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We investigated the propagation of turbulent fronts in pipe flow at high Reynolds
numbers by direct numerical simulation. We used a technique combining a moving
frame of reference and an artificial damping to isolate the fronts in short periodic pipes,
which enabled us to explore the bulk Reynolds number up to Re = 105 with affordable
computation power. We measured the propagation speed of the downstream front and
observed that a fit of 1.971 − (Re/1925)−0.825 (in unit of bulk speed) captures this speed
above Re � 5000 very well. The speed increases monotonically as Re increases, in stark
contrast to the decreasing trend above Re � 10 000 reported by Wygnanski & Champagne
(J. Fluid Mech., vol. 59, 1973, pp. 281–335). The speed of the upstream front overall agrees
with the former studies and 0.024 + (Re/1936)−0.528 fits our data well, and those from
the literature. Based on our analysis of the front dynamics, we proposed that both front
speeds would keep their respective monotonic trends as the Reynolds number increases
further. We show that, at high Reynolds numbers, the local transition at the upstream front
tip is via high-azimuthal-wavenumber structures in the high-shear region near the pipe
wall, whereas at the downstream front tip is via low-azimuthal-wavenumber structures in
the low-shear region near the pipe centre. This difference is possibly responsible for the
asymmetric speed scalings between the upstream and downstream fronts.

Key words: shear-flow instability, transition to turbulence, pipe flow

1. Introduction

At sufficiently high Reynolds numbers, once perturbed locally, pipe flow becomes
turbulent and develops two turbulent fronts on the upstream and downstream (Lindgren
1957; Wygnanski & Champagne 1973). The turbulent region expands via the propagation
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of the two fronts and, therefore, the dynamics of the fronts determines how the laminar
flow is entrained into the turbulent region and how fast the turbulent region can expand.
Since Lindgren (1957), many studies have been devoted to studying turbulent fronts in
straight and bent pipes over the past decades (Lindgren 1969; Wygnanski & Champagne
1973; Durst & Ünsal 2006; Nishi et al. 2008; Duguet, Willis & Kerswell 2010; Holzner
et al. 2013; Barkley et al. 2015; Song et al. 2017; Rinaldi, Canton & Schlatter 2019), among
which the global propagation speed of the fronts has been an important subject.

A few studies attempted to theoretically derive the front speed. For the upstream front
(UF), by analysing the energy flux across a control volume enclosing the entire front region
(the part between the parabolic laminar flow on the upstream and fully developed turbulent
flow on the downstream), Lindgren (1969) derived an asymptotic speed of 0.69 in theory,
and speculated 0.64 being a lower limit of the speed in experiments as Re → ∞. However,
as Wygnanski & Champagne (1973) pointed out, these values are rather far away from
experimental measurements at high Reynolds numbers, and a trend approaching these
values was not supported by the measurements. Treating the front as an isosurface of a
proper quantity (e.g. the enstrophy), Holzner et al. (2013) theoretically derived the local
speed of the three-dimensional isosurface relative to the local flow speed, and evaluated
the contributions from different physical mechanisms. Given the local flow speed, one
can in principle calculate an instantaneous axial propagating speed of the isosurface as
a whole. However, as the authors pointed out, the method requires fully resolving the
complex highly convoluted isosurfaces and is challenging to implement for both numerical
simulations and experiments. Besides, the method requires detailed local flow speed at the
isosurface to calculate the global propagation speed of the isosurface.

Regarding the local transition mechanisms at the fronts, qualitatively, instabilities
associated with low-speed streaks were proposed for the UF of turbulent puffs (localised
turbulence with an approximately constant axial extension) and slugs (turbulent structures
expanding along the pipe axis) at low and moderate Reynolds numbers (Shimizu & Kida
2009; Duguet et al. 2010; Hof et al. 2010). However, to our knowledge, there still lacks
a quantitative understanding of the mechanism. As a result, predicting the front speed
theoretically from first principles has not been realised, and determining the propagation
speed by tracking the front remains the main approach in either experiments or numerical
simulations.

Figure 1 presents some important studies on the global propagation speed of the fronts,
in which the bulk Reynolds number is defined as Re = UD/ν with U being the bulk speed
(axial velocity averaged in the pipe cross-section), D the pipe diameter and ν the kinematic
viscosity of the fluid. We use this definition of the Reynolds number, and normalise length
by D and speed by U in this paper. It can be seen that the data sets for the UF speed roughly
agree with each other, whereas they show much scattering for the downstream front (DF)
speed. What is more, relevant study at high Reynolds numbers (�10 000) is rare.

Among the studies, Wygnanski & Champagne (1973) carried out a comprehensive
investigation into the kinematics and structure of the fronts, and considered the highest
Reynolds number so far (up to Re � 60 000). In fact, to our knowledge, their work was
the only one that covers the regime of Re � 10 000. Based on their measurements, the
authors concluded that the speeds of both the UF and DF decrease as Reynolds number
increases above Re � 10 000 such that the difference between the two, i.e. the expansion
rate of the turbulent region, approaches the bulk speed U as Re → ∞ (see figure 1).
However, the basic laminar flow had not fully developed in their pipe at high Reynolds
numbers (indicated by their figure 9). Therefore, the front speeds they reported at high
Reynolds numbers were likely affected by the insufficiently developed basic flow, although
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Figure 1. Global axial propagation speed as a function of the bulk Reynolds number taken from the literature.

they didn’t explain the mechanism responsible for the decreasing trend of the DF speed
above Re � 10 000. Barkley et al. (2015) and Barkley (2016) presented a state-of-the-art
study on the fronts in the transitional Reynolds number regime (Re < 6000) by combining
experiments, numerics and theoretical modelling. Their advection–reaction–diffusion
model describes the front dynamics and kinematics on large-scale in the transitional
regime well. Based on the usual one-dimensional representations of the flow along the pipe
axis (see e.g. Nishi et al. (2008), Duguet et al. (2010) and Song et al. (2017)), Barkley et al.
(2015) and Barkley (2016) assumed that the UF and DF gradually become the mirror image
of each other as Re increases, and predicted that the front speeds will be antisymmetric
about the advection speed of the bulk turbulence at high Re. Their prediction implied
that the DF speed would monotonically increase as Re increases, conflicting with the
measurements of Wygnanski & Champagne (1973). However, their model analysis was
only informed by data (both experimental and numerical) up to Re � 6000, therefore, it is
unclear if the model quantitatively describes the fronts at high Reynolds numbers.

In a word, there has been no consensus on the kinematics of the DF at high Reynolds
numbers. One difficulty in measuring the front speed at high Reynolds numbers in
experiments, especially for the DF, is that the speed takes a long time to saturate given
usual initial perturbations (e.g. transverse jets and impulsive partial blockage) so that the
pipe should be sufficiently long for the DF to develop. Nishi et al. (2008) used a 533D (8 m)
pipe and found that the DF speed experiences long transients and the higher the Reynolds
number, the longer the transient. They only performed measurements up to Re = 11 000.
Wygnanski & Champagne (1973) used a 500D pipe to measure the front speed up to
Re � 60 000. However, they didn’t show the development of the front speed with time and,
therefore, whether or not the front speed had saturated is not clear (it probably had not at
high Reynolds numbers because the basic flow was still developing at their measurement
point). A second difficulty, which is possibly more difficult to overcome, is that small
environmental disturbances may trigger turbulence at high Reynolds numbers and affect
the fronts (Hof, Juel & Mullin 2003; Peixinho & Mullin 2007). Indeed, Wygnanski &
Champagne (1973) noticed increasing low-frequency oscillations as Re increases in their
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basic flow, which may also contribute to the deviation of the basic flow from the parabolic
laminar flow.

In numerical simulations, environmental disturbances can be kept low and periodic
pipes can keep the front from exiting the pipe; however, the fast growth of slugs at high
Reynolds numbers quickly renders the pipe fully turbulent if the pipe is not sufficiently
long. Song (2014) (see their figure 5 of Chapter 3) reported that, by using localised
puffs as the initial perturbation (the turbulent core is approximately 10D long), the pipe
length needed to obtain a saturated DF speed increases as Re increases. For example,
at Re = 3000, the DF speed saturates as slugs grow to a length of approximately 30D,
whereas this length grows nearly linearly to 80D at Re = 4250 and to 125D at Re = 5500.
Therefore, the pipe length should be significantly longer than 125D for Re = 5500 (Song
(2014) used a 180-D pipe). At higher Reynolds numbers, the pipe length, and consequently
the computational cost, grows rapidly. As an estimate, for direct numerical simulation
(DNS) that uses uniform grids in the axial and azimuthal directions, a 250D-long pipe
for Re = 10 000 needs approximately 5 × 108 grid points, and this number grows to
approximately 1 × 1010 for Re = 40 000. Besides the increasing number of grid points,
the decreasing time step size and increasing time for the speed to saturate as Re increases
also make the DNS study in the normal approach infeasible.

In this work, we measure the global axial propagation speed of the fronts using a
technique combining a moving frame of reference and an artificial damping in relatively
short periodic pipes to isolate individual fronts. Besides, by using the well-developed
fronts simulated at close Reynolds numbers as initial conditions, the initial adjustment
of the flow can be drastically shortened. These strategies circumvent the aforementioned
difficulties and enable us to investigate turbulent fronts at unprecedentedly high Reynolds
numbers using DNS.

2. Methods

2.1. Numerical methods
We solve the incompressible Navier–Stokes equations in a moving frame of reference with
a streamwise speed of c and an artificial damping term with the form of −β(z)u, i.e.

∂u
∂t

+ (u + c) · ∇u = −∇p + 1
Re

∇2u − β(z)u, ∇ · u = 0, (2.1)

where u is the velocity with respect to the moving frame of reference and p the
pressure. The volume flux (the bulk speed) is kept constant during the simulation. The
form of the damping term is inspired by Kanazawa (2018). The equations are solved
in cylindrical coordinates (r, θ, z), which represent radial, azimuthal and streamwise
coordinates, respectively. We use the open-source pipe flow code Openpipeflow (Willis
& Kerswell 2009; Willis 2017) to perform the simulations. As β is dependent on z, the
damping term is treated as a nonlinear term in the time stepping. The resolutions for all
simulations performed in this paper are listed in the Appendix.

The moving frame of reference and damping term play the role of tracking and isolating
a front or even a part of a front in a short pipe domain, such that we can explore the high
Re regime. This strategy is only justified if the front is locally self-sustained and does not
depend on the flow far from it. This is true for the fronts of strong slugs according to
Barkley et al. (2015), Barkley (2016) and Song et al. (2017), and will also be evidenced
later in this paper. The DF of puffs and weak slugs at low Reynolds numbers is not
self-sustained, to which our technique may not apply. The damping coefficient β is a
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Figure 2. The damping coefficient β with A = 0.3, z0 = 15 and R = 2.25. The thin red line is for B = 0.125
and the bold blue line is for B = 0.25. Note that a periodic boundary condition is considered for β.

function of only the axial coordinate and will be used to confine the damping effect in
only a part of the pipe. Specifically, we choose the following form:

β(z) = A
(

0.5 − 0.5 tanh
( |z − z0| − R

B

))
, (2.2)

where A is the amplitude, R the nominal half-width of the damping region and B controls
the steepness of the decay of the damping at the boundary of the damping region.
Therefore, this coefficient localises the damping roughly in a region of z0 − R < z <

z0 + R. Ideally, the speed of the moving frame c should be set to the speed of the front,
which, however, is not known a priori. Therefore, c is first estimated (e.g. using the front
speed measured at a close Re) and then adjusted dynamically in run time, so that the axial
location of the front does not change significantly. Figure 2 shows the shape of β given
A = 0.3, z0 = 15 and R = 2.25 with B = 0.25 (the thin red line) and with B = 0.125 (the
bold blue line).

3. Speed measurements

3.1. Validation
First, we validate our technique by comparing the front speed for Re = 5000 with the data
of Barkley et al. (2015) and Song et al. (2017) which were obtained in long stationary
periodic pipes. The system setting is characterised by the pipe length L, a reference
position of the front zf 0 and damping parameters z0, R, A and B as defined in (2.2). For
locating the front in the axial direction, following Song et al. (2017), we set a threshold in
the cross-sectional kinetic energy (KE),

q(z) :=
∫ 1

0

∫ 2π

0
(u2

r + u2
θ )r dθ dr, (3.1)

above which the flow is considered sufficiently turbulent. As Song (2014) and Song et al.
(2017) reported, the specific value of this threshold would not affect the average front speed
as long as it is in a reasonable range.

Figure 3 shows a set-up for the DF at Re = 5000 with a pipe length L = 17.5 (see the
parameters in table 1). We aim to keep the axial location of the front at around zf 0 = 5.
The damping coefficient β is set as that shown in figure 2. This set-up gives approximately
a 7D-long laminar gap between the front and the damping region. Figure 3(a) shows a
snapshot of the front in the r–z cross-section, and figure 3(b) shows q(z) along the pipe
axis. With an estimation of the front speed c0 = 1.50, the axial location of the front
zf is determined using the threshold 5 × 10−4 in q approximately every δt = 6.25D/U,
see figure 4(a). Subsequently the speed of the frame of reference c is dynamically adjusted
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Figure 3. The parameter setting of L = 17.5, zf 0 = 5, z0 = 15, R = 2.25, A = 0.3 and B = 0.25 for Re =
5000. The estimated front speed c0 = 1.50. The damping coefficient β with these parameters is exactly
the one shown in figure 2. (a) One snapshot of the front in the r–z cross-section, in which the transverse

velocity
√

u2
r + u2

θ is colour-coded. The front is on the left (upstream) and the damping region is on the right
(downstream), with the laminar gap in between (the dark region). (b) The quantity q defined in (3.1) is plotted
along the pipe axis at a time instant (red bold line). The horizontal black thin line marks the threshold by which
the location of the front is determined. The nominal axial position of the front is zf = 4.3 at this time instant,
given by the left intersection between the red curve and black line.
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Figure 4. (a) The nominal axial position of the front, determined by the threshold in q as described in the
caption of figure 3, for the DF at Re = 5000. (b) The speed of the frame of reference as a function of time.

according to the location of the front as

c + (zf − zf 0)/δt → c, (3.2)

so that the front does not move too far away from the reference position zf 0 = 5, see
figure 4. Note that other values of δt can be chosen as long as the position of the front
does not fluctuate much. As shown in the figure, this technique indeed can isolate the front
and track it for a very long time (a time window of approximately 1050 D/U is shown in
the figure) in the 17.5D pipe.

As the location of the front only fluctuates slightly around zf 0 = 5 (within 1D) in the
moving frame of reference over a long time, we can approximate the front speed as the
average speed of the frame of reference. In this test, the average of c is approximately
1.518. To show the effect of the pipe length to the front speed, we also measured the
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Re L zf 0 z0 R A B threshold max �t T speed

DF 5000 17.5 5 15 2.25 0.3 0.25 5 × 10−4 2.0 × 10−3 1050 1.518
5000 35 11.5 29 3.5 0.1 0.5 5 × 10−4 2.0 × 10−3 1250 1.520

UF 5000 17.5 10.5 5.0 4.5 0.1 0.25 5 × 10−4 1.25 × 10−3 400 0.630

Table 1. Pipe length, damping parameter setting, threshold in q, time step size and averaging time of the
speed for the DF at Re = 5000.
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Figure 5. (a) The nominal axial position of the UF with the threshold of 5 × 104 in q (see table 1) at
Re = 5000 in the 17.5D pipe. (b) The speed of the frame of reference.

speed in a 35D pipe with the parameters shown in table 1, which gives a laminar gap
of approximately 14D. The measurement gives 1.520 averaged over 1250D/U, which is
very close to the speed measured in the 17.5D pipe. Therefore, it seems that the speed
measured in our simulations is not significantly affected by the pipe length as well as the
spatial extension and strength of the damping. The speed of the DF measured in a 180D
pipe by Barkley et al. (2015) and Song et al. (2017) is 1.498, which agrees with our current
result within an error of approximately 1.3 %. The speed of the UF for Re = 5000 is also
measured in the L = 17.5D pipe with the parameters shown in table 1. The speed is 0.630
averaged over 400D/U (see figure 5), while Barkley et al. (2015) and Song et al. (2017)
reported 0.637 in a 180D pipe. The speed was measured in a shorter time window than
the DF because Nishi et al. (2008) and Song (2014) both reported that the speed of the
UF stabilises much more quickly and fluctuates much more weakly than that of the DF,
which was indeed also observed in the present work (to compare the fluctuations of the
front position and frame speed in figures 4 and 5). Table 1 summarises the parameters and
measured front speeds of these tests.

These tests suggest that this technique indeed enables us to study turbulent fronts in short
periodic pipes without significant domain size effect. Besides serving as a validation, the
results shown here also suggest that the front is indeed locally self-sustained and does
not depend on the turbulent flow far from it, as the front speed does not change if the
turbulence sufficiently far from it is damped. It should be noted that, the total observation
time (1050D/U) of the well-developed DF in this 17.5D pipe based on a single run is
roughly the same as the sum of the observation time of Song (2014) based on 20 runs with
different puffs as initial conditions in a 180D pipe. In comparison, the computational cost
is greatly reduced by using this technique.
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Re L zf 0 z0 R A B threshold max �t T speed

DF 7500 17.5 5 15 2.25 0.30 0.25 5 × 10−4 1.25 × 10−3 1000 1.650
10 000 17.5 6 15 2.25 0.35 0.25 5 × 10−4 1.25 × 10−3 1350 1.710
17 500 17.5 5 15 2.25 0.35 0.25 5 × 10−4 1.00 × 10−3 390 1.793
25 000 17.5 5 15 2.25 0.35 0.25 5 × 10−4 5.00 × 10−4 180 1.867
25 000 17.5 9 15 2.25 0.35 0.25 5 × 10−4 6.25 × 10−4 180 1.847
40 000 17.5 9 15 2.25 0.35 0.25 5 × 10−4 3.00 × 10−4 100 1.877

UF 7500 17.5 10.5 4.75 4.25 0.30 0.25 5 × 10−4 1.25 × 10−3 750 0.511
10 000 17.5 10.5 4.75 4.25 0.30 0.25 5 × 10−4 1.25 × 10−3 500 0.447
17 500 17.5 10.5 5.5 2.5 0.35 0.25 5 × 10−4 5.00 × 10−4 100 0.343
25 000 17.5 10.5 5.5 2.5 0.35 0.25 5 × 10−4 3.10 × 10−4 100 0.290
40 000 17.5 10.5 5.5 2.5 0.35 0.25 5 × 10−4 1.25 × 10−4 25 0.233

Table 2. Reynolds number, damping parameters, threshold in q, time step size and averaging time of the speed
for the DF (top) and UF (bottom) in the 17.5D pipe. All parameter settings assure that q drops by at least four
orders of magnitude as turbulence passes the damping region and that q drops away from the front naturally
by approximately four orders of magnitude (see the example for Re = 5000 in figure 3). Two settings of zf 0 are
compared for the DF at Re = 25 000, which differ by approximately 1 % on the front speed.

(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

(i)

( j)

Figure 6. Fronts as Re increases: (a–e) UF; (f –j) DF. The Reynolds numbers (a, f –e,j) are 5000, 7500,
10 000, 25 000 and 40 000, respectively. A 9D-long pipe section is shown.

3.2. Fronts at high Reynolds numbers
With the parameter settings for the 17.5D pipe as shown in table 2, we simulated the fronts
and measured the front speed up to Re = 40 000. The structure of the fronts at several
Reynolds numbers ranging from 5000 to 40 000 are visualised in figure 6. Overall, as Re
increases, the front regions on both the upstream and downstream become longer in the
axial direction, i.e. visually the fronts become more slender and reach farther into the
laminar region. The measured speeds are shown in table 2.

However, at Re = 40 000 the number of grid points becomes very large even for the
17.5D pipe, which reaches approximately 8.5 × 108. The other restricting factor is the
rapidly decreasing time step size. Our time step size controller gives approximately
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(a) Downstream front Damping

(b)

(c)

(d )

(e)

( f )

(g)

Figure 7. Visualisation of local transition at the DF at Re = 25 000 in the moving frame of reference. (a) A

snapshot of the cross-stream velocity
√

u2
r + u2

θ in the z–r plane of the 17.5D pipe. Panels (b–g) show the
flow in the region enclosed by the green rectangle in panel (a) at several time instants. Consecutive panels are
separated by 0.875D/U. In panels (b–g), vertical arrows and tilted arrows mark two local transition events.

1.25 × 10−4D/U to assure convergence for simulating the UF and 2.5 × 10−4D/U for
simulating the DF, given the same grid resolution setting, due to the explicit treatment of
the damping term in the time stepping. Therefore, the computational cost becomes so high
that we can only afford to measure the DF speed over a time window of 100D/U and the
UF speed over a time window of 25D/U. In order to obtain reliable statistics of the front
speed at Re = 40 000 and to consider higher Re, we had to reduce the pipe length further
to reduce the cost.

The following observation suggests that further reduction in the pipe length is possible.
Figure 7(a) visualises the DF at Re = 25 000 simulated in a 17.5D pipe. The flow inside
the green rectangle enclosing a part of the DF is visualised at a few time instants in
figure 7(b–g). Local transition to turbulence at the tip of the front (close to the pipe centre)
can be observed, see the evolution of the flow structures pointed to by the vertical and
tilted arrows in figure 7(b–g). Initiating near the pipe centre, these structures appear to be
stretched, and strengthen while extending toward the high shear region near the pipe wall.
The slowing down (moving to the left) of the structures while approaching the wall, mainly
due to the decreasing local flow speed, is clearly indicated by the axial locations of their
upstream tips (see the arrows) in this frame of reference comoving with the DF. In fact,
because of the radial turbulent momentum transport, the generated turbulent fluctuations
will also extend toward the pipe centre and be advected downstream by the high speed flow
at the pipe centre. This possibly triggers successive local transitions at the tip of the DF.
However, as the flow is already turbulent near the pipe centre, this feedback process cannot
be clearly seen; see supplementary movie 1 available at https://doi.org/10.1017/jfm.2021.
1160 for more detailed dynamics at the DF. At the UF, similar local self-sustaining scenario
was observed as shown in figure 8, but the difference is that the local transition initiates
in the near-wall region. The generated turbulent fluctuations feedback the near-wall region
and also extend toward the pipe centre and speed up due to the increasing local flow speed.
The turbulence eventually merges at the pipe centre, filling the whole pipe cross-section;
see supplementary movie 2 for more details. (We will revisit the transition scenario at
the front tips in § 4.2.) Shimizu & Kida (2009) and Duguet et al. (2010) reported similar
processes at the UF of puffs and slugs at much lower Reynolds numbers. According to this
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(a) Upstream frontDamping

(b)

(c)

(d )

(e)

( f )

(g)

Figure 8. Visualisation of local transition at the UF at Re = 25 000 in the moving frame of reference. The
same quantity as in figure 7 is plotted. In panels (b–g), consecutive panels are separated by 0.625D/U.

Upstream front

Downstream front

Damping

Damping(a)

(b)

(c) (d )

Figure 9. The L = 17.5D pipe (a,b) and the 5D pipe (c,d) at Re = 25 000. Panel (a) shows the DF and panel
(b) shows the UF. The vertical green lines in each panel enclose the part of the front that we isolate by using the

5D periodic pipe, as shown in panels (c,d), respectively. The colourmap shows transverse velocity
√

u2
r + u2

θ in
the r–z cross-section. The specific damping parameters are listed in table 2 (17.5D pipe) and table 3 (5D pipe).
Supplementary movie 3 and 4 show the flow in the 5D pipe at the DF and UF, respectively.

scenario, we speculate that the transition process is locally self-sustained at the front tips
and does not depend on the flow sufficiently far away. This localness makes further pipe
length reduction possible.

We reduced the pipe length further to L = 5D to isolate the front tip; see the illustration
in figure 9 for Re = 25 000 (see also supplementary movies 3 and 4). This also relieves
the restriction on the grid spacing and time step size because the flow is relatively less
turbulent at the very tip of the fronts (see the Appendix). The front speeds are measured
for Re = 17 500 and Re = 25 000 again for validation (see table 3). At Re = 17 500, the
averaging time for the DF is the same as in the 17.5D pipe, whereas at Re = 25 000 the
averaging times are significantly enlarged (see tables 2 and 3). For these two Reynolds
numbers, we obtained very close speeds in the two pipes for both the UF and DF,
justifying the use of the 5D pipe at least for the speed measurement (see tables 2 and
3). We were able to significantly increase the averaging time of the front speeds for
Re = 40 000 and, surprisingly, obtained very close values to those averaged over much
shorter times in the 17.5D pipe. This suggests that the saturated front speeds at high
Re do not fluctuate significantly with time, as Song (2014) reported. We then further
measured the DF speed at Re = 60 000 and 105 and the UF speed at Re = 60 000 (see
table 3).
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Turbulent fronts in pipe flow

Re L zf 0 z0 R A B threshold max �t T speed

DF 17 500 5 1.75 4.375 1.125 0.4 0.1 1 × 10−4 1.0 × 10−3 390 1.808
25 000 5 1.25 4.375 1.125 0.4 0.1 1 × 10−4 7.5 × 10−4 400 1.853
40 000 5 1.75 4.375 1.125 0.4 0.1 1 × 10−4 7.5 × 10−4 250 1.893
40 000 5 1.25 4.375 1.125 0.5 0.1 1 × 10−4 7.5 × 10−4 100 1.890
60 000 5 1.75 4.375 1.125 0.4 0.1 1 × 10−4 4.0 × 10−4 150 1.913
100 000 5 1.25 4.375 1.125 0.4 0.1 1 × 10−4 3.0 × 10−4 100 1.930

UF 17 500 5 3.5 1.375 1.375 0.5 0.1 1 × 10−4 5.0 × 10−4 200 0.332
25 000 5 3.5 1.375 1.375 0.5 0.1 1 × 10−4 5.0 × 10−4 200 0.287
40 000 5 3.5 1.375 1.375 0.5 0.1 1 × 10−4 3.75 × 10−4 100 0.225
60 000 5 3.5 1.375 1.375 0.5 0.1 1 × 10−4 2.5 × 10−4 55 0.187

Table 3. The Reynolds number, damping parameters, threshold in q, time step size and averaging time of
the speed for the DF (top) and UF (bottom) in the 5D pipe. Two settings for zf 0 are compared for the DF at
Re = 40 000.

3.3. The scaling of the front speed at high Reynolds numbers
Figure 10 concludes the front speeds we measured with a comparison with most relevant
data from the literature, which are also shown in figure 1. The major difference with the
former data sets is that our results give an increasing trend for the DF speed up to Re = 105,
whereas Wygnanski & Champagne (1973) gave the opposite trend above Re � 10 000.
Besides, our data exhibit less scattering.

Intuitively, the DF is not expected to propagate faster than the centreline velocity of
the basic laminar flow and, also, the UF is not expected to propagate upstream in the
laboratory frame of reference against the advection by the basic flow. Based on our results,
we expect both speeds to keep monotonic with Re and asymptotically approach some
values in the range [0, 2] as Re increases. We seek for a scaling of the form a + bRec for
both front speeds, suggested by the model analysis of Barkley et al. (2015). With the data
for Re = 5000 in table 1, for Re = 7500 and 10 000 in table 2, and for Re = 17 500 to 105

in table 3, we obtained best fits with the least square errors and slightly reformulated the
scalings as

cDF ≈ 1.971 − (Re/1925)−0.825, (3.3)

cUF ≈ 0.024 + (Re/1936)−0.528, (3.4)

where cDF denotes the DF speed and cUF the UF speed. These two scalings are plotted as
black solid curves in figure 10(b), which can be seen to fit our data (red filled circles) very
well. Besides, the scaling of the cUF (3.4) also fits the data from the literature very well.
One can notice that the scaling of cDF also fits the data from Barkley et al. (2015) down to
Re � 3500 well, while deviations are observed at lower Re. This can be expected because
the fit (3.3) is based on data for strong fronts at high Re, while the DF is weak below
Re � 2900 and the transition from weak DF to strong DF completes close to Re � 3500
according to Song et al. (2017).

4. Discussion

Barkley et al. (2015), by theoretical modelling and asymptotic analysis in a model system,
proposed that, in the limit of an asymptotically strong front, the speeds of both fronts obey
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Wygnanski & Champagne (1973)
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Figure 10. (a) Front speed as a function of Re. Some data sets from figure 1 are repeated here for
comparison. (b) Our data (symbols) plotted in log–log scale. Lines show the fits (3.3) and (3.4).

the scaling of a + bRe−0.5, where a and b are constants and are different for the UF and DF.
Their DNS and experimental data up to Re = 5500 in long pipes showed that the UF speed
seems to approximately follow this scaling. Their data for the DF in the strong front regime
(above Re � 3500) seem to follow this scaling also. However, the Re range for assessing
the scaling is too narrow (from 3500 to 5500). Here, our simulations up to Re = 60 000
for the UF show that the UF speed indeed closely follows the scaling proposed by Barkley
et al. (2015) based on data in a much smaller Re range, but the DF speed approximately
follows (3.3) from Re = 5000 to 105, in which the power considerably deviates from −0.5.
This disagreement suggests that their assumption that the UF and DF become the mirror
image of each other at high Re may not hold in real pipe flow.

Undoubtedly, results in the Re regime of the present work may not be simply
extrapolated to infinite Re, and we are not proposing the scalings (3.3) and (3.4) as
the asymptotic scalings as Re → ∞. Besides, our results for high Re are based on
measurements over O(100) time units. Although the results of Song (2014) showed that
the fluctuation of the front speed decreases as Re increases, and therefore the front speed
measured in a reasonably long time interval will be increasingly representative as Re
increases, we cannot rule out the possibility of considerable migration over larger time
spans in the front speed (especially for the DF). Nonetheless, in the following, we propose
that the monotonicity of the characteristic speed of both fronts will persist as Re increases
further.
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Figure 11. Azimuthally averaged production and dissipation in the r–z cross-section at the UF (a,c) and DF
(b,d) for Re = 25 000. The length in the vertical direction is stretched by a factor of eight in order to better
display the distribution of the terms in the radial direction. In all panels, a pipe segment of 12.5D is shown.
Here (a) P, UF; (b) P, DF; (c) ε, UF; (d) ε, DF.

4.1. Production and dissipation of KE at the fronts
As we showed in figures 7 and 8, the local transition at the DF is initiated near the pipe
centre and close to the pipe wall at the UF. This observation can be more quantitatively
shown by the energy budget analysis.

Following Song et al. (2017), we calculated the production and dissipation of the KE
associated with velocity fluctuations approximately for the mean flow in the frame of
reference comoving with the fronts, and the calculation is performed for the two fronts
separately. Specifically, the production P and dissipation ε are calculated as

P = −u′
iu

′
j
∂ui

∂xj
, ε = 2

Re
sijsij, (4.1a,b)

in which the overbar denotes the average over time and over the azimuthal direction in the
moving frame of reference, the prime denotes the velocity fluctuation with respect to the
mean flow u(r, z), xj denotes the spatial coordinates and sij is the fluctuating rate of strain
defined as

sij = 1
2

(
∂u′

i
∂xj

+
∂u′

j

∂xi

)
. (4.2)

Figure 11 shows our calculation of P and ε at the fronts for Re = 25 000 in the 17.5D
pipe. It can be seen that at the UF (figure 11a), production is highest in a thin layer near
the pipe wall, as in the fully developed bulk region (Dimitropoulos et al. 2001; El Khoury
et al. 2013), and in a more extended tilted region stretching from the near-wall region to the
pipe centre, which extends more than seven diameters long in the axial direction. There is
a gap with relatively lower production rate between these two regions. Similar distribution
can be seen for the dissipation, except for that the dissipation rate in the extended tilted
region is considerably lower than that in the near-wall region. At the DF, the production
and dissipation rates are highest in a tilted region significantly far from the wall, and the
downstream tip of this region protrudes into the laminar flow region close to the pipe
centre (see figure 11b).
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Figure 12. The profiles of production (bold red) and dissipation (thin blue) at several axial positions for the
UF (a–c) and DF (d–g) for Re = 25 000. The data are taken from that shown in figure 11. Here P and ε are
normalised by the maximum of the two over the radius, i.e. max{maxr P, maxr ε}, at respective axial positions.
The insets in panels (a,c–e) show the near-wall region. Here (a) z = 10; (b) z = 15; (c) z = 17.5; (d) z = 0.5;
(e) z = 5.0; ( f ) z = 7.5; (g) z = 10.

The radial distributions of P and ε at the fronts can be more quantitatively shown by the
radial profiles of the terms, see figure 12 for Re = 25 000. The double-peak structure of P
and ε at the UF can be clearly seen in figure 12(b,c), which was also reported by Wygnanski
& Champagne (1973). Two peaks in P can be observed even at the upstream tip of the front
where P and ε are very low (see figure 12a). The two peaks correspond to the near-wall
region and the tilted region at the fronts as shown in figure 11(a,c), respectively. The flow
at z = 0.5 for the DF is close to a fully developed turbulent flow. In viscous units, the
peak of the production in figure 12(d) is approximately at y+ ≈ 10, which is at the bottom
of the buffer layer, whereas the dissipation is dominant in the sublayer and peaks at the
wall. The production nearly vanishes close to the pipe centre, whereas the dissipation is
low but stays finite. These distributions of P and ε are similar to typical profiles for fully
developed turbulent flow from the literature (Dimitropoulos et al. 2001; El Khoury et al.
2013). Figure 12(e–g) shows that as the axial position moves toward the tip of the DF, the
region for P moves toward the pipe centre and at z = 10, the peak of P is approximately
at r = 0.2D. Only a single peak can be observed at most part of the DF, in contrast to the
UF.

The distributions of P and ε are consistent with our observation of the dynamics at the
fronts illustrated by figures 7 and 8. At the UF, figure 8 shows that the transition is initiated
at the tip of the front, which is close to the pipe wall, and the generated flow structures
extend toward the pipe centre while being advected downstream by the faster flow. In
this process, the turbulence strengthens presumably due to the stretching of the local
mean shear (see evidence for the fronts of puffs by Holzner et al. (2013)). The turbulent
KE will be produced during the spreading and strengthening of velocity fluctuations.
Therefore, one can expect that a high-P region would appear as a tilted region connecting
the near-wall region where the transition is initiated and the pipe centre where turbulence
merges and fills the whole pipe cross-section (see the tilted red region in figure 11a).
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With a strong production comes also a strong dissipation in the same region (see
figure 11c), but the production outweighs the dissipation (see also figure 12b). The
continuing transition and formation of turbulence at the tip (near pipe wall) and the
spreading of the turbulence toward the pipe centre, counteracting the distorting effect of
the advection of the local mean flow, together keep the characteristic shape of the front
(see figure 6). At the DF, a similar transition scenario occurs as illustrated in figure 7. The
distinction to the UF is that the local transition at the front tip is initiated near the pipe
centre, and the generated turbulence spreads toward the pipe wall while being advected
upstream relative to the front tip.

4.2. The trend of the front speed as Re → ∞
Based on our observation of the dynamics at the fronts and the energy budget analysis, we
propose that the trends of the front speeds will stay monotonic, i.e. the speed of the DF
will keep increasing and the UF speed will keep decreasing as Re increases further.

As the tip of the fronts can be self-sustained, the transition at the tip must be triggered by
velocity disturbances locally. As the adjacent flow is laminar, the disturbances that trigger
the transition necessarily originate from the turbulent region. One possibility is that, at the
UF, velocity disturbances close to the pipe wall, which propagate at low speeds due to the
slow advection by the local mean flow, protrude from the turbulent region and trigger the
transition. The generated turbulence locally feeds back the near-wall region with velocity
disturbances, closing the self-sustaining cycle. It was proposed in the literature for puffs at
low Reynolds numbers that low speed streaks protrude from the turbulent region at the UF
and cause instabilities (Kelvin–Helmholtz by Shimizu & Kida (2009) and inflectional by
Hof et al. 2010), sustaining the puffs. Our observation suggests that similar mechanisms
may also take part at much higher Reynolds numbers. At the DF, disturbances close to
the pipe centre, which propagate at high speed because of the advection of the mean flow,
trigger the local transition at the front tip. Similarly, the generated turbulence feeds back
the centre region with velocity disturbances. The self-sustainment is the reason why the
front tips can be isolated without significantly affecting the kinematics of the fronts.

Positive P − ε, referred to as the net production, is a signal for turbulence strengthening
and therefore, presumably, can also be considered as a signature for the transition to
turbulence at the front tip. It is expected that the net production would be very small at
the early stage of the transition. Due to limited data for the energy budget analysis (we
didn’t save the velocity field frequently due to the large data size) and numerical errors,
very low-level net production could be a false positive. Therefore, it is difficult to quantify
the precise position of the transition at the front tip using this quantity in practice, because
it is difficult to define a clear-cut threshold for the transition. Nevertheless, the regions
enclosed by the contour lines with low contour levels in figure 13 can still be used to
illustrate the trend of the position of the local transition at the front tip as Re increases. As
can be seen, the region with net production moves closer to the pipe wall as Re increases
at the UF, whereas it moves closer to the pipe centre as Re increases at the DF (especially,
see the position of the noses of the contour lines shown in the insets of figure 13). This
observation indicates that as Re increases, the position of the front tip where transition is
initiated moves toward the pipe wall at the UF and moves toward the pipe centre at the
DF. In other words, transition-inducing velocity disturbances are located closer to the pipe
wall at the UF tip and are located closer to the pipe centre at the DF tip as Re increases.

In the following, we propose that the propagation speed of transition-inducing
disturbances at front tips should be largely determined by the local mean flow speed.
Studies have shown that, at least in fully developed turbulent channel and pipe flows, the
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Figure 13. Contour lines of the net production P − ε at the front tip plotted in the r–z plane. (a) The contour
level of 10−6 at the UF. (b) The contour level of 10−5 at the DF. The positions of the fronts are shifted in the
axial direction such that the nose of these contour lines are approximately located at the same axial position for
comparison. The ruggedness in some contour lines are due to the limited data for the energy budget analysis.
The insets show the trend of the radial position of the nose of the contour lines, i.e. the leftmost point for the
UF and the rightmost point for the DF.

advection speed of velocity fluctuations is close to (slightly slower than) the local mean
flow speed except for the region very close to the wall with y+ � 10, where the propagation
speed of velocity fluctuations is considerably faster than the local mean flow (Del Álamo
& Jiménez 2009; Pei et al. 2012; Wu & Moin 2012). Therefore, these studies suggest
that the region where the propagation speed of velocity fluctuations significantly deviates
from the local mean flow speed is the near-wall region where dissipation and production
are large and strongly differ from each other (see the part of r � 0.48 in figure 12d).
While velocity fluctuations roughly follow the local mean flow in regions sufficiently far
from the wall where production and dissipation are low or are nearly in balance, such
as near the pipe centre and at the front tips. Consequently, the propagation speed of the
transition-inducing velocity disturbances at the front tips should be largely determined by
the local mean flow speed. Therefore, the trends in the radial position of the front tips
shown in figure 13 suggest that the UF speed should decrease and the DF speed should
increase as Re increases. This argument is consistent with our data in the considered Re
range.

Although we do not have data at further higher Re, the trends can be expected to persist
as Re increases further because of the following argument. It has been known that, as Re
increases, the amplitude of disturbances needed to trigger turbulence decreases (Hof et al.
2003; Peixinho & Mullin 2007). Therefore, it can be expected that the transition at the
UF tip would occur closer to the pipe wall as Re increases, because disturbances closer
to the wall, which are in general of lower amplitudes, would be sufficient to trigger the
transition. As a result, the speed of the UF would keep decreasing as Re increases. At the
DF tip, the closer to the pipe centre the weaker the velocity disturbances (see figure 14 and

the contours of
√

u2
r + u2

θ at the tip of the fronts in figure 7), and the faster the disturbances
propagate due to the faster advection by the local mean flow. This distribution at the DF can
be understood from another perspective. As figure 12(e–g) show, the dissipation outweighs
the production near the pipe centre and the difference between the two terms is largest at
the pipe centre. Thus, the turbulent KE can be expected to be lower when closer to the pipe
centre. As weaker disturbances are sufficient to trigger transition as Re increases, it can be
expected that the position where transition initiates at the DF tip would move toward the
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Figure 14. (a) The distribution of the azimuthally and temporally averaged turbulent KE (KE =
u′2

r + u′2
θ + u′2

z ) in the z–r cross-section at the DF. (b) The distribution of KE along the pipe axis r = 0 (thin
black) and at r = 0.2 (bold red). (c) The distribution of KE along the radius at z = 10.

pipe centre as Re increases, just as figure 13(b) suggests. Consequently, it can be inferred
that the DF speed will keep increasing as Re increases.

As far as we can see, there is no mechanism that causes the DF to decelerate toward the
bulk speed in the limit of Re → ∞. The decreasing trend Wygnanski & Champagne (1973)
reported at high Re should be attributed to the insufficient pipe length they used which did
not even allow the basic laminar flow to fully develop before leaving the pipe exit, let alone
the front speed. Their UF speed was not severely affected, because the developing blunted
basic flow profile deviates from the parabolic profile most severely near the pipe centre,
but only slightly near the pipe wall given the cylindrical geometry (see their figure 9). In
fact, the decreasing trend of their DF speed supports our argument that the front speed
is largely determined by the local flow speed at the front tip, given that the basic flow is
more blunted (less developed) in their pipe as Re increases and consequently the local flow
speed at the tip of the DF decreases.

It is interesting to note that, if the fittings (3.3) and (3.4) would apply in the limit
of Re → ∞, one would see that the DF speed would not approach exactly 2U and that
the UF speed would not approach zero precisely. This would imply that, even at infinite
Re, pipe flow would not become absolutely unstable (UF speed stays finite), and that
the transition-inducing velocity disturbances would propagate slightly slower than the
centreline velocity of the basic laminar flow.

4.3. The flow structures at the two front tips
Although the mechanism of the local transition at the front is still far from being clear,
based on our analysis, we speculate that the transition mechanism at the UF is possibly
different from that at the DF, because the transition occurs in the high shear region near
the wall at the UF but in the low shear region near pipe centre at the DF. In the following,
we show the flow structures at the two fronts.

Figure 15 visualises an instantaneous flow field at the front tips at Re = 40 000 in the 5D

pipe. The cross-stream velocity
√

u2
r + u2

θ near the front tips are plotted in figure 15(a,b).
The shown region is the z–r cross-section of a 1.7D pipe segment. The vertical lines mark
the tip of the fronts, where, roughly, transition to turbulence is initiated (judged by eye).
The azimuthally averaged streamwise velocity profiles, i.e. the local mean profiles, at the
vertical lines are plotted in figure 15(c,d), which are nearly parabolic. Slight deviations
can be observed very close to the wall at the UF and very close to the pipe centre at
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Figure 15. The cross-stream velocity
√

u2
r + u2

θ in the z–r plane at the tip of the UF (a) and DF (b) at Re =
40 000. (c,d) The profiles of the streamwise velocity, averaged in the azimuthal direction, at the positions
marked by the two vertical lines in panels (a,b), respectively. (e, f ) The contours of streamwise velocity deviated
from the parabola in the r–θ plane at the positions marked by the two vertical lines in panel (a,b), respectively.
In panel ( f ), the in-plane velocity is also plotted as a vector.

the DF. In other words, the mean flow modification by the turbulence at the front tips
is very weak. Figure 15(e, f ) show the contours of streamwise velocity components in
the r − θ cross-section at the two vertical lines in figure 15(a,b). At the UF tip, it can
be seen that high- and low-speed streaks with high azimuthal wavenumbers prevail close
to the pipe wall, whereas the flow is nearly laminar elsewhere. Although the cross-stream
velocity is weak (see the contour plots in figure 15a), the magnitude of the streaks can be as
large as O(0.1), i.e. streaks are the dominant flow feature at the tip of the UF. At the DF tip,
flow structures (streaks and vortices) are concentrated close to the pipe centre. A low-speed
region dominates at the pipe centre, but it can be seen that non-axisymmetric components
are of substantial magnitude even in the streamwise velocity component, unlike the weak
DF at much lower Re where axisymmetric flow dominates (see the analysis of turbulent
puffs and localised invariant solutions in Ritter et al. (2018) at moderate Re).

935 A11-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1160


Turbulent fronts in pipe flow

5. Conclusion

By using a technique combining a moving frame of reference and an artificial damping,
we were able to simulate the fronts at high Reynolds numbers in short periodic pipes. The
applicability of this technique confirms that the fronts are locally self-sustained at high
Reynolds numbers. We measured the global propagation speed of turbulent fronts up to
Re = 105 in pipe flow, which is the highest Reynolds number considered so far, to the
best of our knowledge. Our results presented scalings of the front speeds with Re in the
widest Re range so far, see (3.3) and (3.4). The scaling of the UF speed is very close to
that proposed theoretically for a model system by Barkley et al. (2015). The monotonically
increasing trend of the DF speed is in stark contrast to the measurement of Wygnanski
& Champagne (1973) above Re � 10 000, which was affected by the insufficient pipe
length that didn’t allow the flow to fully develop. Besides speed measurement, we also
qualitatively discussed the mechanism that determines the front speed, which can be
summarised by the following points.

(a) A strong front can keep a characteristic shape and speed because there is transition
to turbulence continually occurring at the tip of the fronts (see figures 7 and 8 and
the supplementary movies). The speed of the fronts should be determined by the
radial position of the transition at the front tips.

(b) Our energy budget analysis showed that the position of the transition at the front
tip moves towards the wall at the UF and moves towards the pipe centre at the
downstream front, as figure 13 shows. This is consistent with the known fact that, as
Re increases, the amplitude of perturbations needed to trigger pipe flow turbulence
decreases.

(c) The trend in the front position suggests the monotonic trend in the front speed. The
closer to the pipe wall, the lower the local flow speed at the UF tip. Therefore, one
can expect a lower convection speed of the transition-inducing disturbances so that
there is a lower UF speed. On the contrary, the closer to the pipe centre, the faster
the local flow speed at the DF tip. Therefore, one can expect a faster convection of
the transition-inducing disturbances so that there is a faster DF speed (approaching
a limit).

Based on our analysis, we proposed that the speeds of both fronts would keep their
respective monotonic trends as Re → ∞. We also showed that the flow structures at
the tips of the UF and DF, where local transition to turbulence continually occurs, are
different. At the UF, the transition occurs in a high shear region near the pipe wall and the
dominant structures exhibit high azimuthal wavenumbers, whereas the transition occurs in
low shear region close to the pipe centre at the DF, exhibiting low azimuthal wavenumbers
(but not axisymmetric). The different transition scenarios are possibly responsible for the
asymmetry in the scaling of the two fronts. However, more quantitative studies are needed
in the future for elucidating the instability and transition mechanisms at the front tip, which
fundamentally determine the kinematics and flow structures of the fronts.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1160.
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Figure 16. The velocity spectra for the DF in the 17.5D (red) and 5D (blue) pipes at Re = 25 000 using the
resolutions shown in tables 4 and 5. The horizontal axis represents the index of the Fourier modes (streamwise
mode k or azimuthal mode m) and the vertical axis represents the modulus of the Fourier coefficient, maximised
over three velocity components, radial direction and one of the two wavenumbers. Each data set is normalised
by its maximum in order to compare the decrease in the spectra between different sets.
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Appendix. Grid resolution

For the simulations in the 17.5D pipe, we used typical grid resolutions for DNS of fully
turbulent flow (see e.g. Wu & Moin 2008; Ahn et al. 2015). Specifically, we used a grid
spacing of �z+ ≈ 7.8–9.6 in the streamwise direction and 0.5D+�θ ≈ 5.6–8.6 in the
azimuthal direction at the pipe wall, in which the normalisation is based on the viscous
length unit evaluated for the fully turbulent flow at the respective Reynolds number; see
table 4 for the detail. These resolutions can assure a decrease of no less than four orders
of magnitude from the lowest to the highest Fourier mode in the velocity spectra, see an
example for Re = 25 000 in figure 16.

The resolutions for simulations in the 5D pipe are listed in table 5. The resolutions for
the UF are nearly the same as those used for the 17.5D pipe. However, the resolutions for
the DF are drastically lowered, see the numbers in the parentheses. As we explained in the
main text, since we only need to simulate the tip of the DF, which is located in the low shear
region near the pipe centre and exhibits larger flow structures than the small length scales
in fully developed turbulent flow, we can resolve the flow using much lower resolution in
both the streamwise and azimuthal directions. Figure 16 shows the comparison between
the velocity spectra of a flow field for the DF simulated in the 17.5D and 5D pipes at
Re = 25 000. As can be seen, both resolutions give a decrease of more than four orders of
magnitude in the velocity spectra and even a lower resolution could have been used for the
simulation in the 5D pipe to obtain an equally well resolved flow field as that in the 17.5D
pipe.
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Re Reτ = uτ D
ν

�r+
min �r+

max 0.5D+�θ �z+ N M K

5000 344 0.07 3.5 5.6 7.8 72 192 768
7500 490 0.06 3.8 8.0 8.4 96 192 1024
10 000 630 0.05 3.9 8.2 9.6 120 240 1152
17 500 1026 0.03 4.0 8.4 9.3 192 384 1920
25 000 1400 0.04 5.4 7.6 9.6 216 576 2560
40 000 2114 0.04 6.6 8.6 9.6 288 768 3840

Table 4. Grid resolutions used for simulations in the 17.5D pipe. Here Reτ and the viscous length unit uτ /ν

are evaluated for the fully developed turbulent pipe flow at the same Reynolds numbers. Grid numbers in the
radial, azimuthal and axial directions are given by N, M and K, respectively. Note that our Reτ should be halved
to compare with the literature in which usually the pipe radius is the reference length scale.

Re Reτ = uτ D
ν

�r+
min �r+

max 0.5D+�θ �z+ N M K

17 500 1026 0.03 4.0 6.3 (16.8) 8.9 (8.9) 192 512 (192) 576 (576)
25 000 1400 0.04 5.4 6.9 (17.2) 9.1 (12.2) 216 640 (256) 768 (576)
40 000 2114 0.04 6.6 6.9 (17.3) 9.2 (16.5) 288 960 (384) 1152 (640)
60 000 3016 0.06 9.4 8.2 (24.7) 9.8 (15.7) 384 1152 (384) 1536 (960)
105 4714 — (0.04) — (9.2) — (28.9) — (20.5) — (384) — (512) — (1024)

Table 5. Grid resolutions used for simulations in the 5D pipe. Here Reτ and the viscous length unit are
evaluated for the fully developed turbulent pipe flow at the same Reynolds numbers. Grid numbers in the
radial, azimuthal and axial directions are given by N, M and K, respectively. The numbers in the parentheses
are for the DF.
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