experiment is run 10 times, with a random split of
testing and training samples from the dataset. To assure the
reliability of verification, the average accuracy with standard
deviation is used as the final result.

Support vector machines (SVMs) with RBF kernel,
AdaBoost, CNN, GCN, HGNN, and MrHGNN are introduced,
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Fig. 8. Platform of the AMB-Y2 dataset [31].

TABLE IV

PERFORMANCE OF SIX ALGORITHMS ON THREE DATASETS

and all employ FFT features for a fair comparison. The CNN is
composed of two convolution layers, two max-pooling layers,
and three fully-connected layers. The latter three are graph
learning algorithms and all are designed as a two-layer neural
network structure with a hidden dimension of 128 and an
adjacent node number of 10. The number of resolutions of
MrHGNN is set to 4. The neural network-based algorithms
are all trained over 1000 epochs.

The CPU of computer is Intel(R) Xeon(R) CPU E5-2697 v4
@ 2.30GHz, and the GPU is NVIDIA GeForce GTX 3090 Ti.
The software is Pytorch 1.10.1 and THU-DeepHypergraph
Toolbox [24], [27].

C. Comparison of Multiple Algorithms

Table IV shows the results of six algorithms applied to the
three datasets. In general, MrHGNN outperforms the others
on the three datasets.

On CWRU, all algorithms have achieved near-perfect recog-
nition accuracy. The result of MrHGNN is comparable to that
of other algorithms and close to 100%. Since CWRU is a
benchmark in fault diagnosis research, it just demonstrates the
feasibility of MrHGNN.

Paderborn-c1 is the most challenging of the three datasets
since the current signal is used rather than the vibration
signal and the training and test samples come from different
tests. The graph-based algorithms beat both the traditional
machine-learning algorithm SVM and deep-learning algorithm
CNN because they take advantage of sample correlations in
Paderborn-c1. By capturing high-order correlations between
data, HGNN and MrHGNN achieve higher recognition accu-
racy than GCN. Furthermore, MrHGNN outperforms HGNN

Fig. 9. Confusion matrices of MrHGNN verified on the three datasets.
(a) CWRU. (b) Paderborn-c1. (c) AMB-Y2.

by about 4% since MrHG is closer to the inherent structure
of the dataset than the general hypergraph.

On AMB-Y2, GCN performs not better than SVM, indicat-
ing that the pairwise correlation has an insufficient influence
on the final classification result in this dataset. Hence, com-
pared with CNN, MrHGNN has a 1.45% lower recognition
accuracy but still gets superior results in three graph learning
algorithms.

The confusion matrices of MrHGNN performed on three
datasets are depicted in Fig. 9.

As shown in Table V, because each hypergraph convolution
layer has just one parameter matrix to learn and all operations
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TABLE V

TRAINING TIME COST OF ALGORITHMS PERFORMED
ON THE THREE DATASETS

Fig. 10. Comparison of GCN, HGNN, and MrHGNN with a variation of K .

are matrix multiplications, MrHGNN is trained considerably
faster than the CNN with the use of GPU. When there are more
samples, MrHGNN takes less time to train than conventional
machine-learning algorithms like SVM and AdaBoost.

It is worth noting that MrHGNN may achieve superior
results by utilizing more discriminative node features or
adding more training tricks. However, the purpose of the
aforementioned series of experiments is to demonstrate that:
1) as a module or a learning mechanism, MrHGNN acts
better than GCN and traditional shallow learning algorithms
in many scenarios; 2) MrHG has great potential for finding
the high-order correlation between samples and approaching
the inherent structure of data, which helps to improve the
performance; and 3) the training process of MrHGNN is much
faster than that of CNN.

D. Influence of Adjacent Node Number K

The adjacent node number K is preset to generate a graph
or hypergraph from unstructured data. A central node and its
K neighbors build a hyperedge in a hypergraph to represent
their shared properties, whereas pairwise relationships between
a central node and its K neighbors are described in a simple
graph. The performance of GCN, HGNN, and MrHGNN on
Paderborn-c1 as K varies is illustrated in Fig. 10.

The three algorithms perform better as K increases. When
compared to HGNN and MrHGNN, GCN’s accuracy is less
accurate and develops more slowly. The hypergraph will
degenerate into a simple graph when K for HGNN and
MrHGNN is equal to 1. With the increase of K , the hyperedge

Fig. 11. Influence of the parameter s.

information becomes rich, and the common attribute informa-
tion of the nodes on the same hyperedge can be expressed.
It is important to note that when K exceeds a certain value,
the performance of HGNN and MrHGNN hardly increases
anymore or even decreases. It makes sense that if there are too
many nodes located on a hyperedge, the common information
of these nodes becomes reduced, weakening the information
of the hyperedge feature after aggregation.

Compared to HGNN, MrHGNN achieves the maximum
recognition accuracy at a larger K value. Low-resolution
subhypergraphs can extract common correlation information
at greater K because rich signal features are lost but rich
common attributes remain among the low-resolution samples.
As a result, even after HGNN reaches its maximal accuracy,
MrHGNN’s performance can still be enhanced.

E. Influence of the Resolution Number s

The resolution number s is also the parameter of MrHGNN.
The larger s, the more detailed the data structure description.
When s = 1, MrHGNN degenerates into HGNN. With the
increase of s, both the dimension of the node features and the
hyperedge number of MrHG gradually increase. Taking the
CWRU dataset as an example, when s = 1, the dimension of
node representation is 512, and the corresponding MrHG con-
tains 1180 hyperedges. When s = 5, the node representation
dimension increases to 992, and the number of hyperedges
reaches up to 5900.

As depicted in Fig. 11, with the increase of s, the result
shows a gradual increase in recognition accuracy for MrHGNN
on the three datasets. However, as s further increases, both the
node feature dimension and the number of hyperedges have
become larger even exceeding the sample number, resulting
in overfitting so that the accuracy is maintained at a certain
level and even decreased slightly. Therefore, it is necessary to
select an appropriate s when applying MrHGNN and find a
balance between the algorithm performance and computational
consumption. It should be noted that the choice of s should
ensure that the low-resolution samples meet the requirements
of the Sampling Theorem to prevent undersampling.

F. Influence of Subhypergraphs Overlapping

MrHG is made up of subhypergraphs constructed by sam-
ples at various resolutions. If the structure of subhypergraphs
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TABLE VI

OVERLAP RATIO OF THE THREE DATASETS

has a large similarity, hyperedges in subhypergraphs will
partially overlap, which reduces MrHG’s ability to express the
inherent structure of the data.

To measure the similarity of two subhypergraphs, define
η(Ha, Hb) as the overlap ratio between two subhypergraphs
as

η(Ha, Hb) = |Ha
⋂

Hb|
|Ha

⋃
Hb| (16)

where |Ha
⋂

Hb| denotes the number of the same hyperedges
in Ha and Hb, and |Ha

⋃
Hb| represents the union of hyper-

edges in Ha and Hb.
From Table VI, it can be seen that all the overlap ratio

in Paderborn-c1 is 0, indicating that different subhypergraphs
have distinct structures for describing the information of the
data. Hence, the improvement of MrHGNN relative to HGNN
is greater than that of other datasets. While the overlap
ratio of AMB-Y2 and CWRU is larger, even reaching 0.74,
which means that MrHG contains a large number of repeated
hyperedges, reducing the effectiveness of MrHGNN.

G. Effect of Noise on the Performance of MrHGNN

To demonstrate that MrHGNN is robust, we manually
introduce random noises to the data and then investigate if
the model’s performance is significantly affected. The amount
of additional noise is gauged using the signal-to-noise ratio
(SNR). The noise decreases as the SNR increases. To evalu-
ate the algorithm’s anti-interference capability, the parameter
accuracy retain ratio (ARR) is defined as

ARR = accuracynoise

accuracynoiseless
(17)

where accuracynoise and accuracynoiseless stand for the algo-
rithm’s accuracy rate with or without noise, respectively. The
value of the ARR shows that, in contrast to the case where
noise is not manually added, the algorithm can maintain
its recognition performance ratio in the presence of noise.
The algorithm’s antinoise ability increases with the ARR
value. Fig. 12 displays the performance of MrHGNN on three
datasets under various levels of noises.

The ARR of MrHGNN is above 98% when the SNR
is higher than 30 dB, keeping a perfect antinoise capacity.
The algorithm’s performance on the CWRU dataset declines
significantly when the SNR is less than 30 dB. Owing to
the fact that the CWRU dataset contains fewer samples of
each type, it causes the intraclass dispersion of the samples
to worsen when noise is severe. In contrast, in the Paderborn-
c1 and AMB-Y2 datasets, MrHGNN can still maintain the

Fig. 12. Performance of MrHGNN on three datasets under various levels of
noises.

ARR greater than 80% even when the SNR = 10 dB, fully
demonstrating the potent anti-interference ability.

H. Conclusion

From the above series of experiments, the following con-
clusions can be drawn.

1) Compared to the simple graph and hypergraph, MrHG
approximates the potential data structure by combin-
ing multiple subhypergraphs under various resolutions.
Therefore, MrHGNN can handle unstructured data with
strong discriminative power.

2) MrHG is constructed based on the KNN principle. The
number of nodes in each hyperedge is determined by the
K value. The hyperedge information grows richer as K
increases, and the common attributes can be extracted
from more nodes. However, when K reaches a certain
value, it leads to a reduction of the efficient information
propagated from nodes to the hyperedge.

3) MrHG consists of subhypergraphs with multiple resolu-
tions. The description ability of MrHG will be improved
by increasing the resolution number s. However, s is too
large to cause time cost and the occurrence of overfitting.

4) The multiple subhypergraphs in MrHG describe the
structure of the data from coarse to fine. When there are
fewer overlapping hyperedges between subhypergraphs,
MrHGNN outperforms HGNN by a substantial margin.
On the other hand, the more overlapping the subhyper-
graphs act, the less the improvement of MrHGNN.

5) MrHGNN exhibits robustness to noises and can maintain
comparable performance even in the presence of severe
noises.

V. DISCUSSION

This article proposes a new fault diagnosis algorithm
MrHGNN. MrHG is generated to incorporate the relationship
between more than two nodes and the potential information
hidden in the unstructured data is mined from coarse to fine.
Fault type is recognized according to MrHG learning in a deep
neural network way and a series of experiments demonstrate
the superior performance of our proposed.
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To improve the effectiveness of fault diagnosis in the future,
we will continue to explore constructing a hypergraph beyond
the KNN mechanism and adaptively learn the correlation
between the samples to approach the inherent structure of data.
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