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Simulating hypersonic flow around a space vehicle is challenging because of the multi-
scale and nonequilibrium nature inherent in these flows. To effectively deal with such 
flows, a hybrid scheme combining the stochastic particle Bhatnagar-Gross-Krook (BGK) 
method with direct simulation Monte Carlo (DSMC) was developed recently, but only 
for monatomic gases (Fei et al. (2021) [29]). In this paper, the particle-particle hybrid 
method is extended to polyatomic gas flows. In the near continuum regime, employing the 
Ellipsoidal–Statistical BGK model proposed by Dauvois et al. (2021) [22] with discrete lev-
els of vibrational energy, the stochastic particle BGK method for polyatomic gases is first 
established following the idea of the unified stochastic particle BGK (USP-BGK) scheme. 
It is proven to be of second-order accuracy in the fluid limit. After that, the USP-BGK 
scheme with rotational and vibrational energies is combined with DSMC to construct a 
hybrid scheme. The present hybrid scheme for polyatomic gases is validated with numer-
ical tests of homogeneous relaxation, 1D shock structure and 2D hypersonic flows past a 
wedge and a cylinder. Compared to the other stochastic particle methods, the proposed 
hybrid scheme can achieve higher accuracy at a much lower computational cost. Therefore, 
it is a more efficient tool to study multiscale hypersonic flows.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Hypersonic gas flows about re-entry space vehicles always exhibit multiscale and nonequilibrium phenomena [1]. For 
the vibrational thermal nonequilibrium, we can still use traditional computational fluid dynamics (CFD) methods most 
of the time, if vibrational modes are modeled by an additional energy equation [2]. However, for the translational and 
rotational thermal nonequilibrium, the continuum equations break down as the Knudsen (Kn) number increases. In this 
rarefied regime, instead of the continuum equations, the Boltzmann equation is required to describe the details of molecular 
motions and collisions. Due to the complexity and high dimensionality of the collision operator, numerically solving the 
Boltzmann equation is not easy. One of the popular Boltzmann solvers for hypersonic flows is direct simulation Monte 
Carlo (DSMC) proposed by Bird [3]. Using stochastic particles, the DSMC method can dramatically reduce the difficulty of 
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high dimensionality. But its efficiency in the continuum regime is quite low as the time step and cell size restrictions are 
dictated by the mean collision time and mean free path, respectively. Therefore, simulating multiscale flows with DSMC 
alone is computationally very expensive.

These time step and cell size restrictions of DSMC (as discussed in [3]) are caused by two issues: the stiffness of the 
Boltzmann collision term [4] and the decoupling of molecular motion and collision in the implementations [5]. For the 
first problem, certain modifications already exist which improve the collision calculation for near continuum flows [4,6,7]. 
Conversely, from the viewpoint of the kinetic model, one also can circumvent the complexity of the Boltzmann collision 
term using simplified kinetic models, such as the Bhatnagar–Gross–Krook (BGK) [8] model or Fokker-Planck (FP) model [9]. 
The BGK model was first proposed to model monoatomic gas flow and then was extended for applications that include 
rotational and vibrational energies [12–17]. As the original BGK model assumes a constant Prandtl number equal to one, 
two kinds of modified BGK models were introduced to ensure correct transport properties, such as the Ellipsoidal–Statistical 
BGK model (ES-BGK) [18] and the Shakhov BGK model [19]. Correspondingly, the BGK models for polyatomic gases can 
also be categorized into these two types [20,21]. Superior to the Shakhov model, according to our knowledge, only the 
ES-BGK model was proven to satisfy the H-theorem in kinetic theory [21]. Recently, an ES-BGK model with discrete levels of 
vibrational energy was proposed by Dauvois et al. [22], which satisfies the H-theorem and corrects the Prandtl number. Most 
of the BGK models were constructed by assuming a continuous distribution of vibrational energy. However, with discrete 
vibrational energy, Dauvois’ ES-BGK model can better approach the physics of hypersonic flows. Therefore, it is selected in 
the present work. In addition, it is worthwhile to mention that the FP model has also been extended for polyatomic gases 
by Gorji and Jenny [23] and by Mathiaud and Mieussens [24,25].

It is noted that these simplified kinetic models can lead to very efficient stochastic particle methods [10,11]. However, 
if a stochastic particle method was implemented in a similar way as conventional DSMC, i.e., by simply splitting molecular 
motions and collisions, its accuracy would reduce to first order in the fluid limit [5,26]. To avoid this strong numerical 
dissipation, Jenny et al. proposed a time integration scheme to solve the molecular motions and collisions simultaneously 
in the Fokker-Planck method [9]. Otherwise, the time step and cell size in stochastic particle methods should be severely 
restricted like DSMC. Recently, a modified stochastic particle method named the unified stochastic particle BGK method 
(USP-BGK) was developed [26] for monatomic gases. In the USP-BGK method, the collision term was decomposed into 
continuous and rarefied parts. Then, by resolving the continuous part with a high-order scheme, the USP-BGK method can 
achieve second-order accuracy in the fluid limit.

Another problem with BGK and FP stochastic particle methods is that both BGK and FP models only are applicable when 
the Knudsen number is not too large [27]. For multiscale flows with a wide range of the Knudsen number, a simple choice is 
to combine a stochastic particle method of the BGK or FP type with DSMC. Different hybrid methods already exist, in which 
DSMC is coupled with BGK [28,29] or FP [30–33] solvers. Compared to the CFD-DSMC hybrid schemes [34–36], particle-
particle hybrid methods are free of the strict requirements on positioning the hybrid interface and no instabilities occur due 
to the coupling of deterministic and stochastic algorithms [37].

For the purpose of efficiently simulating multiscale hypersonic gas flows, in this paper, a USP-BGK method for polyatomic 
gases is first developed to improve the accuracy of the traditional stochastic particle methods in the fluid limit, and then the 
proposed USP-BGK method is combined with DSMC to develop an efficient and robust hybrid scheme for applications over 
the whole range of the Knudsen number. Our paper is organized as follows: in section 2, the ES-BGK model for polyatomic 
gases in Ref. [22] is reviewed. Based on this ES-BGK model, a traditional stochastic particle method is introduced in section 3. 
After that, the USP-BGK method for polyatomic gases is proposed and analyzed in section 4. Further, a corresponding hybrid 
scheme in combination with DSMC is presented in section 5. At last, section 6 provides numerical validations for several 
typical multiscale gas flows.

2. Review of the ES-BGK model for polyatomic gases

The Bhatnagar-Gross-Krook (BGK) model simplifies the Boltzmann collision term using a relaxation process. Recently, 
Dauvois et al. [22] proposed an ES-BGK model with discrete levels of vibrational energy for polyatomic gases, which is given 
by

∂F
∂t

+ V i
∂F
∂xi

= Q (F) = 1

τBG K
(FG −F) , (2.1)

where Q (F ) denotes the ES-BGK collision term and F (V, Ir, I v ; x, t) = ρ(x, t) f (V, Ir, I v ; x, t) is the mass density function 
depending on time t and position x. Further, ρ is the gas density and f is the joint probability density function (PDF) of 
the molecular velocity V, rotational energy Ir and vibrational energy I v . τBG K denotes the relaxation time of the ES-BGK 
model. Since a single relaxation time is not enough to account for the correct Prandtl number as well as the relaxation 
rate of different internal energies, in the ES-BGK model proposed in Ref. [22] a Gaussian distribution FG was introduced to 
replace the Maxwellian distribution, i.e.,

FG (V, Ir, I v ) = ρgtr (V) grot (Ir) gvib (I v ) (2.2)

with
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gtr (V) = 1√
det(2π�)

exp
Å

−1

2
CT �−1C

ã
, (2.3a)

grot (Ir) = �(δrot)

(RT rel
rot)δrot/2

I
δrot −2

2
r exp

Ç
− Ir

RT rel
rot

å
and (2.3b)

gvib (I v ) =
ñ

1 − exp

Ç
− T0

T rel
vib

åô
exp

Ç
− I v

RT rel
vib

å
, (2.3c)

where C = V − U is the peculiar molecular velocity and U is the mean velocity. gtr (V), grot (Ir) and gvib (I v ) are distribution 
functions associated with the translational, rotational and vibrational energies of the gaseous molecules. �(δ) = 1/	 (δ/2)
and 	 is the usual gamma function. For clarity, the functions Ei (F ) = ei(Ti) that map translational, rotational and vibrational 
temperature to the corresponding energies are defined as [22]

Etr(F) = etr (Ttr) = 3

2
RTtr, (2.4a)

Erot(F) = erot (Trot ) = δrot

2
RTrot and (2.4b)

E vib(F) = evib (T vib) = RT0

exp (T0/T vib) − 1
, (2.4c)

where δrot is the number of degrees of freedom of rotation, and T0 is the characteristic vibrational temperature. Moreover, 
the intermediate translational-rotational temperature Ttr,rot and equilibrium temperature Teq are defined as

etr,rot
(

Ttr,rot
)= Etr(F) + Erot(F) and (2.5a)

e
(

Teq
)= Etr(F) + Erot (F) + E vib(F). (2.5b)

According to Eqs. (2.4) and (2.5), related temperatures can be obtained from the inverse functions

Ttr = e−1
tr (Etr) , Trot = e−1

rot (Erot) and T vib = e−1
vib (E vib) , (2.6)

and

Ttr,rot = e−1
tr,rot (Etr + Erot ) and Teq = e−1 (Etr + Erot + E vib) . (2.7)

The translational, rotational and vibrational energies of the gas can be obtained from the ensemble average as

ρEtr(F) =
≠

1

2
C2F

∑
V ,Ir ,I v

, ρErot (F) = 〈IrF〉V ,Ir ,I v
and ρE vib(F) = 〈I vF〉V ,Ir ,I v

. (2.8)

For the discrete vibrational modes I v = iRT0 and 〈φ〉V ,Ir ,i = ∑+∞
i=0

∫
R3

∫
R φ (V, Ir, i) dIrdV denotes the integral of any 

function φ.
In the Gaussian distribution (2.2) the covariance matrix �, the temperatures T rel

rot and T rel
vib are employed to fit different 

relaxation times and given by Ref. [22], i.e.,

� = ηRTeqI + (1 − η)
[
θ RTtr,rot I + (1 − θ) (ν� + (1 − ν)RTtrI)

]
, (2.9)

erel
rot = ηerot(Teq) + (1 − η)

[
θerot (Ttr,rot) + (1 − θ)Erot (F)

]
, (2.10)

erel
vib = ηevib(Teq) + (1 − η)E vib(F), (2.11)

where η, θ and ν are relaxation coefficients. � is related to a pressure tensor, i.e.,

ρ� = 〈C ⊗ CF〉V ,Ir ,I v
, (2.12)

and T rel
rot and T rel

vib are calculated from erel
rot and erel

vib as

T rel
rot = e−1

rot

Ä
erel

rot

ä
and T rel

vib = e−1
vib

Ä
erel

vib

ä
. (2.13)

The transfer between translational and rotational energies and that between translational-rotational and vibrational en-
ergies is determined by the relaxation coefficients θ and η, respectively. As shown in Ref. [22],

η = 1

Z vib
and θ = 1/Zrot − 1/Z vib

1 − 1/Z vib
, (2.14)

where Zrot and Z vib are the collision numbers describing the relaxation rate of the rotational and vibrational energies to 
equilibrium. Assuming τrot and τvib as their relaxation times, one obtains
3
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τrot = τBG K Zrot and τvib = τBG K Z vib. (2.15)

The relaxation coefficient ν is used to correct the Prandtl number of the ES-BGK model, i.e.,

Pr = 1

1 − (1 − η)(1 − θ)ν
. (2.16)

Finally, Dauvois et al. [22] obtain the relaxation time of the ES-BGK model as

τBG K = μ

p
[1 − (1 − η)(1 − θ)ν] , (2.17)

where μ and p are gas viscosity and pressure, respectively.

3. Traditional stochastic particle method based on the ES-BGK model

To solve the kinetic equation (2.1) numerically, a stochastic particle method can be employed. Gallis and Torczynski 
[10] first developed the stochastic particle method based on the ES-BGK model for monoatomic gases, and then it was 
extended to include internal energies by other authors [38–40]. Generally, this traditional stochastic particle method (SP-
BGK) employs a simple time splitting scheme like DSMC. Therefore, its governing equation can be obtained by dividing 
Eq. (2.1) into a transport step and a collision step, i.e.,

transport step : ∂F
∂t

+ V i
∂F
∂xi

= 0 and (3.1a)

collision step : ∂F
∂t

= Q (F) . (3.1b)

Similar to DSMC, the SP-BGK method solves governing equation (3.1) using randomly sampled computational particles. 
A review of the traditional SP-BGK algorithm for monoatomic gases can be found in refs. [26,52]. In the following, this 
algorithm is extended for the polyatomic gas flows.

The transport step is updated by moving the computational particles with their molecular velocities. Thus, the solution 
of Eq. (3.1a) yields

F∗(V, Ir, I v ;x,�t) = F(V, Ir, I v ;x − V�t, tn), (3.2)

where F∗ is the intermediate distribution function after particle movement.
Then, by setting F∗ as the initial condition, the distribution function after the collision step is calculated as

F(V, Ir, I v;x, tn+1) = F∗(V, Ir, I v ;x,�t)e−�t/τBG K

+
Ä

1 − e−�t/τBG K
ä �t∫

0

et′/τBG K

τBG K
(

e�t/τBG K − 1
)FG (V, Ir, I v;x, t′)dt′.

(3.3)

If FG (V, Ir, I v ; x, t′) in the second term of the right-hand side of Eq (3.3) is assumed to be constant during the collision 
step, Eq. (3.3) can be further simplified as

F(V, Ir, I v;x, tn+1) = e−�t/τBG K F∗(V, Ir, I v ;x,�t) +
Ä

1 − e−�t/τBG K
ä
F∗

G (V, Ir, I v;x,�t). (3.4)

Eq. (3.4) is usually solved by randomly separating the computational particles into two sets [10,38–40]: the first set 
with e−�t/τBG K Nc and the second set with 

(
1 − e−�t/τBG K

)
Nc particles. Nc is the particle number in the calculated cell. 

Particle velocity, rotational and vibrational energies of the first set remain unchanged, while those of the second set are 
updated according to F∗

G (V, Ir, I v ; x, �t). A Metropolis-Hastings (MH) method [52] can be employed to sample the velocities, 
rotational and vibrational energies from this Gaussian distribution F∗

G (V, Ir, I v ; x, �t) (the details of the MH algorithm are 
given in Appendix A).

Generally, the Gaussian distribution FG (V, Ir, I v ; x, t′), which depends on �(t′), Etr(t′), Erot(t′) and E vib(t′), is not con-
stant during the collision process. Therefore, the accurate solution of Eq. (3.3) should be evaluated. According to the second 
term on the right-hand side of Eq. (3.3), the second set of 

(
1 − e−�t/τBG K

)
Nc particles need to be resampled from the dis-

tribution FG (V, Ir, I v ; x, t′) instead. For this purpose, a Monte Carlo algorithm has been proposed in Ref. [26] for monatomic 
gases. The present work extends this algorithm to polyatomic gases. First, a certain time t′ in the range [0,�t] is sampled 
as

t′ = τBG K ln
î
rand ·

Ä
e�t/τBG K − 1

ä
+ 1

ó
(3.5)

using Monte Carlo, where rand is a random number between 0 and 1. After the certain time t′ is known, FG (V, Ir, I v ; x, t′)
can be estimated from the values of �(t′), Etr(t′), Erot (t′) and E vib(t′) and sampled by the MH method again. In addition, 
the solution of �(t′), Etr(t′), Erot (t′) and E vib(t′) are calculated using the moment equations of Eq. (2.1) (see Appendix B).
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4. The USP-BGK method for polyatomic gases

By introducing characteristic variables, such as x∗ , ρ∗ , T∗ and V∗ = √
RT∗ , Ir∗ = RT∗ and I v∗ = RT∗ , the ES-BGK collision 

term as shown in Eq. (2.1) can be rewritten in a dimensionless form, i.e.,

Q (F) = 1

ε
(FG −F) , (4.1)

where ε = τBG K V∗/x∗ denotes the Knudsen number. For simplicity, all the equations below, unless specified, will be pre-
sented in dimensionless forms. It is noted that the BGK equation also shows strong stiffness in the continuum regime. 
Since the traditional SP-BGK method employs the simple splitting scheme, this stiffness of the BGK collision term will re-
duce its order of accuracy in the fluid limit [5]. It has been proved that traditional SP-BGK methods turn to first order in 
the fluid limit and suffer from low accuracy and efficiency [26]. To overcome this defect, a unified stochastic particle BGK 
method (USP-BGK) for polyatomic gases is developed in the present work. To summarize, the proposed scheme possesses 
the following features:

• The scheme is capable of simulating polyatomic gas flows in the whole range of the Knudsen number;
• The scheme is second-order accurate in the fluid limit;
• The scheme is asymptotic-preserving (AP) of the Navier-Stokes equations.

Remark 4.1. From the viewpoint of the numerical scheme, assuming the time step size �t is fixed, we refer to the fluid 
limit as ε → 0, and the kinetic limit as ε → +∞. However, the definitions of the continuum and rarefied regimes are based 
on the physics and independent of the time step size, i.e., one refers to the continuum regime if ε 
 1 and to the rarefied 
regime if ε � 1.

4.1. Governing equations and numerical scheme

The main idea of the USP-BGK method [26] is to decompose the collision term of the kinetic model into a continuous 
part Q C and a rarefied part Q R = Q − Q C ; then the former one is solved with a high order scheme like the Crank-Nicolson 
scheme [26] or the DIRK (Diagonally Implicit Runge–Kutta) scheme [53] in the transport step, and the latter one is solved 
with a time integration scheme like the traditional SP-BGK method in the collision step to achieve the asymptotic-preserving 
property. Therefore, the governing equations for the unified stochastic particle BGK method are written as

transport step:
∂F
∂t

+ V i
∂F
∂xi

= Q C and (4.2a)

collision step:
∂F
∂t

= Q R . (4.2b)

4.1.1. Construction of Q C

The continuous part of the collision term is modeled by the Grad expansion, which is constructed by an expansion of 
Maxwellian with Hermite polynomials [54]. Since the ES-BGK model considers the translational, rotational and vibrational 
energies individually, similarly a multi-temperature Maxwellian distribution FM is assumed to approach the equilibrium 
state, i.e.,

FM (V, Ir, I v ) = ρMtr (V) Mrot (Ir) Mvib (I v ) (4.3)

with

Mtr (V) = 1

(2π Ttr)3/2
exp

Ç
− C2

2Ttr

å
, (4.4a)

Mrot (Ir) = �(δrot)

(Trot)δrot/2
I

δrot −2
2

r exp
Å

− Ir

Trot

ã
and (4.4b)

Mvib (I v ) =
ï

1 − exp
Å

− T0

T vib

ãò
exp

Å
− I v

T vib

ã
. (4.4c)

Then based on this equilibrium distribution, we can construct Q C as a Grad distribution using the first nine moments, 
i.e.,

Q C = F|Grad (V, Ir, I v ;ρ,ρU,ρEtr,ρErot ,ρE vib,σ ,qtr,qrot ,qvib) , (4.5)

where σ = 〈(C ⊗ C − Ttr I)F〉V ,Ir ,I v
is the shear stress. qtr = 〈

CC2/2F
〉

V ,Ir ,I v
, qrot = 〈CIrF〉V ,Ir ,I v

and qvib = 〈CI vF〉V ,Ir ,I v

are heat fluxes due to translational, rotational and vibrational energies, respectively. The expansion coefficients of the Grad 
5
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distribution are calculated to ensure that these low order moments of the continuous part are equal to those of the original 
collision term, i.e.,

〈φQ C 〉V ,Ir ,I v
= 〈φQ (F)〉V ,Ir ,I v

. (4.6)

Corresponding to the first nine moments, φ =
Å

1,V,
1

2
C2, Ir, I v ,C ⊗ C − Ttr I,

1

2
CC2,CIr,CI v

ãT

is a vector of polynomials 

of the molecular velocity, rotational and vibrational energies. After straightforward computation, Q C is obtained as

Q C = −1

ε
FM

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2p Pr

ñ
C ⊗ C

Ttr
− 1

3

C2

Ttr
I

ô
: σ

+ 2

5Ttr p

Ç
C2

2Ttr
− 5

2

å
C · qtr + 2

δrot Trot p

Å
Ir

Trot
− δrot

2

ã
C · qrot

+ 1

T vib
∂evib
∂T vib

p

Å
I v

T vib
− δvib(T vib)

2

ã
C · qvib

− 1

Ttr

Ç
C2

2Ttr
− 3

2

åï
η
(

Teq − Ttr
)+ (1 − η)

Å
3θ

3 + δrot
Erot − θδrot

3 + δrot
Etr

ã¡Å
3

2

ãò
− 1

Trot

Å
Ir

Trot
− δrot

2

ãï
η
(

Teq − Trot
)+ (1 − η)

Å
− 3θ

3 + δrot
Erot + θδrot

3 + δrot
Etr

ã¡Å
δrot

2

ãò
− η

T vib

Å
I v

T vib
− δvib(T vib)

2

ã [
evib(Teq) − E vib

]¡Å
∂evib

∂T vib

ã

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(4.7)

where 
∂evib(T vib)

∂T vib
= T 2

0

T 2
vib

®
exp

Å
T0

T vib

ã¬ï
exp

Å
T0

T vib

ã
− 1

ò2
´

, δvib(T vib) = 2T0/T vib

exp (T0/T vib) − 1
denotes the number of vi-

brational degrees of freedom and p = ρTtr is the pressure.

4.1.2. Numerical scheme
In the USP-BGK method, the transport and collision steps are implemented in a sequence. They are numerically solved 

as follows:
For the transport step, the Crank-Nicolson scheme is applied for Eq. (4.2a), and the numerical solution along character-

istics is given by

F∗(V, Ir, I v ;x,�t) = �t

2

[
Q ∗

C (V, Ir, I v ;x,�t) + Q C (V, Ir, I v ;x − V�t, tn)
]

+F(V, Ir, I v;x − V�t, tn)
. (4.8)

For the collision step, taking the intermediate PDF F∗(V, Ir, I v ; x, �t) as the initial value and calculating the integration 
solution of Eq. (4.2b), the final PDF solution is obtained as

F(V, Ir, I v;x, tn+1) = F∗(V, Ir, I v;x,�t)e−�t/ε

+ (
1 − e−�t/ε

)
F∗

G (V, Ir, I v;x,�t) − ε
(

1 − e−�t/ε
) · Q ∗

C (V, Ir, I v;x,�t)
. (4.9)

Different from the solution of the SP-BGK method as shown in Eq. (3.3), since 〈φQ C 〉V ,Ir ,I v
= 〈φQ (F )〉V ,Ir ,I v

for the low 
order moments, the USP-BGK method yields FG (V, Ir, I v ; x, t′) =F∗

G (V, Ir, I v ; x, �t) in the time integration t′ ∈ [0,�t].

4.1.3. The asymptotic property
For the fluid limit, as �t/ε � 1, the integration solution of the collision step (Eq. (4.9)) approaches

F(V, Ir, I v;x, tn+1) = F∗
G (V, Ir, I v ;x,�t) − εQ ∗

C (V, Ir, I v;x,�t). (4.10)

Using the Chapman-Enskog analysis, we have

Q ∗
C (V, Ir, I v;x,�t) = ∂0M∗

∂t
+ V · ∇M∗ + O (ε), (4.11)

where M is the Maxwellian distribution based on the equilibrium temperature, i.e.,

M (V, Ir, I v ) = ρ
1(

2π Teq
)3/2

exp

Ç
− (V − U)2

2Teq

å
· �(δrot)

(T )δrot/2
I

δrot −2
2

r exp
Å

− Ir

T

ã
·
ï

1 − exp
Å

− T0

T

ãò
exp

Å
− I v

T

ã. (4.12)
eq eq eq eq
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Substituting Eq. (4.11) into Eq. (4.10), one obtains

F(V, Ir, I v;x, tn+1) = F∗
G − ε

Å
∂0M∗

∂t
+ V · ∇M∗

ã
+ O (ε2). (4.13)

According to Proposition 6.1 of Ref. [22], Eq. (4.13) can be rewritten as

F(V, Ir, I v;x, tn+1) = F∗(V, Ir, I v ;x,�t) + O (ε2). (4.14)

Substituting the solution of the transport step (4.8) into Eq. (4.14), using Q ∗
C (V, Ir, I v ; x, �t) = Q C (V, Ir, I v ; x, tn+1) and 

Q ∗ = Q ∗
C + O (ε) again, we have

F(V, Ir, I v;x, tn+1) = �t

2

î
Q (V, Ir, I v;x, tn+1) + Q (V, Ir, I v;x − V�t, tn)

ó
+F(V, Ir, I v;x − V�t, tn) + O (�tε)

. (4.15)

Expanding the above distribution functions around x′ = x − V�t/2 and t′ = �t/2, we can obtain the following equation 
after some manipulations.

∂F
∂t

+ V i
∂F
∂xi

= Q (F) + O (�t2) + O (ε). (4.16)

Its conservation equations are just the Navier-Stokes equations. Obviously, the USP-BGK scheme is asymptotic-preserving 
of the NS equations. Moreover, from the second term on the right-hand side of Eq. (4.16), we also note that the proposed 
USP-BGK scheme is of second-order accuracy in the fluid limit.

For the kinetic limit, as �t/ε 
 1, combining Eqs. (4.8) and (4.9) and using the Taylor expansion, the numerical solution 
of the USP-BGK method is obtained as

F(V, Ir, I v;x, tn+1) = F(V, Ir, I v;x − V�t, tn) (1 − �t/ε)
+�t/εF∗

G (V, Ir, I v ;x,�t) + O (�t/ε)2 , (4.17)

which is consistent with the solution of the traditional SP-BGK method as shown in Eq. (3.4). Therefore, the USP-BGK 
scheme reduces to the traditional SP-BGK method in the kinetic limit.

4.2. Numerical implementation of the unified stochastic particle method

In the USP-BGK method, the PDF solutions of Eqs. (4.8) and (4.9) are evaluated using stochastic particles. The algorithm 
of the USP-BGK method can be simplified by introducing the two auxiliary PDFs [29,41]

F̃∗ = F∗ − �t

2
Q ∗

C and (4.18a)ÙF = F + �t

2
Q C . (4.18b)

Then, the solution of the transport step (4.8) can be reorganized as

F̃∗(V, Ir, I v ;x,�t) = ÙF(V, Ir, I v ;x − V�t, tn). (4.19)

Similarly, using F̃∗ and ÙF , the solution of the collision step (4.9) is rewritten asÙF(V, Ir, I v;x, tn+1) = e−�t/εF̃∗(V, Ir, I v;x,�t) +
Ä

1 − e−�t/ε
ä
F∗

U (V, Ir, I v;x,�t), (4.20)

where a new target distribution for the unified stochastic particle algorithm is defined as

F∗
U (V, Ir, I v;x,�t) = F∗

G (V, Ir, I v;x,�t) +
ñ

�t

2

(
1 + e−�t/ε

)(
1 − e−�t/ε

) − ε

ô
Q ∗

C (V, Ir, I v;x,�t). (4.21)

By comparing Eqs. (4.19) and (4.20) with Eqs. (3.2) and (3.4), it is noted that the evolution of the original PDF F in 
the traditional SP-BGK method is replaced by updating the auxiliary PDF ÙF in the algorithm of the USP-BGK method. 
Therefore, USP-BGK, SP-BGK and DSMC can be implemented in a similar way, which is beneficial for the construction of 
hybrid schemes among these stochastic particle methods.

In detail, the implementations of the USP-BGK method for polyatomic gases are introduced in the following four steps.
Step 1: Initialization

The computational particles are initialized and sampled from the initial distribution ÙF (V, Ir, I v ; x, 0) using the MH algo-
rithm. Their values are 

¶
X(k),M(k), I (k)

r , I (k)
v

©
, where X(k), M(k), I (k)

r and I (k)
v denote the position, velocity, rotational and 
k∈N

7
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vibrational energies of the particle k, respectively. Since the initial PDF is mostly assumed to be Maxwellian, thus Q C = 0
and ÙF (V, Ir, I v ; x, 0) = FM (V, Ir, I v ; x, 0). Therefore the initialization process for the USP-BGK method is the same as that 
for DSMC.
Step 2: Transport

For the transport step, the velocity, rotational and vibrational energies of the computational particles are unchanged. 
Their locations, however, are updated along the characteristics, i.e., X(k)(tn+1) = X(k)(tn) + M(k)(tn)�t according to Eq. (4.19). 
In addition, since USP-BGK and DSMC track molecular motions in the same way, the same treatment of the boundary 
conditions can be applied.
Step 3: Collision

For the collision step, the computational particles are randomly assigned into two sets: the first set with e−�t/ε Nc and 
the second set with 

(
1 − e−�t/ε

)
Nc . Molecular variables of the first set are unchanged, while those of the second set are 

updated according to F∗
U (V, Ir, I v ; x, �t). In addition, the macro variables used in the construction of F∗

U (V, Ir, I v ; x, �t) are 
calculated based on the PDF F̃∗(V, Ir, I v ; x, �t) after the transport step (see Appendix C).
Step 4: Sampling

At the end of every time step, the macroscopic quantities are sampled from the auxiliary PDFs (see Appendix C) for the 
USP-BGK method.

4.3. Spatial interpolation

As shown in section 4.1.3, in the fluid limit the USP-BGK method is of second-order accuracy in time. To also achieve the 
same accuracy in space, a second-order spatial interpolation should be employed [53]. However, directly applying the cell-
based interpolation algorithm used in CFD is usually inefficient for a stochastic particle method [42]. First, most of the time, 
the flow fields sampled from the computational particles suffer from statistical noise, which may influence the accuracy and 
stability of the cell-based interpolation algorithm. Second, stochastic particle methods perform the computing processes in 
the local cell, so a CFD cell-based interpolation will bring extra complexity to the simulation code.

Alternatively, a spatial interpolation based on the computational particles was proposed in Ref. [41]. Specifically, in 
order to calculate the macro quantity �(k)(x, t) of the kth particle at location x and time t, this interpolation algorithm is 
implemented as follows:

(a) A random deviation �x is first sampled based on symmetric kernel function, e.g., a uniform hat kernel

KUnif orm(�x) =
ß

1 �x ∈ [−�h/2,�h/2]
0 otherwise

, (4.22)

where �x = �h · (rand − 0.5) is calculated, and rand is a uniform random number in [0, 1].
(b) If the sampled new position is located in cell j, i.e., if x +�x ∈ � j , then the interpolated value of the particle k is set to

�(k)(x, t) ≡ �c(x j, t;x + �x ∈ � j), (4.23)

where �c(x j, t) denotes the mean value in cell j.

Since this interpolation algorithm is not dependent on the type of grids, the proposed USP-BGK method can be easily 
implemented in both unstructured (see numerical case 6.3) and structured (see numerical case 6.4) meshes.

4.4. Conservation of the USP-BGK method

As well known, the stochastic particle BGK method can only ensure the conservation laws in a statistical sense. Therefore, 
energy and momentum conservation correction steps are performed at the end of the collision step. In theory, according to 
Eqs. (C.10)–(C.12), accurate translational (ÛEtr ), rotational (ÛErot ) and vibrational (ÛE vib) energies based on ÙF (V, Ir, I v ; x, tn+1)
are determined by the variables before the collision step. However, in practice, due to the nature of the random process, 
these energies are not exactly conserved. To make them conservative, a correction step for the individual particle (similar 
to that in Ref. [40]) is implemented as follows.

For the vibrational energy, a modification factor αvib = ÛE vib/
ÙE ′

vib is first calculated, where ÙE ′
vib denotes the vibrational 

energy directly averaged from the computational particles after the collision step. Then the vibrational energy level is 
corrected as

i(k) = int
Ä
αvibi(k)′ + rand

ä
, (4.24)

where i(k) and i(k)′ are the vibrational energy levels of the kth particle after and before modification, the operator int denotes 
the integer part.

Assuming the sum of the translational and vibrational energies are conserved, the modification factor for the translational 
energy can be calculated as
8
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αtr =
Ã(ÛEtr + ÛE vib −

N∑
k=1

i(k) RT0/N

)
/ÛE ′

tr . (4.25)

Similarly, ÛE ′
tr denotes the translational energy averaged from the computational particles before correction. Then the 

particle velocity is finally modified as

M(k) = αtr

(
M(k)′ −

N∑
k=1

M(k)′/N

)
+ U∗, (4.26)

where U∗ is the mean velocity before the collision step, which is constant during the collision step. M(k) and M(k)′ are the 
velocities of the kth particle after and before the correction, respectively. The conservation of momentum is also ensured by 
Eq. (4.26).

In addition, the particle’s rotational energy is modified as

I (k)
r = αrot I (k)′

r , and αrot = ÛErot/ÛE ′
rot, (4.27)

where ÛE ′
rot denotes the rotational energy directly averaged from the computational particles before correction. I (k)

r and I (k)′
r

are the rotational energies of the kth particle after and before modification, respectively.

5. The hybrid USPBGK-DSMC method for polyatomic gases

5.1. The hybrid algorithm

USP-BGK is a very efficient and accurate method for flows up to only moderate Knudsen numbers, while DSMC is 
physically valid for all flow regimes but inefficient for small Knudsen numbers. Consequently, it is desirable to have the 
hybrid scheme combining USP-BGK and DSMC for the multiscale flows where the Knudsen number varies many orders of 
magnitude.

The hybrid USPBGK-DSMC method for monatomic gases was proposed recently [29]. It is noted that the DSMC and 
USP-BGK methods use the same kind of computational particles and track particle motions in the same manner. The only 
difference between them is the implementation of the collision step. Therefore, the key and perhaps the only ingredient 
for accurate and efficient hybrid USPBGK-DSMC simulations is a proper equilibrium breakdown parameter. In the previous 
USPBGK-DSMC method for monatomic gases [29], a switching parameter P s , which was determined by the local Knudsen 
number and the dimensionless time step, was introduced. In the present work, we directly employ this switching parameter, 
which is defined as

P s =
ß

0 ε/�t ≤ 1.5
1 ε/�t > 1.5

. (5.1)

This criterion involves the Knudsen number and also considers the balance of accuracy and efficiency. According to P s , a 
USP-BGK or DSMC collision operator is called in the calculated cell. If P s = 0, the USP-BGK collision process is performed; 
Otherwise, if P s = 1, the hybrid scheme recovers DSMC, e.g., in the current work the Borgnakke-Larsen model for polyatomic 
gases [3] is employed. It is worth mentioning that, besides ε/�t , other equilibrium-breakdown criteria, such as the gradient-
length local (GLL) Knudsen number [46], are also possible in the present framework of the hybrid algorithm.

The detailed implementations of the proposed hybrid USPBGK-DSMC method for polyatomic gases are described in Fig. 1. 
Compared with the USP-BGK method in section 4, only an extra judgment needs to be added before the molecular collisions, 
i.e., estimating P s in every computational cell after particle motion and determining the usage of DSMC or USP-BGK collision 
solver.

Although many hybrid methods based on DSMC combined with different equilibrium or near-equilibrium solvers already 
exist, e.g., continuum CFD-DSMC [34–36], equilibrium particle-DSMC [55], BGK-DSMC [28], Fokker-Planck-DSMC [30], the 
hybrid USPBGK-DSMC has some unique advantages. First, unlike the continuum CFD-DSMC method, USPBGK-DSMC is an 
“all-particle” method. Therefore, there is no need to transfer information between the continuum and particle regions, 
which causes accuracy and numerical instability issues well known in the hybrid continuum-particle method. Second, as 
the BGK model can be applied to a wider range of the Knudsen number than CFD solving the Navier-Stokes equations, 
the difficulty in positioning the hybrid interface can be much alleviated in USPBGK-DSMC, like other “all-particle” hybrid 
methods. Third, USP-BGK and DSMC store the same information in the computational particles and track their motions 
in the same manner. The only difference between the two methods is how to perform collision, which is a local process. 
Therefore, the combining of USP-BGK and DSMC requires a minimum amount of effort. Finally, as discussed earlier, USP-
BGK has a higher order of accuracy. When combined with DSMC, the USPBGK-DSMC hybrid method can also achieve higher 
efficiency than the traditional BGK-DSMC hybrid one by using larger computational cell sizes and time steps.
9
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Fig. 1. Implementations of the hybrid USPBGK-DSMC method for polyatomic gases.

5.2. Determining the rotational and vibrational collision numbers in the hybrid scheme

In Dauvois et al.’s ES-BGK model [22] the rotational and vibrational energies relax to the intermediate translational-
rotational temperature Ttr,rot and equilibrium temperature Teq , respectively. Using Eq. (A.1), their relaxation processes are 
described as

∂ E vib

∂t
= − 1

Z vibτBG K

(
E vib − evib(Teq)

)
. (5.2a)

∂
(

Erot − erot (Ttr,rot)
)

∂t
= − 1

ZrotτBG K

(
Erot − erot(Ttr,rot)

)
(5.2b)

In contrast, most continuum analyses use the Jeans equation to model rotational relaxation and the Landau-Teller equa-
tion to model vibrational relaxation [43]. To determine the rotational and vibrational collision numbers of the ES-BGK model, 
i.e., Zrot and Z vib , it is necessary to find their relationship with the continuum model, i.e., with Z cont

rot and Z cont
vib . For the 

continuum model, the relaxation of the rotational and vibrational energies can be written as

∂ E int

∂t
= − 1

Z cont
int τc

(E int − eint(Ttr)) , (5.3)

where τc is the mean collision time and the subscript “int” can be “rot” or “vib”, indicating the rotational and vibrational 
relaxation processes, respectively. Comparing Eqs. (5.2a) and (5.3) yields

Z vib = Z cont
vib

τc

τBG K

evib(T vib) − evib(Teq)

evib(T vib) − evib(Ttr)
. (5.4)

Similarly, comparing Eqs. (5.2b) and (5.3) yields

Zrot = Z cont
rot

τc

τBG K

erot(Trot ) − erot (Ttr,rot) + Zrot
Z vib

(
erot(Ttr,rot) − erot(Teq)

)
erot(Trot ) − erot(Ttr)

. (5.5)

Assuming that rotational relaxation is much faster than vibrational relaxation, Eq. (5.5) can be further simplified as

Zrot = Z cont
rot

τc

τBG K

3

3 + δrot
. (5.6)

It is noted that the relaxation of vibrational energy is different in the ES-BGK model than in the continuum model. In 
the ES-BGK model, the vibrational temperature relaxes to the equilibrium temperature, while it relaxes to the translational 
temperature in the continuum model. Therefore, in theory, the present ES-BGK model cannot recover the relaxation process 
of the continuum model when T vib is quite close to Teq , which might result in Z vib < Zrot . Correspondingly, the correction 
of Eq. (5.4) is also doubtful in such a limit. However, as T vib → Teq , the flow field approaches equilibrium and the transfer 
10
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of the vibrational energy is negligible. Therefore, by adding the constraint Z vib ≥ Zrot to Eq. (5.4), we modify the correction 
of the vibrational collision number as

Z vib = max
ß

Z cont
vib

τc

τBG K

evib(T vib) − evib(Teq)

evib(T vib) − evib(Ttr)
, Zrot

™
. (5.7)

In addition, to avoid the singularity at T vib = Ttr , we also set Z vib = Zrot at that point.
In addition, an improved ES-BGK model for polyatomic gases has been developed by Mathiaud et al. recently [56]. This 

model constructs the relaxation processes directly based on the Landau-Teller and Jeans relaxation equations. Therefore, 
from a physical point of view, it would be better than the Dauvois et al.’s ES-BGK model. From the aspect of the numerical 
scheme, the proposed USP-BGK method can be considered as a general methodology to develop high order stochastic 
particle method. The key point is the macro-micro decomposition of the collision term, as discussed in sec. 4.1. In principle, 
a continuous part of the collision term can be constructed as long as the BGK model is provided, and then a certain USP-
BGK algorithm would be implemented as shown in section 4.2. Therefore, there is no technical difficulty in extending the 
current USP-BGK method for the improved ES-BGK model. The extension of the present method to other BGK models and 
the assessment of different models, including the one developed by Mathiaud et al., will be a future work.

For the DSMC method, the Borgnakke-Larsen model is employed in the present paper. It is known that the rotational and 
vibrational collision numbers are also different between DSMC and the continuum model. Therefore, similar to the situation 
in BGK, the modification of the internal collision numbers is also needed in DSMC. Here we directly use the results provided 
by Refs. [44,45], i.e.,

Z D S MC
vib = Z cont

vib
δT

δT + δA
and Z D S MC

rot = Z cont
rot

δT

δT + δrot
, (5.8)

where δA = δ2
vib(Ttr) exp (T0/Ttr)/2 (see Ref. [44]) and δT = 4 − 2 (ω − 0.5) is the degrees of freedom of the relative transla-

tional energy. ω is the power-law exponent of the viscosity-temperature dependence, i.e.,

μ = μref
(

Ttr/Tref
)ω

, (5.9)

where Tref and μref are the reference temperature and viscosity, respectively.
In particular, for nitrogen gas, which is considered for the numerical cases presented in the next section, the rotational 

collision number of the continuum model is obtained as [46]

Z cont
rot = Z∞

rot

¬ñ
1 + π3/2

2

Å
T ∗

Ttr

ã1/2

+
Ç

π2

4
+ π

åÅ
T ∗

Ttr

ãô
, (5.10)

where Z∞
rot = 18.1 and T ∗ = 91.5 K. The vibrational collision number is set to

Z cont
vib = τMW + τp

τc
, (5.11)

where Millikan-White correlated vibrational relaxation time τMW is written as

τMW = 1

p
exp

îÄ
AT −1/3

tr − B
ä

− 18.42
ó

(5.12)

with A = 221 and B = 12.3 for nitrogen. With Park’s high-temperature correction one obtains

τp =
…

πm

8kB Ttr
/(σsn) , (5.13)

where a reference collision cross-section of σs = 5.81 × 10−21 m2 is used.

6. Numerical simulations

In this section, four typical 1D and 2D gas flows were simulated and analyzed. An exponentially weighted moving time-
averaging technique [9] was employed for steady flows to reduce statistical noise. Thus, any macro variables �n+1 at the 
time step tn+1, such as density, moments and energies, are calculated as

�n+1 = na − 1

na
�n + 1

na
�(t), (6.1)

where na is the number of time steps used for averaging and �(t) denotes the macro quantities sampled at the current 
time.
11



F. Fei, Y. Hu and P. Jenny Journal of Computational Physics 471 (2022) 111640
Table 1
Computational parameters for the relaxation in a homogeneous flow.

Density (kg/m3) Translational 
temperature (K)

Rotational 
temperature (K)

Vibrational 
temperature (K)

1.741 × 10−2 5000 0 0

Fig. 2. Comparison of rotational and vibrational relaxation in a homogeneous flow. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

6.1. Rotational and vibrational relaxation in a homogeneous flow

The proposed USP-BGK method for polyatomic gases first was tested for the relaxation problem in a homogeneous 
nitrogen flow. For DSMC the variable-hard-sphere (VHS) model was employed with a reference diameter of 4.17 × 10−10 m
at Tref = 273 K, and the reference viscosity is μref = 1.6734 ×10−5 Pa · s with a power-law exponent of ω = 0.75. As shown 
in Table 1, the gas density is initially set as 1.741 × 10−2 kg/m3. The initial translational temperature is 5000 K, and both 
initial rotational and vibrational temperatures are 0 K. The rotational and vibrational collision numbers are assumed to be 
constant, i.e., Z cont

rot = 5 and Z cont
vib = 10. According to the ES-BGK model, the analytical solutions of translational, rotational 

and vibrational temperature relaxations can be calculated from Eqs. (B.2) and (B.3). Fig. 2 compares the relaxations obtained 
by DSMC, USP-BGK and from the analytical solution of the ES-BGK model. The time step sizes of DSMC and USP-BGK are 
0.2τc and 10τc , respectively. According to the initial condition, the mean collision time τc is calculated as 5.844 × 10−10 s. 
As shown in Fig. 2, the USP-BGK method provides the correct relaxation rate of internal energies. Note that DSMC (dashed 
lines) and analytical solutions of the translational temperature (solid lines) lie on top of each other.

6.2. Shock structure

Shock wave is one of typical nonequilibrium flows. The structures of translational, rotational and vibrational temperatures 
usually do not overlap due to their distinguished relaxation rates. In the current case, where the nitrogen is considered, the 
pre-shock temperature, number density and Mach number are T1 = 226.149 K, n1 = 3.745 × 1023 m−3 and Ma1 = 15, 
respectively. According to the shock relations, in the post-shock side T2 = 8295.14 K, n2 = 2.793 × 1024 m−3 and Ma2 =
0.344. Note that the shock condition for two specific heat ratios can be found in Ref. [47]. The same DSMC model is 
employed as that in Sec. 6.1. The rotational and vibrational relaxation numbers are assumed to be constant, i.e., Z cont

rot = 5
and Z cont

vib = 20. The size of the computational domain is 100λ, where λ = 4.734 × 10−6 m is the mean free path length on 
the pre-shock side. For DSMC 100 uniform cells were employed, while for the USP-BGK and hybrid USPBGK-DSMC methods 
50 uniform cells were used. The CFL criterion is based on the pre-shock condition resulting in C F L = 0.5 for all schemes. 
The computational parameters for the shock wave flow are also presented in Table 2.

Density, translational, rotational and vibrational temperature structures are shown in Fig. 3. It can be observed that the 
results of DSMC and USPBGK-DSMC agree well with each other. However, the USP-BGK results deviate from the DSMC data 
due to the failure of the BGK model ahead of the shock wave. The blue line in Fig. 3(a) refers to the switching parameter of 
Eq. (5.1), which indicates the separation of the computational domain.
12
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Table 2
Computational parameters for the shock wave flow.

Number density (m−3) Temperature (K) Mach number

Pre-shock 3.745 × 1023 226.149 15.0
Post-shock 2.793 × 1024 8295.14 0.344

Fig. 3. Comparison of density, translational, rotational and vibrational temperatures across the shock wave. λ = 4.734 ×10−6 m is the mean free path length 
on the pre-shock side.

6.3. Hypersonic flow past a wedge

Hypersonic flow passing across a wedge with a sharp leading edge was calculated and presented. This flow is char-
acterized by an attached shock and nonequilibrium regions near the leading edge, the boundary layer and the wake. The 
computational setup is the same as the Ref. [48]. The wedge half-angle is 10-deg and the computational domain is a rectan-
gular box of 0.8 × 2.5 m2; see the schematic in Fig. 4, which also depicts the unstructured meshes. The other computational 
parameters are given in Table 3. Nitrogen inflow with a number density of n∞ = 2.124 × 1021 m−3 at a temperature of 
T∞ = 200 K is considered, and the freestream velocity is U∞ = 2883 m/s (Ma=10). The wedge wall temperature is 500 K 
and a fully diffusive wall condition is employed. The Knudsen number, calculated based on the freestream condition and the 
half-height of the wedge, is about 0.002. The bottom surface is treated as a symmetric boundary, while the other surfaces 
of the computational domain are inflow and outflow boundaries, respectively. About 27,000 cells were employed, and the 
particle number per cell was about 200 based on the freestream condition. The CFL number is set to 0.25. Rotational and 
13



Fig. 4. Illustration of the wedge test case with (b) the computational grid.

Table 3
Computational parameters for the hypersonic flow past a wedge.

Inflow conditions Wall boundary condition

Number density (m−3) Temperature (K) Velocity (m/s) Temperature (K)

2.124 × 1021 200 2883 500

vibrational collision numbers were set according to Eqs. (5.10)–(5.13). For DSMC the VHS model was used with a reference 
diameter of 4.11 × 10−10 m, and the reference temperature is Tref = 290 K with a power-law exponent of ω = 0.7.

Fig. 5(a) shows the distributions of Mach number and the separation regions of USP-BGK and DSMC for the calculation. 
It can be observed that the gas is very rarefied in the wake region so DSMC was employed there and the USP-BGK method 
was used in the rest of the domain. Fig. 5(b) presents the translational and rotational temperatures. Since the Knudsen 
number in the current case is small, translational and rotational relaxations are in equilibrium in most parts. However, 
minor differences can still be observed in the wake of the wedge due to the rarefaction effect. In addition, the vibrational 
energy in the present case is hardly excited due to low-temperature values.

Surface friction (C F ) and heating (C H ) coefficients are defined as

C F = σsur/

Å
1

2
ρ∞U 2∞

ã
and (6.2)

C H = qsur/

Å
1

2
ρ∞U 3∞

ã
, (6.3)

where σsur and qsur denote shear stress and heat flux on the surface, respectively. Further, ρ∞ is the free-stream density 
and U∞ is the free-stream velocity. The surface coefficients are plotted as functions of the distance S along the wedge 
surface normalized by the length L of the top surface. As shown in Fig. 6, the USPBGK-DSMC results are virtually identical 
to the DSMC reference data of [49].

6.4. Hypersonic flow past a cylinder

Hypersonic flow past a cylinder is another typical case to investigate multiscale gas flows. The computational setup is the 
same as the Ref. [46]. A nitrogen flow with a freestream number density of n∞ = 1.61 × 1021 m−3 and initial temperatures 
of Ttr,∞ = Trot,∞ = T vib,∞ = 217.5 K is considered. The freestream velocity is 4510 m/s (Ma=15). The diameter of the 
cylinder is 0.08 m, and its surface temperature is 1000 K. A fully diffusive wall condition is employed. The computational 
parameters are also presented in Table 4. For DSMC the VHS model is used with a reference diameter of 4.17 × 10−10 m at 
F. Fei, Y. Hu and P. Jenny Journal of Computational Physics 471 (2022) 111640
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Fig. 5. Distribution of (a) Mach number and switching parameter; (b) the translational and rotational temperatures for a Mach 10 nitrogen flow past a 
wedge.

Fig. 6. (a) Surface friction and (b) heating coefficients for a Mach 10 nitrogen flow past a wedge. Solid line: USPBGK-DSMC; Square symbol: DSMC data 
given in Ref. [49].
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Fig. 7. Computational domain with successively refined grid for hypersonic flow past a cylinder.

Table 4
Computational parameters for the hypersonic flow past a cylinder.

Inflow conditions Wall boundary condition

Number density (m−3) Temperature (K) Velocity (m/s) Temperature (K)

1.61 × 1021 217.5 4510 1000

Fig. 8. Nitrogen flow around a cylinder at a Mach number of 15: Distribution of (a) Mach number and switching parameter; (b) translational and vibrational 
temperatures. The USPBGK-DSMC method was employed a coarse grid of 144 × 72.

Tref = 273 K and a power-law exponent of ω = 0.75. The rotational and vibrational collision numbers are set according to 
Eqs. (5.10)–(5.13). The Knudsen number equals 0.01 based on the free-stream condition and the cylinder diameter.

The computational domain is similar to the test case of argon gas flow past a cylinder in Ref. [29], i.e., a rectangular box 
of 0.3 × 0.15 m2. As shown in Fig. 7, Cartesian grids with successive refinement were employed around the cylinder. For 
each refinement, the cell’s width and height are half of those of the last coarser level. The bottom boundary is symmetrical, 
and the other boundaries are inlet/outlet flows. To investigate the accuracy of the proposed hybrid method, three types of 
cartesian grids were employed, i.e., 36 × 18, 72 × 36 and 144 × 72 grids for the coarsest level. About 36000 computational 
cells were employed for the case with 144 × 72 grids. In addition, for all simulations, the CFL number is set to be 0.5, and 
about 200 computational particles per coarse cell were initially assigned.

Fig. 8 shows the distributions of Mach number, translational and vibrational temperatures. The lower panel in Fig. 8(a) 
depicts the switching parameter P s; one can observe the continuum regime in front of the cylinder where P s = 0 and 
thus the USP-BGK method was employed. Fig. 9 presents translational, rotational and vibrational temperatures along an 
16
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Fig. 9. Nitrogen flow around a cylinder at a Mach number of 15: Temperature distributions along the 45◦ extraction line. The black dash-dotted line refers 
to the interface between USP-BGK and DSMC. A coarse grid of 144 × 72 is employed in the USPBGK-DSMC method. Symbols: DSMC data of [46] and solid 
line: USPBGK-DSMC.

Fig. 10. Nitrogen flow around a cylinder at a Mach number of 15: Surface heating coefficient along the cylinder wall. Solid line: USPBGK-DSMC; Circle 
symbol: traditional BGK-DSMC; Square symbol: DSMC data of [46].

extraction line at an angle of 45◦ . It is clear that the hybrid USPBGK-DSMC method provides results consistent with the 
DSMC data in Ref. [46]. In addition, the black dash-dotted line indicates the interface between USP-BGK and DSMC regions.

The surface heating coefficient is calculated in Fig. 10. As cell size decreases, the USPBGK-DSMC method, which is second-
order accurate in the continuum regime, approaches the reference data of DSMC faster than BGK-DSMC. Therefore, fewer 
grids are requested. In addition, the BGK-DSMC method used here is the same as USPBGK-DSMC, except for the stochastic 
particle BGK solver. The former employs the traditional SP-BGK method in Sec. 3, while the latter uses the proposed USP-
BGK method in Sec. 4.

The L1-norm errors of the surface heating coefficient for the different grid sizes are given in Table 5. The calculations 
were run on the Euler cluster of ETH Zürich. The CPU time per time step also is presented. It can be seen that compu-
tational times of USPBGK-DSMC and BGK-DSMC are similar if the same cell sizes are employed. However, higher order of 
17
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Table 5
L1-norm error of surface heating coefficient along the cylinder wall.

Number of 
coarse cells

BGK-DSMC USPBGK-DSMC

L1-norm error Order CPU time (s) L1-norm error Order CPU time(s)

36 × 18 0.5716 1.50 0.012 0.1291 2.64 0.016
72 × 36 0.2027 – 0.032 0.0207 – 0.042

convergence is obtained by the USPBGK-DSMC method. Therefore, the USPBGK-DSMC method can use larger time steps and 
fewer grids to achieve the same level of accuracy. As a result, the computational cost can be reduced significantly.

7. Conclusion

Employing the micro-macro decomposition of the ES-BGK collision term given in Ref. [22], the USP-BGK method was 
extended for applications of polyatomic gas flows. Since the algorithm of the USP-BGK method can be implemented in 
the same way as the traditional SP-BGK method and DSMC, we have shown that the construction of a hybrid scheme 
combining the USP-BGK method and DSMC is straightforward. The ES-BGK model and the related USP-BGK method for 
polyatomic gas have been validated by supersonic flows with strong shocks. Hypersonic flows past a wedge and a cylinder 
were also simulated by the hybrid USPBGK-DSMC method, and it has been demonstrated that the results agree well with 
the corresponding DSMC solutions. Note that for both test cases, a huge Knudsen number range from continuum to high 
rarefaction has to be modeled. Compared to the traditional stochastic particle methods, the efficiency of the proposed hybrid 
method is excellent and the computational cost is much lower. Therefore, the hybrid USPBGK-DSMC method is suitable for 
simulations of complex multiscale flows for polyatomic gases.
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Appendix A. Metropolis-Hastings (MH) algorithm

A Metropolis-Hastings method produces a Markov chain of samples from the target distribution [50] and has been 
employed to sample Chapman-Enskog [51] and ES-BGK distribution [52]. We also use the Metropolis-Hastings algorithm 
to generate the target distribution in the present work. The basic idea of the Metropolis-Hastings algorithm is to design a 
Markov chain with a transition probability p(Xold, Xnew ) between states, e.g. from Xold to Xnew . According to the reversibility 
condition, the transition probability should satisfy

ft(Xold)p(Xold,Xnew ) = ft(Xnew )p(Xnew ,Xold), (A.1)

where ft (X) is the target distribution and X is a stochastic variable. A simple way to satisfy this condition is to take [51]

p(Xold,Xnew ) = M(Xnew )

⎧⎨
⎩

1 i f ft(Xnew )M(Xold) ≥ ft(Xold)M(Xnew )
ft(Xnew )M(Xold)

ft(Xold)M(Xnew )
i f ft(Xnew )M(Xold) < ft(Xold)M(Xnew )

, (A.2)

where M(X) can be chosen as a Maxwellian distribution, which is easily sampled. For example, to generate ft (X) = FU , we 
assume M(X) = FM as shown in Eq. (4.3), then the Metropolis-Hastings algorithm was implemented as follows:

(1) Draw Xold = {Vold, Ir,old, I v,old} from the Maxwellian distribution FM ; select a new value if FU (Xold) < 0.
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(2) Draw a new value Xnew from the Maxwellian distribution.

(3) Draw a random number Rand between 0 and 1; if Rand ≤ min
Å

1,
FU (Xnew )FM (Xold)

FU (Xold)FM (Xnew )

ã
then accept the “move” and 

set Xold = Xnew ; otherwise keep the current value of Xold .
(4) Repeat steps 2 and 3 until Ntry attempted moves have been made. Here, we set Ntry = 10 ∼ 35 as Ref. [52].
Similarly, this implementation can also be employed to generate other distributions in this paper.

Appendix B. Relaxation of the ES-BGK model

Note that the density ρ(t), the mean velocity U(t) and the equilibrium temperature Teq(t) are constant during the 
collision step, while �(t), Etr(t), Erot(t) and E vib(t) can be obtained by solving the moment equation of Eq. (3.1b).

Multiplying Eq. (3.1b) by C2/2, Ir and iRT0, and integrating over the phase space, we obtain

∂

∂t

Ñ
Etr(t)
Erot(t)
E vib(t)

é
= η

τBG K

Ñ
etr(Teq) − Etr(t)
erot (Teq) − Erot(t)
evib(Teq) − E vib(t)

é
+ (1 − η)

τBG K

Ö
− δrotθ

3+δrot

3θ
3+δrot

0
δrotθ

3+δrot
− 3θ

3+δrot
0

0 0 0

èÑ
Etr(t)
Erot(t)
E vib(t)

é
. (B.1)

Assuming a1 = Etr + Erot and a2 = (δrot/3)Etr − Erot , the solution of Eq. (B.1) is obtained as

a1(t) = exp
Å

− ηt

τBG K

ã
a1(0) +

ï
1 − exp

Å
− ηt

τBG K

ãò (
etr(Teq) + erot(Teq)

)
, (B.2a)

a2(t) = exp
ï
− ((1 − η)θ + η) t

τBG K

ò
a2(0), (B.2b)

E vib(t) = exp
Å

− ηt

τBG K

ã
E vib(0) +

ï
1 − exp

Å
− ηt

τBG K

ãò
evib(Teq). (B.2c)

Therefore,

Etr(t) = 3

3 + δrot
(a1 + a2) and Erot(t) = δrota1 − 3a2

3 + δrot
. (B.3)

Besides Etr(t) and Erot (t), �(t) is depended on the shear stress σ = � − RTtr I. Multiplying Eq. (3.1b) by C ⊗ C − C2/3
and integrating over the phase space, we have

∂σ (t)

∂t
= − 1

τBG K
[1 − (1 − η)(1 − θ)ν]σ (t). (B.4)

Therefore,

σ (t) = e−t/(τBG K Pr)σ (0). (B.5)

According to Eq. (2.9), �(t) reads

�(t) = ηRTeqI + (1 − η)
[
θ RTtr,rot(t)I + (1 − θ) (νσ (t) + RTtr(t)I)

]
, (B.6)

Appendix C. Macro variables averaged from the auxiliary distribution

First considering the auxiliary distribution F̃∗ =F∗ − �t

2
Q ∗

C , since the continuous part of the collision term also satisfies 
the conservation law, therefore, for the conserved variables, such as the density, mean velocity and total energy, we have

ρ =
¨
F̃∗∂

V ,Ir ,I v
= 〈

F∗〉
V ,Ir ,I v

, ρU =
¨

VF̃∗∂
V ,Ir ,I v

= 〈
VF∗〉

V ,Ir ,I v
and

ρE =
≠Å

1

2
C2 + Ir + I v

ã
F̃∗

∑
V ,Ir ,I v

=
≠Å

1

2
C2 + Ir + I v

ã
F∗

∑
V ,Ir ,I v

. (C.1)

For the shear stress, multiplying Eq. (4.18a) by C ⊗ C − C2/3 and integrating over the phase space, we obtain

σ ∗ = σ̃ ∗
¡Å

1 + �t

2ε Pr

ã
. (C.2)

For the heat flux, multiplying Eq. (4.18a) by 
1

2
CC2, CIr and CI v , and integrating over the phase space, the heat flux 

related to the translational (q∗
tr ), rotational (q∗

rot ) and vibrational (q∗ ) energies yields
vib
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q∗
tr = q̃∗

tr

¡Å
1 + �t

2ε

ã
, q∗

rot = q̃∗
rot

¡Å
1 + �t

2ε

ã
and q∗

vib = q̃∗
vib

¡Å
1 + �t

2ε

ã
. (C.3)

The total heat flux is q∗
tr + q∗

rot + q∗
vib .

For the translational, rotational and vibrational energies, multiplying Eq. (4.18a) by φ =
Å

1

2
C2, Ir, I v

ãT

and integrating 

over the phase space again, we have

Ẽ∗
tr = E∗

tr − �t

2ε

ï
η

Å
3

2
Teq − E∗

tr

ã
+ (1 − η)

Å
3θ

3 + δrot
E∗

rot − θδrot

3 + δrot
E∗

tr

ãò
, (C.4)

Ẽ∗
rot = E∗

rot − �t

2ε

ï
η

Å
δrot

2
Teq − E∗

rot

ã
+ (1 − η)

Å
− 3θ

3 + δrot
E∗

rot + θδrot

3 + δrot
E∗

tr

ãò
, (C.5)

Ẽ∗
vib = E∗

vib − �t

2ε

[
η
(

evib(Teq) − E∗
vib

)]
. (C.6)

After organizing, the translational, rotational and vibrational energies after the transport step yield

E∗
tr = η 3�t

2ε
3+δrot

2 Teq + 3
Ä

Ẽ∗
tr + Ẽ∗

rot

äÄ
1 + �t

2ε η
ä

(3 + δrot )
+

Ä
δrot Ẽ∗

tr − 3Ẽ∗
rot

äÄ
1 + �t

2ε (η + (1 − η) θ)
ä

(3 + δrot )
, (C.7)

E∗
rot = η δrot�t

2ε
3+δrot

2 Teq + δrot

Ä
Ẽ∗

tr + Ẽ∗
rot

äÄ
1 + �t

2ε η
ä

(3 + δrot )
−

Ä
δrot Ẽ∗

tr − 3Ẽ∗
rot

äÄ
1 + �t

2ε (η + (1 − η) θ)
ä

(3 + δrot )
, (C.8)

E∗
vib = Ẽ∗

vib + η�t
2ε evib(Teq)Ä

1 + η�t
2ε

ä . (C.9)

Similar results can be calculated from Eq. (4.18b), and the translational, rotational and vibrational energies after the 
collision step are averaged from the auxiliary distribution ÙF . In addition, since 〈φQ C (F )〉V ,Ir ,I v

= 〈φQ (F )〉V ,Ir ,I v
as shown 

in Eq. (4.6), E∗
tr , E∗

rot and E∗
vib keep constant during the collision step. Therefore, ÛEtr , ÛE vib and ÛE vib can also be calculated 

from the values before the collision step, i.e.,ÛEtr = E∗
tr + �t

2ε

ï
η

Å
3

2
Teq − E∗

tr

ã
+ (1 − η)

Å
3θ

3 + δrot
E∗

rot − θδrot

3 + δrot
E∗

tr

ãò
, (C.10)

ÛE vib = E∗
rot + �t

2ε

ï
η

Å
δrot

2
Teq − E∗

rot

ã
+ (1 − η)

Å
− 3θ

3 + δrot
E∗

rot + θδrot

3 + δrot
E∗

tr

ãò
, (C.11)

ÛE vib = E∗
vib + �t

2ε

[
η
(

evib(Teq) − E∗
vib

)]
. (C.12)

In the above, the hat “∼” and “Û” denote the variables averaged from F̃ and ÙF , respectively.
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