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Abstract: Halide perovskites are increasingly exploited as semiconducting materials in diverse
optoelectronic applications, including light emitters, photodetectors, and solar cells. The halide
perovskite can be easily processed in solution, making microfluidic synthesis possible. This review
introduces perovskite nanostructures based on micron fluidic channels in chemical reactions. We
also briefly discuss and summarize several advantages of microfluidics, recent progress of doping
strategies, and optoelectronic applications of light-sensitive nanostructured perovskite materials. The
perspective of microfluidic synthesis of halide perovskite on optoelectronic applications and possible
challenges are presented.
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1. Introduction

The microfluidic chip that confines fluids in micron channels can scale the chemical
reactions from extensive batch synthesis down to the microscale, exploiting the physi-
cal and chemical properties of liquids and gases at a microscale, significantly reducing
the synthesis and analysis of volume reagents [1–5]. In nanocrystal (NC) synthetic pro-
cesses, the batch synthesis strategies of NCs are almost always challenging due to rapid
perovskite crystallization, the extensive precursor preparation, the difficulties associated
with product purification, and the need for particle post-synthesis. It is envisioned that
a microreactor platform consisting of flow-focusing microfluidics might be suitable to
synthesize high-crystallinity and narrow-size-distribution NCs due to the ultrafast mixing
and phase separation during the crystal nucleation and growth. The microfluidic chemical
reactions can be precisely detected and explored by in situ spectroscopy [6–10] and more
sufficient and continuous during the reaction on the micron scale. Therefore, there are at
least two advantages to microfluidic synthesis. On the macroscopic level, a microreactor
can be considered a powerful and effective platform for the mass synthesis of semicon-
ductor nanomaterials. On the microscopic level, the microfluidic technique facilitates
the simultaneous collection of both absorption and photoluminescence (PL) spectra of
various luminescent materials synthesized in the liquid states, particularly that of halide
perovskite nanocrystals.

Quantum dot (QD) semiconductors are promising materials for various applications
ranging from light-emitting diode (LED) displays to solar cells, biological sensing, and imag-
ing [6–8]. Specifically as optoelectronic materials, perovskite nanocrystals have attracted
much more attention due to their high PL quantum yields, high absorption/emission effi-
ciency, long carrier lifetime, and tunable emission color over the entire visible region [9–11].
Lead halide perovskite structure can be characterized by the general formula ABX3 (X = Cl,
Br, or I), where A and B represent two different cations. A-site cations can be inorganic
or organic ions, such as cesium (Cs), formamidinium (FA), and methylammonium (MA),
while B-site cation (Pb2+) could potentially be exchanged by dopant ions (Mn2+, Fe2+, Ce3+,
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Eu2+) [12–18]. Therefore, the hybrid organic−inorganic lead halide perovskite, such as
CH3NH3PbX3; and all inorganic lead halide perovskite, such as CsPbX3, in the form of
nanocrystals, thin films, microcrystals, and bulk single-crystals, show promising proper-
ties in LEDs [9,19], lasers [20], solar cells [21–23], gas sensors [24], etc. This review will
present the development, progress, and perspectives of halide perovskite synthesis and
optoelectronic applications.

2. Microfluidic Synthesis of Halide Perovskite

Generally, microfluidic devices have microchannels ranging from submicron to a few
millimeters, as shown in Figure 1, which can move or analyze the tiny amount of liquid
(droplet) in a single- or multi-phase flow.
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Figure 1. Various microfluidic syntheses of perovskite nanostructures and composite. (a) Microfluidic
setup with a U.S. dime coin for comparison. Adapted with permission from Ref. [25]. Copyright 2019
Elsevier B.V. (b) Synthesis of perovskite composite microparticles. Adapted with permission from
Ref. [26]. Copyright 2021 Wiley-VCH GmbH. (c) Formation of MAPbBr3 PQDs in nanofiber. Adapted
with permission from Ref. [27]. Copyright 2022 Wiley-VCH GmbH. (d) Schematic of the PL dynamics
of microfluidic droplet. Adapted with permission from Ref. [28]. Copyright 2020 American Chemical
Society. (e) Microfluidic chips for synthesizing CsPbBr3. Adapted with permission from Ref. [29].
Copyright 2021 American Chemical Society. (f) QD anion exchange reaction in a continuous flow.
Adapted with permission from Ref. [30]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim, Germany.

The microfluidic reaction has been recognized to be more controllable and continuous
during the nanostructure’s synthesis on the microscale. As shown in Figure 1d, the QDs
were synthesized from multiphase (liquid, gas) in microfluidic channels. Compared to
conventional flask synthesis under gas protection at high temperatures, the continuous-
flow microfluidic approach benefits the alignment of the quantum-confined perovskite
nanocrystals and can promote crystal growth orientation to form long nanowires (NWs)
at room temperature. In Figure 1a–c,e,f, reagent precursor solution is injected into the
microchannel. After combination in the channel, different types of nanomaterials can be
achieved (Table 1) [25–27,29,31–33].
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Table 1. Microfluidic synthesis of nanostructured halide perovskite.

Materials Synthesis Temp. (◦C) Size PL Peak Location (nm) Year [Ref.]

CsPbBr3 QDs RT <10 nm ~500 2017, Epps et al. [33]
CsPbBr3 QDs RT 10–20 nm ~520 2019, Wei et al. [34]
CsPbBr3 NWs 50 3–9 µm 535 2021, Koryakina et al. [29]
CsPbBr3 NWs 50 ~4 nm (width) ~475 2019, Zhang et al. [31]

MAPbI3 85 60 µm (width) - 2020, Khorramshahi et al. [35]
QD encapsulation 37 500–700 nm 430–625 2021, Bian et al. [32]

MAPbBr3 composite - 500 µm ~530 2021, Kim et al. [26]
FAPb(I/Br)3 QDs 120 ~10 nm 530–690 2017, Maceiczyk et al. [36]

Cs4PbBr6 MCs 60–150 >1 µm 520 2018, Bao et al. [37]
CsPbX3 QDs 130–220 8–12.5 nm 470–690 2016, Lignos et al. [38–40]
CsPbX3 QDs RT <20 nm 422–660 2019, Abdel-Latif et al. [30]
CsPbX3 NCs RT ~15 nm ~520 2020, Lin et al. [41]
CsPbX3 NCs 100–180 <20 nm 406–677 2022, Geng et al. [42]

In the materials column of the table, QDs: quantum dots, NCs: nanocrystals, NWs: nanowires, MCs: microcrystals,
and X = Br, I, Cl, respectively.

The microfluidic channel with controllable morphology and configuration could be
efficiently designed and achieved, therefore, nanomaterials could be more precisely synthe-
sized in the microfluidic channel. For example, Kim et al. reported the in situ reaction of
metal halide perovskite nanoparticles by the ligand-assisted reprecipitation process (LARP)
and encapsulation by ultraviolet light (UV) cross-linking polymerization, in which the
stable, water-resistant light-emitting perovskite–polymer composite microparticles can
be synthesized in a continuous one-step microfluidic reactor [26]. Tuning the reactant
concentration and the flow rate in the microreactor, ranging from several nanometers
to over one hundred nanometers, hollow spherical silica-based functional materials and
the Cs4PbBr6 perovskite microcrystals (MCs) were synthesized by mixing two reactant
flows, respectively [25,37]. With the microfluidic template in Figure 2a,c, well-aligned
and uniform heterojunctions of MAPbI3 and organic semiconductors (OSC) in the silicon
nanowire patterns can be grown. In Figure 2b,d,f, different morphologies (1D, 2D) of halide
perovskite have already been successfully synthesized via solution methods [17,43,44],
which are difficult to batch produce and industrially apply in comparison to microfluidic
synthesis. In Figure 2e, the halide exchange reactions are realized in a modular microfluidic
platform called Quantum Dot Exchanger, which offers a unique time- and material-efficient
approach for studies of solution phase-processed colloidal nanocrystals [30,45,46]. Per-
ovskite precursor solutions could be simultaneously pumped into the microfluidic device.
By changing the ratio of different perovskite precursor solutions, a series of perovskite QDs
can be precipitated and encapsulated in ethyleneglycol dimethacrylate (EGDMA) resin [32].
The microfluidic synthesis makes chemical composition tuning and doping in perovskite
more available.
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Figure 2. (a) SEM images of the silicon nanowire template for microfluidic synthesis. Adapted with
permission from Ref. [45]. Copyright 2020 The Royal Society of Chemistry. (b) SEM image of the
CH3NH3PbX3 platelet array. Adapted with permission from Ref. [43]. Copyright 2016 American
Chemical Society. (c) Periodic parallel lines and surface of grating-patterned Si substrate, respectively.
Adapted under a creative commons license from Ref. [46] (www.creativecommons.org/licenses/
by-nc-nd/4.0/ (accessed on 14 September 2022)). Copyright 2020 The Authors. (d) SEM image
of the CsPbI3 NWs. Adapted with permission from Ref. [44]. Copyright 2016 American Chemical
Society. (e) Continuous anion exchange reactions of CsPbBr3 QDs. Adapted with permission from
Ref. [30]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (f) SEM image of the
Fe-doped CsPb(Cl/Br)3 NW. Adapted with permission from Ref. [17]. Copyright 2018 American
Chemical Society.

3. Doping Strategies
3.1. Ion Doping

Much research on structural design and optical properties of semiconductors has re-
cently been studied extensively concerning defects, isovalent and aliovalent doping [12,47–49].
Chemical doping of halide perovskite is a promising strategy to prepare the highest efficiency
and most stable perovskite-based devices [50,51]. The doping ions can be alkali metals (K+),
alkaline earth metals (Sr2+, Mg2+), transition metal ions (Mn2+, Fe3+), lanthanide ions (Ce3+,
Nd3+, Eu2+), etc. [15–18,52,53]. However, it is still a challenging step for controllable doping in
halide perovskite family of semiconductors, due to compensation from and facile migration of
intrinsic defects [54].

A dopant is often used to retain the material’s morphology while partially changing
its composition (Figure 3a), exhibiting a distinct difference that is not otherwise attainable
in a crystalline host material, such as carrier concentration, luminescence centers, bandgap
tuning, and excitons [16,55,56]. B-site doping (metal substitution) in perovskite is more
likely to enable tuning of carrier concentration and Fermi level [51]. For example, a small
amount of bismuth dopant in tin iodide cubic perovskite affects the electronic structure
and electronic properties of this material, which causes the continued narrowing of the
band gap from 1.3 to 0.8 eV without changing the energy and density of states (DOS) at
the top of the valence band, and without increasing the number of carriers [57]. Phung

www.creativecommons.org/licenses/by-nc-nd/4.0/
www.creativecommons.org/licenses/by-nc-nd/4.0/
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et al. unveiled the alkaline earth metals (Sr2+, Mg2+) doping mechanism: low doping levels
enable the incorporation of the dopant within the perovskite lattice, whereas high doping
concentrations induce surface segregation [52]. Figure 3b demonstrates the Mn emission
band in transition metal cation Mn2+-doped perovskite NCs [16]. Moreover, the dopant in
the crystal structure also leads to slightly improved electrochemical performances, such as
discharge capacity and rate capability (Figure 3c) [58,59].

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 11 
 

 

enable the incorporation of the dopant within the perovskite lattice, whereas high doping 

concentrations induce surface segregation [52]. Figure 3b demonstrates the Mn emission 

band in transition metal cation Mn2+-doped perovskite NCs [16]. Moreover, the dopant in 

the crystal structure also leads to slightly improved electrochemical performances, such 

as discharge capacity and rate capability (Figure 3c) [58,59]. 

The merits of microfluidics in doping perovskite are the efficient mixing of the pre-

cursor ions, the rapid nucleation of crystal seeds in the antisolvent, and the controllable 

crystal growth of the doped perovskite along the flow direction, which may further im-

prove the quality and quantity of dopant in halide perovskite. Several dopants in perov-

skite have been successfully realized in the microfluidic reactor, such as lanthanide ions 

in CsPbBr3 perovskite. Lin et al. investigated the Ce3+concentration effect on PL efficiency, 

quantum yield, and perovskite stability at ambient conditions [41]. Integrating in situ 

spectral characterizations with the modular microfluidic platform is an advantage to rap-

idly investigating the precursor concentration and ligand migration kinetics and accu-

rately revealing the doping mechanism of perovskite QDs [60]. 

 

Figure 3. Structure properties of doping. (a) Basic ABX3 crystal structure and possible dopant loca-

tions of perovskite semiconductor. Adapted with permission from Ref. [51]. Copyright 2021 Amer-

ican Chemical Society. (b) The energy level diagram of Mn-doped CsPbX3 NCs. Adapted with per-

mission from Ref. [16]. Copyright 2016 American Chemical Society. (c) Schematic of layered crystal 

structure. Adapted under a creative commons license from Ref. [58] (www.creativecommons.org/li-

censes/by-nc-nd/4.0/ (accessed on 14 September 2022)) Copyright 2021 by the authors. 

3.2. Ion Exchange 

The ion exchange for halide perovskite refers to the progress that the ions in the re-

action exchange with the counterpart of the parent crystalline compound to form a crystal 

lattice with entirely or partly exchanged ionic components [61]. Microfluidic synthesis 

could increase the efficiency of ion exchange at low temperatures. For example, Abdel- 

Latif et al. reported the effects of ligand composition and halide salt source on room-tem-

perature, single-solvent anion exchange reaction kinetics and bandgap properties with 

CsPbBr3 perovskite QD solution using optical spectroscopy [30]. With the combination of 

online photoluminescence and absorption measurements and the fast mixing of reagents 

in a microfluidic platform, Lignos et al. reported the rigorous and rapid mapping of the 

reaction parameters of CsPbX3 nanocrystals, including the effects of molar ratios of Cs, Pb, 

and halide precursors, reaction temperatures, and reaction times [38]. Via controlled anion 

Figure 3. Structure properties of doping. (a) Basic ABX3 crystal structure and possible dopant
locations of perovskite semiconductor. Adapted with permission from Ref. [51]. Copyright 2021
American Chemical Society. (b) The energy level diagram of Mn-doped CsPbX3 NCs. Adapted with
permission from Ref. [16]. Copyright 2016 American Chemical Society. (c) Schematic of layered
crystal structure. Adapted under a creative commons license from Ref. [58] (www.creativecommons.
org/licenses/by-nc-nd/4.0/ (accessed on 14 September 2022)) Copyright 2021 by the authors.

The merits of microfluidics in doping perovskite are the efficient mixing of the precur-
sor ions, the rapid nucleation of crystal seeds in the antisolvent, and the controllable crystal
growth of the doped perovskite along the flow direction, which may further improve the
quality and quantity of dopant in halide perovskite. Several dopants in perovskite have
been successfully realized in the microfluidic reactor, such as lanthanide ions in CsPbBr3
perovskite. Lin et al. investigated the Ce3+ concentration effect on PL efficiency, quantum
yield, and perovskite stability at ambient conditions [41]. Integrating in situ spectral charac-
terizations with the modular microfluidic platform is an advantage to rapidly investigating
the precursor concentration and ligand migration kinetics and accurately revealing the
doping mechanism of perovskite QDs [60].

3.2. Ion Exchange

The ion exchange for halide perovskite refers to the progress that the ions in the
reaction exchange with the counterpart of the parent crystalline compound to form a crystal
lattice with entirely or partly exchanged ionic components [61]. Microfluidic synthesis
could increase the efficiency of ion exchange at low temperatures. For example, Abdel-
Latif et al. reported the effects of ligand composition and halide salt source on room-
temperature, single-solvent anion exchange reaction kinetics and bandgap properties with
CsPbBr3 perovskite QD solution using optical spectroscopy [30]. With the combination of
online photoluminescence and absorption measurements and the fast mixing of reagents

www.creativecommons.org/licenses/by-nc-nd/4.0/
www.creativecommons.org/licenses/by-nc-nd/4.0/
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in a microfluidic platform, Lignos et al. reported the rigorous and rapid mapping of the
reaction parameters of CsPbX3 nanocrystals, including the effects of molar ratios of Cs,
Pb, and halide precursors, reaction temperatures, and reaction times [38]. Via controlled
anion exchange reactions using a range of different halide precursors, Akkerman et al.
demonstrated the tunable chemical composition and the optical properties of colloidal
CsPbBr3 NCs in the region of the visible spectrum by displacement of Cl− or I− ions and
reinsertion of Br− ions [62]. The microfluidic platform can potentially and comprehen-
sively understand the halide exchange reactions by tuning precursor mixing rates in the
microfluidic channel.

4. Optoelectronic Applications
4.1. LEDs and Laser

Halide perovskite used as a photoactive layer has been widely explored in optoelec-
tronics, e.g., LEDs, lasers, photodetectors, solar cells, etc., due to high quantum yields and
tunable light emission [9,10,63]. Several light-sensitive perovskite devices were fabricated
based on microfluidic synthesis.

Perovskite LEDs have achieved impressive progress in the past few years (Figure 4a),
showing that quantum efficiency has surpassed 20 per cent for managed compositional
distribution and balanced charge injection [63,64]. Using a microfluidic system, Cs4PbBr6
perovskite MCs were fabricated with K2SiF6:Mn4+ phosphor onto InGaN blue chips as
white LEDs, which achieved a high National Television Standards Committee value of
119% for backlight display [37]. The Ce3+-doped CsPbBr3 perovskite NCs were used to
manufacture the green LEDs with a high color purity of 93.3% and the white LEDs [41].
Due to the availability of nanoreactors for chemical synthesis with scale-up capacities,
large-scale production of ligand-free (MAPbX3, X = Cl, Br, and I) perovskite QDs has
been realized with a microfluidic blow spinning technique. The composite nanofiber
film production (120 cm × 30 cm per hour) exhibited a high color gamut of 126.2% [27],
potentially useful for wide-color-gamut displays and LEDs.

Perovskite lasers are promising light sources with great potential for integration into
photonic circuits. Over the past few years, many types of perovskite lasers have been
demonstrated, e.g., Fabry-Perot, DBR, DFB, etc. [20,65]. By designing chip configuration
and reagents flow rates in a microfluidic chip, one can fabricate the controllable morphology
of CsPbBr3 NWs lasers in the form of suspension obtained by rapid precipitation, which
can be deposited on an arbitrary surface [29]. The single crystalline NWs with smooth end
facets and subwavelength dimensions are ideal Fabry–Pérot cavities for NW lasers. Fu
et al. demonstrated optically pumped tunable F–P lasing across the entire visible spectrum
(420–710 nm) from NW at room temperature [44]. A vertical-cavity surface-emitting per-
ovskite laser was achieved with a morphologically highly uniform CH3NH3PbI3 perovskite
thin film placed between two high-reflectivity GaN-based distributed Bragg reflectors
(DBRs). This single-mode perovskite laser reaches a low threshold (~7.6 µJ cm−2) at room
temperature and emits spatially coherent Gaussian laser beams. [66] As shown in Figure 4c,
Jia et al. demonstrated metal-clad MAPbI3 distributed feedback (DFB) lasers that operate
at a pump intensity threshold of 5 kW/cm2 for durations up to ~25 ns under InGaN diode
laser excitation at low temperature, which indicates the potential electrically pumped las-
ing [67,68]. Shang et al. demonstrated CW-pumped lasing from one-dimensional CsPbBr3
nanoribbons (NBs) with a threshold of ∼130 W cm−2 [69]. The refractive index and the
exciton–polariton (EP) effect on continuous-wave (CW) optically driven lasing have been
discussed. Optically pumped continuous-wave (CW) lasing [70,71] of perovskite is being
researched as gain media will be a prerequisite for electrically pumped perovskite laser in
the future.
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4.2. Photodetectors

The transistor forms the basis of modern electronic integrated circuits, while p-i-n
junctions of photodiodes could have the function of separating electrical transportation and
optical sensitization (Figure 4b), e.g., a hybrid phototransistor and photojunction field-effect
transistors (photo-JFETs). A transport channel is formed and modulated by an external
gate voltage (Vg) and light illumination. Under illumination, charges are generated in the
photoactive material. Depending on the gate voltage, photo-induced charge carriers can
be injected into the transporting medium and recirculate several times before recombina-
tion, thus producing gain under illumination [72]. The structure of phototransistors has
been reported in hybrid perovskite and all-inorganic perovskite. For example, Xin et al.
fabricated a cost-effective photodetector consisting of the well-aligned parallel CsPbBr3
perovskite MW arrays confined in the Si microchannels [46]. The microwire arrays have
good responsivity and may be feasible for large-scale perovskite-based applications. More-
over, flexible substrates have several advantages over rigid glass substrates, which are
suitable for portable and wearable device requirements. Based on a microfluidic channel, a
lateral structure MAPbI3 phototransistor with mobility calculated to be ~1.7 cm2 V−1 s−1

on ITO-coated flexible PET substrate is reported by Khorramshahi et al. [35].
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4.3. Solar Cells and Sensor

Microfluidic processing has been also utilized in perovskite solar cells (PSCs). Per-
ovskite films received a boost in photovoltaic efficiency through the controlled formation
of charge-generating films and improved current transfer to the electrodes. Zhou et al.
lowered the defect density of the film by controlling humidity while the perovskite film
formed from lead chloride and methylammonium iodide. Low-temperature processing
steps allowed the use of materials that draw current out of the perovskite layer more effi-
ciently and have a maximum cell efficiency of over 19% [23]. Michalska et al. demonstrated
that the microfluidic-mixing enhanced hole-transporting layers exhibit dramatic reductions
in surface energy and an increase in hole mobilities in PSCs, the highest PSCs efficiency
up to 15.9% [73]. Besides, based on the PL spectral shifts of perovskite nanocrystals, using
perovskite CsPbX3 (X = Cl, Br, or I) nanocrystals as a nanoprobe, a paper-based microflu-
idic sensor through anion exchanging was developed to achieve convenient detection of
haloalkanes (CH2Cl2, CH2Br2) [24].

5. Conclusions and Perspectives

Halide perovskites possess outstanding optical characteristics that can be potentially
employed in optoelectronics fabrication, from lasers to solar cells. The perovskite QDs are
mainly synthesized by the traditional hot injection method. In comparison, microfluidic
synthesis has several advantages: very small quantities of samples and reagents, high
resolution and sensitivity in detections, and continuous reaction for scalable synthesis.
A-site and B-site doped perovskite can be synthesized in the confined micro-channel based
on continuous flow, which is expected to simplify the synthesis process significantly and
reduce QDs’ costs. However, several issues should receive much attention in future works.
Firstly, although the microfluidic synthesis has successfully demonstrated perovskite QDs
patterned structures, the anisotropic growth mechanism should be further investigated.
Secondly, there is still plenty of room for the epitaxy growth of perovskite nanostructure at
low temperatures. The reaction environment provided by microfluidic facilitates the chemi-
cal defect engineering of quantum dot heterostructures. More work is needed to combine
physical models to describe the dopant diffusion during the perovskite-growing process.
Finally, low-temperature reaction conditions can expand the selectivity of precursors and
ligands for green synthesis. We believe microfluidic synthesis has increased the diversity of
nanostructured perovskite preparation and doping strategies and will potentially facilitate
optoelectronic applications of nanostructured perovskite materials.
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