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Abstract: The bottom-hole pressure of hydraulic fracturing in ductile reservoirs is much higher than
that of the hydraulic fracturing simulation, and the fracture toughness inferred from the field data
is 1–3 orders of magnitude higher than that measured in the laboratory. The rock apparent fracture
toughness increases with the increase in the confining pressure. Excluding the influence of the fluid
viscosity and the fluid lag on the apparent fracture toughness, the fracture process zone (FPZ) at
the fracture tip can explain the orders of magnitude of difference in the apparent fracture toughness
between the laboratory and the field. The fracture tip is passivated by plastic deformation, forming
a wide and short hydraulic fracture. However, the size of the FPZ obtained in the laboratory is in
the order of centimeters to decimeters, while an FPZ of 10 m magnitude is speculated in the field.
The FPZ size is affected by the rock property, grain size, pore fluid, temperature, loading rate, and
loading configuration. It is found that the FPZ has a size effect that tends to disappear when the
rock specimen size reaches the scale of meters. However, this cannot fully explain the experience
of hydraulic fracturing practice. The hydraulic fracturing behavior is also affected by the relation
between the fracture toughness and the fracture length. The fracture behavior of type II and mixed
type for the ductile rock is poorly understood. At present, the apparent fracture toughness model
and the cohesive zone model (CZM) are the most suitable criteria for the fracture propagation in
ductile reservoirs, but they cannot fully characterize the influence of the rock plastic deformation on
the hydraulic fracturing. The elastic-plastic constitutive model needs to be used to characterize the
stress–strain behavior in the hydraulic fracturing simulation, and the fracture propagation criteria
suitable for ductile reservoirs also need to be developed.

Keywords: hydraulic fracturing; ductile rock; plastic deformation; fracture toughness; fracture
process zone

1. Introduction

With the depletion of conventional oil and gas resources, low-permeability oil and
gas resources have become the main force of oil and gas exploration and development,
especially the development, in recent decades, of unconventional shale oil and gas, and
tight oil and gas [1–3]. The permeability of these reservoirs is very low, which requires
stimulations to improve production. Even the industrial oil and gas flows can be obtained
only after successful stimulations for some reservoirs [4–7]. Hydraulic fracturing is the
most commonly used reservoir stimulation method. To optimize and design the hydraulic
fracturing process, the fracturing procedure needs to be simulated and analyzed [8]. It
involves the initiation and propagation of rock fractures. Generally, the fracture propagation
criterion of linear elastic fracture mechanics is used by commercial hydraulic fracturing
simulation software. In the past 60 years, great success has been achieved for the hydraulic
fracturing simulation in hard rocks with linear elastic fracture mechanics. However, some
reservoir rocks have strong ductility, such as clay sandstone, weakly consolidated sandstone,
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clay-rich ductile shale, soft carbonate reservoir, high-temperature reservoir, and coal rock,
etc. [9–11]. When they are fractured, a large range of plastic deformation occurs. For
these types of reservoirs, current commercial modeling software often fails to produce the
right results. The injection pressure simulated by the hydraulic fracturing software with
the fracture toughness tested in the laboratory is lower than the actual injection pressure.
The fracture propagation net pressure in the field is 50%–100% higher than the results
of the software simulation [12]. For poorly consolidated reservoirs, the results are more
different [13]. In order to obtain the appropriate injection pressure, the fracture toughness
used by designers in the hydraulic fracturing simulation is generally more than one order
of magnitude larger than the results tested in the laboratory. The main reason for these
problems is that the linear elastic fracture mechanics do not consider the effect of the rock
plastic deformation on the crack propagation.

Massive microcracks are generated at the tip during fracture propagation, forming an
FPZ and presenting plastic deformation. Over the past 30 years, the effect of rock plastic
deformation on the crack propagation has been studied extensively [14–18]. The width of
the hydraulic fractures is increased, its length is decreased, and the injection pressure is
elevated by the rock plastic deformation [19–23]. The rock permeability near the fracture
wall is also changed by it [24]. The FPZ at the fracture tip makes its propagation law
different from the linear elastic fracture criterion, which poses a challenge to the accurate
hydraulic fracturing simulation of ductile reservoirs. In this paper, the phenomenon of
the rock fracture in the laboratory experiments and in the field, the FPZ of rocks, the
fracture propagation criteria of ductile rocks, and the hydraulic fracturing simulation
considering the rock plastic deformation are reviewed. Finally, the present research status
is summarized and the future research is prospected.

2. Phenomenon and Explanation

As early as the 1980s, hydraulic fracturing practices showed that the fracture ini-
tiation in ductile shale is more difficult than in brittle rocks [25]. The net pressure of
fracture propagation in ductile reservoirs is much larger than the prediction of the linear
elastic fracture mechanics [26–30]. The fracture toughness inferred from a large num-
ber of field tests is 1–2 orders of magnitude greater than that measured in the labora-
tory [11,27,31–33]. The formation of dikes is a natural hydraulic fracturing process driven
by magma [34]. Studies have shown that in this process, an apparent fracture toughness
of up to 100–4000 MPa ·

√
m is often required to obtain a fracture size that is coordinated

with field observations [35–40]. This is 2–3 orders of magnitude higher than laboratory
measurements [41,42]. Many explanations have been proposed for the vast difference
between the field experiences and the laboratory result. These include much higher than ex-
pected frictional resistances in perforated Wells, very large near-wellbore bending pressure
lost [43,44], increased fracturing fluid viscosity due to filtration and proppant, turbulence
in fractures, roughness of the fracture surface [45,46], and restrictions on fracture opening
caused by natural joints and fractures in hydraulic fracturing. These factors are related
to frictional resistances caused by fluid viscosity. Uneven pressure distribution is caused
by these frictions in the fracture. To eliminate the influence of the friction resistance, the
instantaneous shut-in pressure was proposed by Shlyapobersky et al. [33] to calculate
the net pressure of the fracture propagation (Figure 1). The apparent fracture toughness
obtained after eliminating the friction resistance is still much higher than that obtained
using laboratory tests. In the hydraulic fracturing practice, not only must the resistance
of fracture propagation caused by the rock material property be overcome, but a lot of
energy is also consumed to overcome the resistance caused by other external factors. The
apparent fracture toughness is often used to represent the resistance to the fracture prop-
agation, including the intrinsic property of the rock material and that caused by other
external factors.
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Figure 1. The schematic of the pressure response for the hydraulic fracture treatment. (NFPP—net 
fracture propagation pressure; ISIP—instantaneous shut-in pressure; Sh—closing stress; Δp0—net 
fracture pressure.). 

It was found in the experiment that the propagating fracture is not completely filled 
by the fracturing fluid (Figure 2). The fracturing fluid flow lags the fracture propagation 
rate, and there is a fluid lag zone behind the fracture tip [47–49]. The length of the fluid 
lag zone increases with the increase in the fluid viscosity [50,51]. The presence of the fluid 
lag zone is equivalent to a reduction in the driving force of the fracture propagation, which 
increases the rock apparent fracture toughness. The longer the fluid lag zone, the greater 
the increase in the apparent fracture toughness. During the fracture initiation, a mass of 
microcracks is generated near the front of the fracture tip, which means that the rock is 
yielded at the fracture tip. This part rock is no longer elastic but is in plastic deformation 
[52]. This area is known as the FPZ [53–56]. After the fracture tip propagates away, this 
yield zone becomes the fracture wall. The rock may dilate after yield. Cleary et al. [20,57] 
believed that the rock dilation would reduce the fracture opening and limit the flow of the 
fracturing fluid to the fracture tip. Therefore, the fluid lag zone is increased, and a higher-
pressure drop is formed. Thus, the rock-apparent fracture toughness is increased. How-
ever, the simulation study of Thiercelin and Papanastasiou [11,21] showed that the frac-
ture opening, considering the plastic deformation, is larger, and the fracture passivated 
by the plasticity of the fracture tip and the fracture opening is increased. Thus, the fluid 
lag zone would be shortened, and the fracture toughness would be reduced. These studies 
are aimed at type I fractures. Much attention has been attracted by the development of 
shale gas in the last decade with the shear dilation of type II fractures. It is believed that 
the permeability is increased by the fracture surface roughness after the flowback of the 
fracturing fluid in unconventional reservoirs, even if there is no proppant in the hydraulic 
fracture [58–60]. The experiment of Feng and Sarmadivaleh [61] showed that the shear 
dilation of ductile rocks is more remarkable, and the fracture propagation path is more 
tortuous. Therefore, the increase in permeability may be more pronounced. It is important 
to note that the fracture propagation is slow during the hydraulic fracturing in the field 
and the presence of the fluid lag is questionable in the field. 

Figure 1. The schematic of the pressure response for the hydraulic fracture treatment. (NFPP—net
fracture propagation pressure; ISIP—instantaneous shut-in pressure; Sh—closing stress; ∆p0—net
fracture pressure.).

It was found in the experiment that the propagating fracture is not completely filled by
the fracturing fluid (Figure 2). The fracturing fluid flow lags the fracture propagation rate,
and there is a fluid lag zone behind the fracture tip [47–49]. The length of the fluid lag zone
increases with the increase in the fluid viscosity [50,51]. The presence of the fluid lag zone
is equivalent to a reduction in the driving force of the fracture propagation, which increases
the rock apparent fracture toughness. The longer the fluid lag zone, the greater the increase
in the apparent fracture toughness. During the fracture initiation, a mass of microcracks
is generated near the front of the fracture tip, which means that the rock is yielded at the
fracture tip. This part rock is no longer elastic but is in plastic deformation [52]. This area is
known as the FPZ [53–56]. After the fracture tip propagates away, this yield zone becomes
the fracture wall. The rock may dilate after yield. Cleary et al. [20,57] believed that the rock
dilation would reduce the fracture opening and limit the flow of the fracturing fluid to the
fracture tip. Therefore, the fluid lag zone is increased, and a higher-pressure drop is formed.
Thus, the rock-apparent fracture toughness is increased. However, the simulation study
of Thiercelin and Papanastasiou [11,21] showed that the fracture opening, considering the
plastic deformation, is larger, and the fracture passivated by the plasticity of the fracture
tip and the fracture opening is increased. Thus, the fluid lag zone would be shortened,
and the fracture toughness would be reduced. These studies are aimed at type I fractures.
Much attention has been attracted by the development of shale gas in the last decade with
the shear dilation of type II fractures. It is believed that the permeability is increased by
the fracture surface roughness after the flowback of the fracturing fluid in unconventional
reservoirs, even if there is no proppant in the hydraulic fracture [58–60]. The experiment
of Feng and Sarmadivaleh [61] showed that the shear dilation of ductile rocks is more
remarkable, and the fracture propagation path is more tortuous. Therefore, the increase in
permeability may be more pronounced. It is important to note that the fracture propagation
is slow during the hydraulic fracturing in the field and the presence of the fluid lag is
questionable in the field.
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bution in the fracture is not uniform, due to the fluid viscosity and the fluid lag zone. 
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tinues to propagate stably for a period of time. The difference between the fracture initia-
tion pressure and the peak bottom-hole pressure is increased by the compliance of the 
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inapplicable for determining the fracture toughness. Therefore, Gao et al. [66,67] believe 
that the increase in the apparent fracture toughness and the fracture pressure with the 
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which is the reason for why their simulated peak pressures are generally lower than ex-
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propagation in field practices [33]. Therefore, this interpretation is not realistic. In recent 
decades, the technology of the volume stimulation for improving reservoir productivity 
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need to propagate synchronously. It makes this view worthy of further studies. 
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creases with an increase in the confining pressure [73–87]. This is shown in Figure 3. The 
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creases with the increase in the in situ stress. Because there is no fluid involved in the 
experiment, none of the above-mentioned fluid-related explanations can explain this phe-
nomenon. There are plenty of microcracks in the FPZ, which changes the mechanical 
properties of the rock [88], and makes it no longer elastic. Additional energy dissipation 
is added by the confining pressure acting on this zone when a new fracture surface is 
formed. Therefore, the rock apparent fracture toughness is increased. This is confirmed 
by the numerical simulation of Hashida et al. [89] and Papanastasiou [12]. The simulation 
of Papanastasiou [12] shows that an order of magnitude of the fracture toughness can be 
increased by considering the plastic zone at the crack tip. Rubin [90] and Yue et al. [91] 
established a rock apparent fracture toughness model, considering the FPZ. It can explain 
the phenomenon that the rock apparent fracture toughness increases with the increase in 
the normal stress acting on the fracture surface. It is also found that there is a size effect 
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When the rock fracture toughness is evaluated by the hydraulic fracturing, it is usually
assumed that the pressure in the fracture is uniform [62]. In fact, the pressure distribution
in the fracture is not uniform, due to the fluid viscosity and the fluid lag zone. Many
researchers have pointed out that the fracture initiation pressure is inconsistent with the
peak bottom-hole pressure due to the compliance of the injection system. The peak pressure
is not the fracture initiation pressure. After this moment, the fracture continues to propagate
stably for a period of time. The difference between the fracture initiation pressure and the
peak bottom-hole pressure is increased by the compliance of the injection system [63–65].
Their difference increases with the compliance of the injection system. In addition, the
difference increases with the increase in the fluid viscosity and the confining pressure. These
factors make the analysis method proposed by Abou-Sayed inapplicable for determining
the fracture toughness. Therefore, Gao et al. [66,67] believe that the increase in the apparent
fracture toughness and the fracture pressure with the confining pressure is a hydraulic
property. In fact, their model does not consider the FPZ, which is the reason for why their
simulated peak pressures are generally lower than experimental ones.

In addition to these reasons, it is believed that a group of parallel multiple fractures
rather than a single fracture is produced in the hydraulic fracturing [68–72]. This increases
the energy dissipation in the fracture propagation, and thus, increases the apparent fracture
toughness. However, the dominant fracture inhibits the propagation of other fractures, and
there is no simultaneous propagation of multiple fractures after a distance of propagation
in field practices [33]. Therefore, this interpretation is not realistic. In recent decades, the
technology of the volume stimulation for improving reservoir productivity has been greatly
developed. To achieve an excellent fracturing effect, multiple fractures need to propagate
synchronously. It makes this view worthy of further studies.

It has been proven via extensive experiments that the rock fracture toughness increases
with an increase in the confining pressure [73–87]. This is shown in Figure 3. The hydraulic
fracturing in the field also shows that the rock apparent fracture toughness increases with
the increase in the in situ stress. Because there is no fluid involved in the experiment, none
of the above-mentioned fluid-related explanations can explain this phenomenon. There are
plenty of microcracks in the FPZ, which changes the mechanical properties of the rock [88],
and makes it no longer elastic. Additional energy dissipation is added by the confining
pressure acting on this zone when a new fracture surface is formed. Therefore, the rock
apparent fracture toughness is increased. This is confirmed by the numerical simulation of
Hashida et al. [89] and Papanastasiou [12]. The simulation of Papanastasiou [12] shows
that an order of magnitude of the fracture toughness can be increased by considering the
plastic zone at the crack tip. Rubin [90] and Yue et al. [91] established a rock apparent
fracture toughness model, considering the FPZ. It can explain the phenomenon that the
rock apparent fracture toughness increases with the increase in the normal stress acting on
the fracture surface. It is also found that there is a size effect on the rock apparent fracture
toughness. Experiments and simulation studies show that the apparent fracture toughness
is affected by the size of the test specimen. With the increase in the test specimen size,
the apparent fracture toughness increases [92–96]. The relationship between the nominal
tensile strength and the test specimen size meets Bazant’s scaling law [94]. The apparent
fracture toughness is also affected by the specimen geometry [97–101]. Ayatollahi and
Akbardoost [93] explained the influence of the specimen geometry and size on the rock
apparent fracture toughness by considering the FPZ.
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Figure 3. The influence of confining pressure on the normalized KIc for rocks. (KIc (0): the KIc

measured at ambient pressure). Reprinted with permission from Ref. [78]. Copyright 2020, John
Wiley and Sons.

Due to the huge difference between the rock fracture toughness tested in the laboratory
and that inferred by the field fracturing, the mini-frac test is generally carried out before
formal fracturing in engineering. The fracture toughness obtained from the mini-frac test is
used as the parameter for the hydraulic fracturing simulation. However, the size effect of
the rock apparent fracture toughness is not only reflected in the difference between the labo-
ratory scale and the field scale. Some studies show that the rock apparent fracture toughness
increases with the increase in the fracture length [101–104]. The tests of Hashida et al. [105]
on granite specimens from several millimeters to 20 cm show that the rock fracture tough-
ness increases exponentially with the power of the fracture radius. Weisinger et al. [106]
found that the fracture toughness of Nevada tuff increases slightly with the increase in the
fracture length ranging over 30–70 mm. Scholtz et al. [107–109] speculates that there is a
proportional relation between the fracture toughness and the square root of the fracture
length, based on the linear relation between the length and the displacement of the dyke.
This phenomenon is not unique to the rock fracture toughness. Classical fracture mechanics
mainly studies metal materials. For non-ideal brittle materials, the fracture toughness is
expressed as a curve of the fracture propagation resistance with the increase in the fracture
length. The fracture propagation resistance increases with the propagation of the fracture
in the form of a power law up to a critical value. At present, the fracture propagation
resistance of the rock fracture is not fully understood, and it is not known at what scale
it tends to an asymptotic value. The experiment of Labuz et al. [45,110] shows that the
fracture toughness of granite increases with the increase in the fracture length when the
fracture length is 10–50 mm, and remains constant when the fracture length is 80–160 mm.
Kobayashi et al. [111] found that the fracture toughness of tuff remains basically constant
after the fracture length exceeds 85 mm. Therefore, is the rock fracture toughness constant
before the fracture length reaches the order of meters? However, this is far less than the
fracture toughness of larger scale fractures, such as those evaluated by hydraulic fracturing
in the field and speculated in the investigation of the dike formation by magmatic intru-
sions. Geologists still debate whether fracture toughness is constant during the propagation
of kilometers [112]. Olson [36] and Schultz et al. [108,109,113] believe that the fracture
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toughness is constant during the formation of the dyke. Scholz et al. [107] believe that the
rock fracture toughness is directly proportional to the square root of the fracture length
(Figure 4). The hydraulic fracturing in the field shows that if the growth of the fracture
height is limited or if the injection flux is increased, the bottom-hole injection pressure
obtained using constant fracture toughness is gradually lower than the measured pressure
with the fracture propagation. The fracture toughness increase with fracture propagation
must be used. If constant fracture toughness is used to simulate the propagation of a coin-
shaped fracture, the predicted bottom-hole pressure after the fracture initiation decreases
monotonically with the fracture growth and tends toward the in situ stress [100,114,115].
This is inconsistent with most experimental and field results [116–121]. Only by using
the fracture toughness that increases with the fracture growth can we obtain a pressure
platform that is much higher than the in situ stress after the fracture initiation [122]. These
seem to indicate that the rock fracture toughness still does not approach a constant value
when the fracture length reaches the order of 100 m. In addition, it has been found that the
fracture toughness does not change with the specimen thickness, which is different from
metal materials [104,111]. Schmidt [123] believes that the apparent fracture toughness does
not change with the specimen size if the maximum tensile stress yield model is used for
calculating the FPZ. Therefore, we still do not fully understand the size effect of the rock
fracture toughness.
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Figure 4. The relationship between the logarithmic median fracture length and the fracture toughness
calculated using the field data on joints, veins, and dikes. Reprinted with permission from Ref. [107].
Copyright 2010, Elsevier.

Other factors may also reduce the rock apparent fracture toughness. It is found that
the rock fracture toughness decreases with the increase in humidity [124–127]. The possible
reason for this phenomenon is that the water reduces the surface energy of the rock and the
friction resistance between grains and the fracture surface [128]. Generally, the change of
the rock fracture toughness with the temperature is complicated. The experiment of Yin
et al. [129] showed that when the temperature increased from 25 ◦C to 400 ◦C, the type I
fracture toughness of granite decreased by 28.7%. Peng et al. [130] found that the I-type
fracture toughness of granite decreased by less than 40% when the temperature increased
from 20 ◦C to 300 ◦C. Funatsu et al. [102] found that the fracture toughness of Kimachi
sandstone did not change significantly below 125 ◦C. After exceeding this temperature, the
fracture toughness increases with the temperature. When the temperature reaches 200 ◦C, it
increases by 40% compared with the value at the room temperature. When the temperature
is lower than 75 ◦C, the fracture toughness of Tage tuff firstly decreases with an increase in
the temperature, and then it increases with the temperature. When the confining pressure is
added, the fracture toughness of Kimachi sandstone also increases first and then decreases
with temperature. Zhang et al. [131] found that the temperature has little effect on the
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dynamic fracture toughness of rocks. Therefore, the joint effect of the temperature and the
confining pressure on the fracture toughness is quite complex. However, the factor of the
temperature cannot explain the phenomenon that the fracture toughness under formation
conditions is several orders of magnitude higher than that in the laboratory.

The rock fracture toughness under different loading modes is different. The experiment
of Su et al. [132] shows that the fracture toughness of granite decreases with an increase
in the mixing coefficient. There is a very good linear relationship between the fracture
toughness of the pure type II and the pure type I. This was also proved by the experiment
of Yin et al. [129]. For type II cracks and mixed cracks of type I and II, the fracture
toughness is affected by the PFZ length and the T-stress [97,133,134]. The longer FPZ
is characterized by the shear-based failure, and the shorter FPZ is characterized by the
tension-based failure [133].

3. Fracture Process Zone

The rock FPZ size has been extensively researched by experiments and simulations.
The experiment of Swanson and Spetzler [135] found that the FPZ width of Westerly
granite is on the order of millimeters and the length is on the order of centimeters. The
rock FPZ size obtained from different experiments is on this order of magnitude. An
equation for the apparent fracture toughness related to the PFZ length was proposed by
Yue et al. [91] as follows:

KA
IC =

√
8
π

(
S
√

R f + Rc + σT
√

Rc

)
(1)

where σT is the rock tensile strength, Rc is the FPZ length, S is the compressive stress,
and Rf is the length of the fluid lag. If the FPZ length is 10 cm, the in situ stress is
50 MPa, and the tensile strength is 1 MPa, according to this equation, the apparent fracture
toughness is 25.7 MPa·

√
m. This fracture toughness is at least one order of magnitude

higher than that measured in the laboratory, and is closer to the value obtained from the
hydraulic fracturing practice. However, Vinegar et al. [136] found a FPZ about 14 m wide
in diatomite in the South Belridge field, CA through interwell seismic and remote-well
microseismic techniques. Evidence of the FPZ has been also found by other researchers in
this reservoir through various seismic waves [137–140]. These results support the results of
Vinegar et al. [136]. to some extent, and at least indicate that the FPZ of this reservoir is not
small. The fracture half-length obtained using different methods often has a very large gap.
Clarkson et al. [141] obtained a fracture half-length of about 200–300 ft from RTA, well test
analysis, and fracturing simulation. The fracture half-length explained using microseismic
analysis from three different vendors is about 500–700 ft. The results obtained by the RTA
and well test methods are less than half of these values (Figure 5). Barree et al. [142,143]
point out that the fracture half-lengths obtained from different methods are not actually the
same concept. To explain the difference in the fracture half-length obtained using different
methods, several fracture lengths were defined, including the microseismic length, gross
created fracture length, propped length, flowing length, and effective length. Although this
can qualitatively explain the difference in the fracture half-length obtained through different
methods, it lacks quantitative verification. In particular, there is no quantitative explanation
for the huge difference in the fracture half-length obtained through the microseismic
method and other methods. It should be noted that their interpretation does not consider
that the length obtained through the microseismic method includes at least part of the FPZ
length, while no part of the FPZ is most likely included in the results obtained through
other methods. The large length difference between them seems to indicate that the PFZ
is of considerable length. We do not know why there is such a big difference between the
laboratory and the field results.
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The shape of the rock FPZ develops with the increase in the load, and generally, a
strip shape is formed after reaching the peak load (Figure 6). The FPZ aspect ratio of Aue
granite is 0.01–0.1 [144]. The experiment conducted by Zhang et al. [145] using sandstone
shows that under peak load, the FPZ width is 0.4–0.5 times its length, and the FPZ width
is significantly affected by the specimen thickness. The shape of the PFZ obtained via
experiments is shown in Figure 7.Processes 2022, 10, 2022 9 of 27 
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The size and shape of the FPZ for different rocks are different. The FPZ of sandstone
is shorter than that of marble [146]. The aspect ratio is affected by the rock brittleness. The
more brittle the rock is, the greater the aspect ratio is [95]. The stronger the ductility of
the rock, the more remarkable the size effect of the FPZ [95,96]. The simulation of Kim
and Yao [147] shows that the FPZ size is affected by the rock constitutive relation and
increases with the increase in the rock plasticity. The FPZ is also affected by the rock
mesostructure [148,149]. The FPZ size is a function of the material grain size. It increases
with the increase in the grain size [150–154]. With the increase in the grain size, the rock
ductility increases [155]. Barton [148] noted that the FPZ size is 5–10 times the grain size.
The FPZ size of Stockbndge dolomite is 20–40 times the grain diameter [156]. Wawersik
and Brace [157] believe that the grain size affects the rock stress state, thus affecting the
FPZ size. Liu et al. [158] also proved this through the simulation of the particle flow code.
The simulation of Papanastasiou [27] shows that the FPZ size increases with the in situ
stress deviation, and is also affected by the rock strength, Young’s modulus, and pumping
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parameters, while the apparent fracture toughness is directly affected by the FPZ. When
the fracture propagates to a certain extent, the FPZ and the apparent fracture toughness
tend to an asymptotic value. The FPZ size obtained through different methods is quite
different. Zang et al. [144] found that the FPZ size obtained via acoustic emission is nine
times that of the grain diameter, while that obtained through the optical crack inspection is
twice that of the grain diameter.
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The FPZ size also has a scale effect [159]. The possible reason for why the apparent
fracture toughness increases with the fracture length is that the FPZ increases with the
fracture length. The study of Bahrami and Mortazavi [160] shows that the FPZ size increases
with the increase in the fracture length. Field observation shows that the FPZ size of the
dyke is in direct proportion to the fracture size [35,161,162]. However, the experiments of
Lin et al. [163] show that the FPZ length does not change with the fracture propagation.

The scale effect of the FPZ is also reflected in that the FPZ size is affected by the speci-
men size [164,165]. This is shown in Figure 8. In this regard, there are many contradictions
in the early experimental results, which have been clearly understood in recent years. The
fracture experiment conducted by Kong et al. [166] using granite shows that the FPZ width
remains approximately unchanged. The experiments carried out by Chen et al. [167] with
sandstone show that the length and width of the FPZ remain approximately unchanged.
However, the FPZ width is slightly less than the length. This may be related to the larger
size of the specimen, which is 400 mm × 400 mm × 50 mm, reaching the order of decime-
ters. Le et al. [168] also obtained a constant FPZ size. Zietlow and Labuz [169] found that
the length and width of the FPZ changes with the specimen, but the change of the width
is very small. Therefore, they believe that the FPZ width can be regarded as the material
property. This is consistent with the experimental and numerical simulation results of Berea
sandstone, and Berea and charcoal granite by Tarokh et al. [170]. To achieve this result, the
specimen size should reach tens of centimeters. Further research has shown that the FPZ
width is not constant. Numerical simulations and experiments show that there is a linear
relation between the reciprocal of the width and length of the FPZ and the reciprocal of the
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specimen size [94]. Based on Bazant’s scaling law, the following equation was proposed by
Fakhimi and Tarokh [94],

W =
W∞D

DOW

(
1 + D

DOW

) (2)

where W is the width or the length of the FPZ; D is a characteristic dimension of the
specimen; Dow is a constant, and W∞ is the width or the length of the FPZ for very large
specimens. The numerical simulation of Fakhimi and Wan [171,172] found that the FPZ
increases with an increase in specimen size, and finally, it tends to a constant value. The
width–length ratio of the FPZ remains unchanged. This means that the size effect of the
FPZ disappears. However, the simulation study of Galouei and Fakhimi [95] concluded
that the width–length ratio of the FPZ changed with the specimen size. The simulation
results of Wan and Fakhimi [172] show that when the specimen size is less than a certain
value, the FPZ size decreases with the increase in the fracture size. The reason for this
phenomenon may be that the simulated specimen size is too small. Tarokh et al. [173]
found that the representative element volume of the FPZ length is larger than that of the
FPZ width (Figure 9). This is also proven by the simulation of Galouei and Fakhimi [95]. In
addition to the specimen size, the FPZ length is also affected by the specimen shape [174].
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The FPZ size is affected by the loading rate [175,176]. The type I–II mixed fracture
experiment conducted by Xing [177] shows that the FPZ length increases from 5 mm to
17 mm with the loading rate from 0.02 to 2 mm/min. It is found that the FPZ width also
increases with the fracture propagation speed [144]. Chen et al. [178] found that the FPZ
not only increases with the increase in the fracture propagation speed, but also develops
from semi-elliptic to strip type. This can also explain that the rock fracture toughness
increases with the increase in the loading rate [179]. Under the cyclic load, more fragments
are produced in the FPZ and more microcracks are formed [180].

The pore fluid also influences the size of rock FPZ. Nie et al. [181] found in the
experiment that the rock FPZ is affected by the fluid in the pores. The FPZ of the water-
saturated specimen is 30% longer than that of the dry specimen, and the capillary force can
reduce the FPZ length. The FPZ size of the oil–water-saturated specimen is 20% smaller
than that of a single-phase oil- or a single-phase water-saturated specimen.

The three-point bending mixed fracture experiment of Berea sandstone conducted
by Lin and Labuz [163,182] shows that when KII/KI < 12%, the FPZ is dominated by the
opening displacement. The length of the FPZ increases with an increase in the mixing
degree from mode I to mode II cracks [146,163]. With the increase in the specimen size,
the difference of the FPZ lengths caused by the loading mode and the specimen shape
become smaller and smaller [146]. Studies have shown that pure type II loading does not
necessarily produce type II cracks [183–186]. Garg et al. [187] carried out the three-point
bending fracture experiment using Barre granite. Although it is pure type II loading, the
fracture initiates with a type I crack. If there is no confining pressure, it is difficult for
the type II fracture to occur. The FPZ is dominated by tensile microcracks and a small
amount of shear microcracks [175,188,189]. These may be related to the fact that the rock
shear strength is much greater than its tensile strength. According to the analysis by Van
Dam and Pater [190], the fracture surface roughness is related to the size of the FPZ. The
fracture tip first experiences shear failure and then tensile failure. The fracture process is
the combination of the tensile failure and the shear failure.

The rock fracture toughness measured in the laboratory is in the order of O(1), which
is often very different from the results speculated by the hydraulic fracturing in the field.
Therefore, it cannot be used for a hydraulic fracturing simulation. To ensure that the
K-control fracture is effective in the fracture toughness test, it is generally required that
the fracture length and ligament length are 15–25 times of the size of the FPZ [191]. The
length of the FPZ measured in the experiment often reaches the order of several centimeters
to decimeters. While the FPZ size tends to the asymptotic value, it may reach the order
of meters. This requires the specimen size to reach the order of meters. At present, the
specimen size used in the test of the rock fracture toughness is generally in the order of
centimeters to decimeters, which is far from meeting the requirements of small-scale yields.
This is also an important reason for why the rock fracture toughness tested in the laboratory
cannot meet the requirements of the hydraulic fracturing in the field.

4. Fracture Propagation Criterion for Ductile Rocks

There are two differences between the hydraulic fracturing and the linear elastic
fracture theory: the fluid lag zone and the long FPZ. Garagash et al. [55] studied the
applicability of the linear elastic fracture mechanics in the hydraulic fracturing. The
feasibility of the linear elastic fracture mechanics depends on two parameters: the ratio
of the cohesive-to-fluid-lag fracture energy, and the ratio of the cohesive-to-in situ stress.
Since the formation stress is much higher than the rock cohesion, the linear elastic fracture
mechanics cannot be used for the hydraulic fracturing. In the classical fracture mechanics
theory, the stress intensity factor theory of the linear elastic fracture was modified by Irwin
under the assumption of small-scale yield. It assumes that the material is perfectly elastic–
plastic, and complies with the Mises yield criterion. For the rock fracture, the tensile stress
yield criterion was proposed to modify the fracture toughness under small-scale yield. The
fluid lag effect is not considered in these small-scale modifications. They also do not meet
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the condition of a long FPZ at the rock fracture tip. The fracture opening displacement
criterion proposed by Wells and the J-integral criterion proposed by Rice [192,193] have also
been used by some researchers in the rock hydraulic fracturing. However, the J-integral is
based on the hyperelastic constitutive relation, which is not in accordance with the nature
of the rock FPZ, and its applicability is questionable. In addition, the fluid lag effect is
not considered via the J-integral theory. Dugdale and Barenblatt [53,194,195] considered
that there is a yield zone in front of the fracture tip. Therefore, they put forward the
CZM. This model is widely used to study the effect of the rock plasticity on the hydraulic
fracturing performance. Mokryakov [196] assumed that the yield stress in the cohesion zone
is constant, and the analytical model of the fracture propagation in hydraulic fracturing is
obtained. The effective fracture toughness is expressed as follows:

Ke f f
IC = Pcoh

 π

2arcsin
(

R
L

) − 1

√πR (3)

where, Pcoh is the cohesive stress, L is the total hydraulic fracture half-length, and R is
the real hydraulic fracture half-length. Bazant believes that the stress distribution in the
FPZ for quasi-brittle materials conforms to the softening model. Therefore, Mokryakov’s
model can be improved. The CZM can be used to describe inelastic fracture propagation,
and is the strongest propagation criterion [11,197]. However, the fluid lag effect is not
considered by the CZM. In addition, how to choose the appropriate traction-separation law
and parameters is worthy of further study. Based on the CZM, and considering the fluid lag
effect, Rubin [90], and Khazan and Fialko [198] proposed the apparent fracture toughness
model of rocks, which can well explain the law that the rock apparent fracture toughness
increases with the increase in confining pressure. Yue et al. [91] discussed the applicability
of the apparent fracture toughness model. The simulation results are very consistent with
the results of the CZM with a fluid lag zone. The stress field near the fracture tip obtained
by it is close to the results obtained using the fracture energy model and CZM. Using the
fracture toughness measured at an unconfined state, the calculated stress at the crack tip
under confining pressure is low. These models all assume that the length of the FPZ is
constant. To consider that the rock fracture toughness may be positively correlated with
the fracture length, a power law relation between the apparent fracture toughness and the
fracture length is assumed by Liu et al. [199]. Zhang and Nakamaura [200] proposed a
power law criterion for fracture propagation by increasing the peak separation stress in
the surface separation energy. However, the effect of the rock plasticity on the hydraulic
fracturing performance cannot be fully reflected by the apparent fracture toughness. The
fracture is passivated by the plastic deformation at the fracture tip, which results in serious
stress redistribution, making the closing pressure lower than the in situ stress [28]. The rock
near the fracture wall has undergone plastic deformation, and the pore structure is changed.
Therefore, the mechanical properties and permeabilities of these part rocks are also changed,
and the opening of the fracture and the filtration of the fracturing fluid would be affected.

In addition to these fracture propagation models developed based on classical fracture
mechanics, other types of fracture propagation models have also been proposed. Chud-
novsky et al. [201,202] proposed the crack layer model, which is similar to the CZM, but
obtained the development law of the crack layer through the thermodynamic theory. The
continuum damage models are used to simulate hydraulic fracturing and to characterize
the development of fractures through damage variables [203–207]. The effect of the rock
plastic deformation on the hydraulic fracturing can be comprehensively reflected using
this method. The continuous damage model was used by Valko and Economides [206,207]
to fit the hydraulic fracturing data very well. However, the results of the local continuous
damage model are grid-dependent. To this end, a non-local continuous damage model was
proposed by Mostafa et al. [208,209]. However, the evolution law of the constitutive relation
of damage variables needs to be further tested and developed in practical applications.
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During the hydraulic fracturing, the rock fracturing is dominated by tension failure.
The tensile failure theory was also used directly in the hydraulic fracturing simulation by
Barree [210]. Whether it is appropriate to use the tensile strength measured at laboratory
scale as the parameter for the hydraulic fracturing simulation under the field condition
is a problem worthy of study. The rock in the hydraulic fracturing is often in a three-
dimensional stress state. In addition to the tensile stress, there is also shear stress at the
fracture tip. Therefore, it is necessary to determine the propagation direction of the fracture.
The conventional methods for determining the propagation direction of the mixed fracture
propagation include the maximum circumferential stress criterion, the strain energy density
factor criterion, and the maximum energy release rate theory [211]. The crack tip elastic
stress field of 2D plane under mixed loading can be written as [191]:

σij ≈
KI√
2πr

f I
ij(θ) +

KII√
2πr

f II
ij (θ) + Tδ1iδ1j (4)

where r and θ are polar coordinates with the origin at the crack tip; KI and KII are the
modes I and II stress intensity factors, respectively; T is the T-stress, and f I

ij(θ) and f II
ij (θ)

are known functions of θ. Therefore, the crack propagation path and fracture toughness
are affected by the T-stress. These models are improved by considering the T-stress, and
the obtained results are more consistent with experiments [212–216]. This is shown in
Figure 10. In addition to these criteria, the R criterion is proposed by Khan [217], which
holds that the fracture extends along the nearest direction from the fracture tip to the elastic
zone. The T criterion for ductile fracture was proposed by Theocaris et al. [218–221], in
which the Mises criterion is used to determine the elastic–plastic boundary. However, the
calculation of the plastic zone is based on the small-scale yield correction of the linear elastic
fracture mechanics. In addition to the tensile and shear failure, Gil and Roegiers [222]
believe that volumetric strain should also be considered for the rock fracture propagation
of underconsolidated reservoirs.
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5. Hydraulic Fracturing Simulation Method Considering Rock Plastic Deformation

There are many methods for hydraulic fracturing simulation, including the finite element
method, the extended finite element method, the boundary element method/displacement
discontinuity method, the discrete element method, the phase field method, and the
peridynamics method, etc. For ductile rocks, the plastic deformation at the crack tip leads
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to an increase in the injection fluid pressure and a change in the fracture shape. The
apparent fracture toughness model, J-integral [223] and CZM model [224–229], can be used
for numerical simulation, considering crack tip plasticity. In fact, these models only consider
the plasticity of the zero-thickness sheet along the extension line of the crack tip. However,
the plastic deformation at the crack tip has a certain thickness, and the plastic deformation
also exists near the wall surface formed by the fracture propagation. In addition, the water
pressure in the fracture is superimposed on the pressurized reservoir rock, which may also
lead to plastic deformation of the rock near the fracture [230]. The possible nonlinear zone
in the hydraulic fracturing is shown in Figure 11. The crack tip can be passivated, and the
crack opening can be widened via this plastic deformation. Therefore, the geometry of
the fracture is changed. Although the net pressure of the fracture propagation can be well
fitted by the apparent fracture toughness model, the fracture geometry cannot be evaluated
accurately [231]. Therefore, not only the crack propagation criterion considering the plastic
deformation needs to be used, but also elastoplastic constitutive models characterizing
the stress–strain relationship should be used to simulate the rock deformation, such as
Drucker–Prager criterion [232,233], the Mohr–Coulomb criterion [234], and the Cambridge
model [24,235]. Simulation results confirm that the fracture propagation pressure and
fracture width are increased by the formation plasticity, and these also cause the fracture
closure pressure to be lower than the minimum horizontal stress [236].

Processes 2022, 10, 2022 15 of 27 
 

 

5. Hydraulic Fracturing Simulation Method Considering Rock Plastic Deformation 
There are many methods for hydraulic fracturing simulation, including the finite el-

ement method, the extended finite element method, the boundary element method/dis-
placement discontinuity method, the discrete element method, the phase field method, 
and the peridynamics method, etc. For ductile rocks, the plastic deformation at the crack 
tip leads to an increase in the injection fluid pressure and a change in the fracture shape. 
The apparent fracture toughness model, J-integral [223] and CZM model [224–229], can 
be used for numerical simulation, considering crack tip plasticity. In fact, these models 
only consider the plasticity of the zero-thickness sheet along the extension line of the crack 
tip. However, the plastic deformation at the crack tip has a certain thickness, and the plas-
tic deformation also exists near the wall surface formed by the fracture propagation. In 
addition, the water pressure in the fracture is superimposed on the pressurized reservoir 
rock, which may also lead to plastic deformation of the rock near the fracture [230]. The 
possible nonlinear zone in the hydraulic fracturing is shown in Figure 11. The crack tip 
can be passivated, and the crack opening can be widened via this plastic deformation. 
Therefore, the geometry of the fracture is changed. Although the net pressure of the frac-
ture propagation can be well fitted by the apparent fracture toughness model, the fracture 
geometry cannot be evaluated accurately [231]. Therefore, not only the crack propagation 
criterion considering the plastic deformation needs to be used, but also elastoplastic con-
stitutive models characterizing the stress–strain relationship should be used to simulate 
the rock deformation, such as Drucker–Prager criterion [232,233], the Mohr–Coulomb cri-
terion [234], and the Cambridge model [24,235]. Simulation results confirm that the frac-
ture propagation pressure and fracture width are increased by the formation plasticity, 
and these also cause the fracture closure pressure to be lower than the minimum horizon-
tal stress [236]. 

 
Figure 11. The schematic diagram of nonlinear zones caused by the hydraulic fracturing. Reprinted 
from Ref. [230]. 

At present, only a type I fracture is considered by the apparent fracture toughness 
models, and the CZM model is only applicable to the pre-specified propagation path. By 
using the global CZM model [237], the propagation path can be determined according to 
the propagation criterion (Figure 12). In this way, the interaction between the hydraulic 
fracturing fracture and the natural fracture network can be simulated [238,239]. However, 
the fracture propagation path is only limited to the grid boundary through this method. 
In order not to impose artificial restrictions on the propagation path of fractures, the XFEM 

Figure 11. The schematic diagram of nonlinear zones caused by the hydraulic fracturing. Reprinted
from Ref. [230].

At present, only a type I fracture is considered by the apparent fracture toughness
models, and the CZM model is only applicable to the pre-specified propagation path. By
using the global CZM model [237], the propagation path can be determined according to
the propagation criterion (Figure 12). In this way, the interaction between the hydraulic
fracturing fracture and the natural fracture network can be simulated [238,239]. However,
the fracture propagation path is only limited to the grid boundary through this method. In
order not to impose artificial restrictions on the propagation path of fractures, the XFEM
is often used in simulation [240–242]. The enrichment function at the crack tip is added
to the interpolation function of the FEM by the XFEM, which allows the fracture to pass
through the element without re-meshing. Therefore, the non-planar propagation of frac-
tures [243] and the mutual interference between fractures [244,245] can be simulated, and
the simulation of multi-stage hydraulic fracturing is realized [246]. Further, the influence
of flow in the reservoir on the hydraulic fracturing can be considered through the Biot
model on the formation seepage and the pore elasticity [232]. Studies have shown that
the fracture opening is reduced by the pore elasticity [236]. If the pore pressure is reduced
by the generation of adjacent wells, the fractures propagation path is deflected toward
the adjacent wells [247]. The shape of the plastic zone obtained by different simulation
methods is inconsistent and is not always consistent with the FPZ obtained through the
experiment (Figures 13 and 14).
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The CZM with fluid lag requires a very fine mesh at the fracture tip, which makes
computation difficult [248]. Due to the great difference between the fluid pressure gradient
in the fracture and that in the formation, the mesh around the fracture is required to be
relatively dense when simulating the flow in the reservoir. This problem can be addressed
by embedding discrete fractures [232,249].
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In addition to these methods, the elastoplastic damage models can be used to simulate
the hydraulic fracturing of ductile rocks [250,251]. Busetti et al. [252,253] used an elastoplas-
tic continuous damage model to simulate the hydraulic fracturing process. Although the
fracture propagation behavior of ductile rocks can be well simulated through this method,
the width and length of the fracture cannot be revealed from this method. In addition,
the fracture structure of this method depends heavily on the mesh size. Because fracture
characteristics are expressed using damage variables, and the fracture characteristics is
diffused over discrete areas (Figure 15), this affects the design of the proppant, fracturing
fluids, and pumping procedures.

Processes 2022, 10, 2022 18 of 27 
 

 

 

Figure 15. The fracture propagation characterized by the damage evolution (NLDT: non-local dam-
age, non-local permeability; NLD: non-local damage, local permeability). Reprinted with permis-
sion from Ref. [251]. Copyright 2018, Elsevier. 

6. Conclusions and Prospects 
The fracture propagation pressure of hydraulic fracturing in ductile reservoirs is 

much higher than the numerical simulation results, and the rock fracture toughness esti-
mated in the field is generally 1–3 orders of magnitude higher than the laboratory test 
results. It is found that the rock fracture toughness increases with the increase in the con-
fining pressure. In addition to the energy dissipation caused by fluid viscosity and the 
increase in apparent fracture toughness caused by fluid lag, the FPZ at the fracture tip is 
the main reason for why the rock apparent fracture toughness obtained from the hydraulic 
fracturing in the field is much larger than that obtained through laboratory tests. The ex-
istence of FPZ can also explain the phenomenon that the rock apparent fracture toughness 
increases with confining pressures. The fracture tip is passivated by the FPZ, which in-
creases the fracture propagation resistance and makes the hydraulic fracturing of ductile 
reservoirs more difficult. It requires higher injection pressure and results in wider and 
shorter fractures. 

The rock FPZ size obtained from laboratory experiments is in the order of centimeters 
to decimeters, which is very different from the results speculated from field practice. The 
rock FPZ increases with an increase in the specimen size, in which the width increases 
faster, and the length and width tend to be constant. The FPZ size is affected by rock prop-
erties, grain size, pore fluid, temperature, loading rate, and loading configuration. Both 
the CZM and apparent fracture toughness model can well address the difference of the 
fracture toughness obtained between in the field and through the laboratory test. They 
can also explain the phenomenon where the fracture toughness increases with the confin-
ing pressure. However, the CZM cannot consider the fluid lag effect. These models cannot 
fully consider the influence of the rock plastic deformation on the fracture propagation. 
At present, the CZM is mostly used in the hydraulic fracturing simulation. In order to 
fully consider the influence of rock plastic deformation, it is also necessary to use the 

0 

0.25 

0.5 

0.75 

1.0 
Damage 

Figure 15. The fracture propagation characterized by the damage evolution (NLDT: non-local damage,
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6. Conclusions and Prospects

The fracture propagation pressure of hydraulic fracturing in ductile reservoirs is much
higher than the numerical simulation results, and the rock fracture toughness estimated in
the field is generally 1–3 orders of magnitude higher than the laboratory test results. It is
found that the rock fracture toughness increases with the increase in the confining pressure.
In addition to the energy dissipation caused by fluid viscosity and the increase in apparent
fracture toughness caused by fluid lag, the FPZ at the fracture tip is the main reason for
why the rock apparent fracture toughness obtained from the hydraulic fracturing in the
field is much larger than that obtained through laboratory tests. The existence of FPZ can
also explain the phenomenon that the rock apparent fracture toughness increases with
confining pressures. The fracture tip is passivated by the FPZ, which increases the fracture
propagation resistance and makes the hydraulic fracturing of ductile reservoirs more
difficult. It requires higher injection pressure and results in wider and shorter fractures.

The rock FPZ size obtained from laboratory experiments is in the order of centimeters
to decimeters, which is very different from the results speculated from field practice. The
rock FPZ increases with an increase in the specimen size, in which the width increases
faster, and the length and width tend to be constant. The FPZ size is affected by rock
properties, grain size, pore fluid, temperature, loading rate, and loading configuration.
Both the CZM and apparent fracture toughness model can well address the difference of
the fracture toughness obtained between in the field and through the laboratory test. They
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can also explain the phenomenon where the fracture toughness increases with the confining
pressure. However, the CZM cannot consider the fluid lag effect. These models cannot
fully consider the influence of the rock plastic deformation on the fracture propagation.
At present, the CZM is mostly used in the hydraulic fracturing simulation. In order to
fully consider the influence of rock plastic deformation, it is also necessary to use the
elastic–plastic constitutive relation. In addition, the fluid lag and FPZ require fine grids
near the crack tip, which affects the computational efficiency.

At present, there are still many unclear aspects about the fracture behavior of ductile
rocks, and the difference between the fracture behavior in the hydraulic fracturing practice
and the laboratory test results cannot be fully explained. The relation between the fracture
toughness and fracture length at the field scale is still unclear. The rock FPZ size obtained
from a hydraulic fracturing site and the laboratory is very different. In the future, it
is necessary to further verify the FPZ size in reservoirs. More on-site monitoring and
testing needs to be implemented for observing rock fracture behavior under different
reservoir conditions. However, in hydraulic fracturing practice, the fracture may be curved.
Therefore, more research is needed on the rock fracture behavior of type II and mixed
type. After addressing the difference between the field and the laboratory results, it
is necessary to further establish the fracture propagation criteria suitable for hydraulic
fracturing simulation in ductile reservoirs.
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