
Computers and Fluids 249 (2022) 105690

A
0

Contents lists available at ScienceDirect

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

The immersed boundary method for confined flows: Numerical diffusion and
simulation accuracy of a boundary retraction scheme
Alessia Abbati a, Ya Zhang b, William Dempster a, Yonghao Zhang c,d,∗

a Department of Mechanical and Aerospace Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK
b China Automotive Innovation Corporation, Nanjing, Jiangsu, 211100, China
c School of Engineering, The University of Edinburgh, Edinburgh, EH9 3FD, UK
d Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China

A R T I C L E I N F O

Keywords:
Immersed boundary method
Lattice Boltzmann method
Diffuse-interface
Boundary retraction

A B S T R A C T

Diffuse-interface immersed boundary methods (IBM) have been successfully applied to numerous complex
fluid–structure interaction problems because of their simple and efficient implementation. Despite their ability
to suppress numerical oscillations significantly compared to sharp-interface methods, the diffuse interface is
likely to reduce simulation accuracy of the flow field around the solid boundary. The present work investigates
the diffusive effects of IBM and the mitigation method for surface-confined particulate flows by comparing
results to sharp-interface methods. It is found that increasingly-confined geometries accentuate interface
diffusion effects and decrease simulation accuracy. To minimise the diffusive effects of IBM, a boundary
retraction scheme is used and its effectiveness is examined, in particular for particles in close contact where
the diffuse interfaces overlap. It is shown that this simple implementation is capable of alleviating interface
diffusion errors, thus increasing accuracy while limiting computational costs. With an optimal boundary
retraction scheme, IBM can successfully capture fluid–structure interactions at different degrees of confinement,
comparable to sharp-interface methods.
1. Introduction

The immersed boundary method (IBM) is an efficient implementation
of fluid–structure boundary conditions that simplifies the mesh gener-
ation process for complex arbitrary geometries and does not require
expensive re-meshing strategies for moving and deformable objects.
The basic idea of the IBM is to solve the flow field on a body non-
conforming Eulerian grid and represent the fluid–structure interface
with a set of Lagrangian marker points. The no-slip condition on the
boundary is enforced by introducing an appropriate force term to the
governing equations. Since it was first introduced by Peskin [1], the
IBM has been extensively applied to biofluid dynamics, multiphase
flows, porous media, particle suspensions, acoustics, and especially
particulate flows, which are characterised by complex dynamic inter-
actions between individual particles, the surrounding fluid and solid
surfaces [2,3].

In the original formulation of the IBM [1], the additional force is
evaluated with a feedback process based on the deformation of the
boundary marker points, which are modelled as elastic springs. How-
ever, this method is incapable of modelling perfectly rigid boundaries
and introduces a free parameter that affects the stability and restricts
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the computational time step [4,5]. In the direct-forcing formulation,
the boundary force is computed at the Lagrangian marker points by
imposing the known boundary velocity that matches the fluid velocity
at that position [6,7]. However, this force evaluation strategy may not
be able to accurately satisfy the no-slip boundary condition for the
forcing point velocity [4,8,9]. In the approach suggested by Wu and
Shu [10], the unknown forces are computed implicitly by solving a
linear matrix equation to enforce the no-slip condition at the boundary
points. Wang et al. [9] proposed a multi-direct-forcing method, which
implements an iterative forcing process to solve the linear equation and
achieves the no-slip condition at all boundary points without affecting
the computational efficiency [5].

Generally, the Eulerian grid and Lagrangian marker points exchange
information through velocity interpolation and force distribution. The
operations between the different node systems are based on discrete
delta functions, which diffuse the interface around the solid bound-
ary [2], as interpolation stencils involving discrete delta functions
formally introduce a first-order error term in the velocity field [2,
11–14]. Another consequence of the diffuse interface is the effective
thickness of the fluid–solid boundary, which changes the apparent size
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of solid objects and surface locations [15–19]. The diffusive effect be-
comes increasingly significant for confined flows and particle collisions,
which are common features for particulate flows.

Although the original IBM was devised as a numerical method
solving the Navier–Stokes equation, it was later applied to the lattice
Boltzmann method (LBM) framework. Based on a mesoscopic fluid
description, LBM has become a viable alternative to the Navier–Stokes
solvers for complex flows owing to its simple formulation and efficient
parallel computations. The immersed boundary-lattice Boltzmann method
(IB-LBM) was first proposed by Feng and Michaelides [20] and was then
extended to a multi-direct-forcing method by Suzuki and Inamuro [21].

Alternatively, in the LBM framework there are several methods
that feature a sharp representation of the interface as a fluid–solid
boundary treatment. The most common strategies are the simple and
interpolated bounce-back methods [22,23], which suffer from spurious
numerical oscillations for moving boundary problems. The partially
saturated method presented by Noble and Torczynski [24] is a modified
bounce-back approach that allows for a sharp reconstruction of the
boundary by representing lattice nodes as pure fluid, pure solid, and
mixed nodes depending on a weighting parameter. To improve the
accuracy of this sharp-interface method, Chen et al. [25] combined it
with a ghost method that introduces virtual nodes within the solid object
to extrapolate fluid properties. The method presented in the work
of Tsigginos et al. [26] achieves second-order accuracy by modelling
fluid–particle interaction as a two-phase mixture. The solid objects are
represented as virtual fluids and the computational nodes are identified
as pure fluid, pure virtual fluid, and partially saturated based on their
solid fraction. However, accurate calculation of the solid fraction is
pivotal to correctly represent complex fluid–solid interfaces. Therefore,
this method introduces a significant computational cost for moving
boundary problems as the solid fraction needs to be updated at every
time step.

To take advantage of IBM while alleviating the diffuse interface
effects on the flow field, Breugem [11] suggested to correct the effective
diameter of immersed objects by retracting the Lagrangian interface
grid points some distance inside the solid surface. It is shown that
this strategy partly cancels the interpolation errors and improves the
simulation accuracy significantly. Additionally, the retraction distance
is affected by the solid object geometry, and the optimal values for
spheres, tubes and cubes are provided. Since discrete delta functions
used in IBM have different interpolation ranges, the effective boundary
thickness is also affected by the choice of kernel function. The work of
Peng et al. [13] tested the boundary retraction approach for different
discrete delta functions and concluded that the optimal distance value
is larger for more diffusive functions. Furthermore, Peng and Wang [14]
derived an analytical demonstration of the optimal retraction distance
for a plane channel flow. However, for surface confined particulate
flows in particular with inter-particle collisions, much work is required
to understand the extent to which the diffuse interface affects sim-
ulation accuracy and to improve the boundary retraction approach
accordingly.

The present work applies the relaxed multi-direct-forcing IBM pro-
posed by Zhang et al. [27], which introduces an estimated optimal
relaxation parameter to accelerate the convergence rate and improve
the enforcement of the no-slip boundary condition. Moreover, the
IBM is coupled with the cascaded lattice Boltzmann method (CLBM)
of Geier et al. [28] as it improves numerical stability by performing
collisions in the moment space using central moments [29]. The main
focus of this study is to investigate the diffuse interface effects for
particulate flows with no geometrical confinement, fixed and variable
confinements, and particle interactions and collisions. The results are
compared to experimental data in Ref. [30] and the results of sharp-
interface methods in Refs. [26,31] to highlight the effects of different
interface representations.

The rest of the paper is structured as follows. Section 2 presents
2

a brief introduction to the cascaded lattice Boltzmann method and the
IB-LBM algorithm. In Section 3, the numerical method is applied to four
benchmark problems: flow past a cylinder, settling of a particle under
gravity, flow around two impacting particles, and a drafting–kissing–
tumbling process of two particles settling in a channel. The results are
compared to other experimental and numerical studies, and the effect
of the diffuse interface is systematically analysed. Concluding remarks
are drawn in Section 4.

2. Numerical methods

2.1. Lattice Boltzmann method

Based on a discrete form of the Boltzmann model equation, the
LBM provides a mesoscopic description of fluid transport that tracks
fictitious particles residing on the nodes of a uniform lattice. The ve-
locity domain is restricted to a discrete velocity set 𝐜i whose component
vectors directly connect neighbouring lattice nodes with lattice spacing
𝛥𝑥. The velocity set used in this work is the D2Q9 model, which
features a two-dimensional lattice of nine lattice velocities. The velocity
vectors 𝐜i =

{

𝑐ix, 𝑐iy | 𝑖 = 0,… , 8
}

are defined as follows

𝑐ix = [0, 1, 0,−1, 0, 1,−1,−1, 1] ,

𝑐iy = [0, 0, 1, 0,−1, 1, 1,−1,−1] .
(1)

The discrete-velocity distribution function 𝑓i(𝐱, 𝑡) represents the num-
ber of particles with discrete velocity 𝐜i at position 𝐱 and time 𝑡. The lat-
tice Boltzmann equation describes the evolution of the discrete-velocity
distribution function in the following way

𝑓i(𝐱 + 𝐜i 𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓i(𝐱, 𝑡) +𝛺𝑖(𝐱, 𝑡)𝛥𝑡 + 𝑆𝑖(𝐱, 𝑡)𝛥𝑡 , (2)

where 𝛥𝑡 is the time step, 𝛺𝑖 is the collision operator, and 𝑆𝑖 is the force
term.

The general LBM algorithm is divided into two consecutive parts,
collision and streaming, which are respectively expressed as

𝑓⋆
i (𝐱, 𝑡) = 𝑓i(𝐱, 𝑡) +𝛺𝑖(𝐱, 𝑡)𝛥𝑡 + 𝑆𝑖(𝐱, 𝑡)𝛥𝑡 , (3a)

𝑓i(𝐱 + 𝐜i 𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓⋆
i (𝐱, 𝑡) , (3b)

here 𝑓⋆
i is the post-collision discrete-velocity distribution function.

he collision process in Eq. (3a) rearranges the distribution functions
i(𝐱, 𝑡) at each lattice node. In Eq. (3b), the distribution functions after
ollision 𝑓⋆

i (𝐱, 𝑡) are streamed along the lattice linking with velocity 𝐜𝑖
o a neighbouring point.

The operator 𝛺𝑖 models particle collisions by performing appropri-
te relaxation processes towards equilibrium. In the CLBM, collisions
re performed in the moment space using the central moments of
he distribution function, which are obtained in a frame of reference
oving with the macroscopic fluid velocity [28]. The CLBM collision

perator 𝛺𝑖 can be modelled as 𝛺𝑖 = 𝐊 ⋅𝐤 where 𝐤 is the moment space
f the distribution function 𝑓i and 𝐊 is an orthogonal transformation
atrix. The central moments are relaxed in ascending order with

ndividual relaxation rates [32–34]. To achieve an isotropic viscous
tress tensor, it is required that 𝜔4 = 𝜔5 = 𝜔𝜈 , where 𝜔𝜈 determines
he kinematic shear viscosity [32]. All the other relaxation parameters
re set to unity [32]. The shear viscosity 𝜈 is defined as

𝜈 = 𝑐2𝑠

(

1
𝜔𝜈

− 1
2

)

, (4)

where 𝑐2𝑠 = 1∕
√

3 is the lattice speed of sound. Additionally, the
source term 𝑆𝑖 incorporates the macroscopic body force 𝐅, which is
implemented with a split-forcing approach [27,35].

The macroscopic density 𝜌(𝐱, 𝑡) and velocity 𝐮(𝐱, 𝑡) are respectively
the zeroth and first moments of the discrete-velocity distribution func-
tions. Their expressions are given by

𝜌(𝐱, 𝑡) =
∑

𝑖
𝑓i(𝐱, 𝑡) , (5)

𝜌𝐮(𝐱, 𝑡) =
∑

𝐜i 𝑓i(𝐱, 𝑡) +
1𝐅(𝐱, 𝑡)𝛥𝑡 . (6)
𝑖 2



Computers and Fluids 249 (2022) 105690A. Abbati et al.

h
s
e
d
w
c

𝜙

S
g

𝐅

T
i
i

a

𝐅

𝐓

w
t
o

m
[
n
t
i
e

𝑓

2.2. Immersed boundary method

IB-LBM algorithms implement two different computational node
systems. The lattice nodes 𝐱 define the fixed regular Eulerian grid
on which the fluid equations are solved. The fluid–solid interface is
represented by a set of Lagrangian marker points 𝐱𝓁 that are not
bound to the underlying lattice and are allowed to move in space. The
no-slip boundary condition is enforced by introducing an appropriate
force term 𝐅b that mimics the effect of the boundary. The boundary
force modifies the fluid velocity to ensure that it matches the known
boundary velocity 𝐮𝓁 at the Lagrangian marker positions 𝐱𝓁 , i.e.

𝐮(𝐱𝓁 , 𝑡) = 𝐮𝓁(𝐱𝓁 , 𝑡) . (7)

The fluid velocity at the Lagrangian marker positions is calculated
by interpolating the fluid velocity at the neighbouring lattice points

𝐮(𝐱𝓁 , 𝑡) =
∑

𝐱
𝐮(𝐱, 𝑡)𝛷(𝐱 − 𝐱𝓁)𝛥𝑥2 , (8)

where the interpolation kernel 𝛷 is an appropriate discretised version
of the Dirac delta distribution

𝛷 (𝐱) = 1
𝛥𝑥2

𝜙
( 𝑥
𝛥𝑥

)

𝜙
( 𝑦
𝛥𝑥

)

. (9)

Several kernel functions for 𝛷 with different interpolation range
ave been implemented in the literature [2,13,27]. It has been demon-
trated that kernel functions with larger support intervals are more
ffective at suppressing numerical fluctuations but result in significant
iffusive effects on the fluid–solid interface [13]. In this work the most
idely-used four-point regularised discrete delta function 𝜙4 [2] is

onsidered because of its numerical stability [13,27], i.e.

4 (𝑟) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
8

(

3 − 2 |𝑟| +
√

1 + 4 |𝑟| − 4𝑟2
)

, 0 ≤ |𝑟| ≤ 1 ,

1
8

(

5 − 2 |𝑟| −
√

−7 + 12 |𝑟| − 4𝑟2
)

, 1 ≤ |𝑟| ≤ 2 ,

0 , 2 ≤ |𝑟| ,

(10)

where 𝑟 is the parameter representing the position of the submerged
boundary point and is scaled with respect to the lattice length.

Here, we use the IBM model presented in Zhang et al. [27] where
an appropriate boundary force term 𝐅b is introduced to satisfy the no-
slip boundary condition as expressed by Eq. (7). Based on the velocity
expression given by Eq. (6), the corresponding velocity correction 𝛿𝐮 is
calculated as follows [27],

𝜌 (𝐱, 𝑡) (𝐮(𝐱, 𝑡) + 𝛿𝐮(𝐱, 𝑡)) =
∑

𝑖
𝐜𝑖𝑓i(𝐱, 𝑡) +

1
2
(

𝐅(𝐱, 𝑡) + 𝐅b(𝐱, 𝑡)
)

𝛥𝑡 . (11)

Therefore, the immersed boundary force 𝐅b can be expressed as

𝐅b(𝐱, 𝑡) =
2𝜌 𝛿𝐮(𝐱, 𝑡)

𝛥𝑡
. (12)

imilarly, the corresponding immersed boundary force on the La-
rangian points 𝐅𝓁 can be obtained in the following way

𝓁(𝐱𝓁 , 𝑡) =
2𝜌 𝛿𝐮𝓁(𝐱𝓁 , 𝑡)

𝛥𝑡
, (13)

where 𝛿𝐮𝓁 is the velocity correction on the Lagrangian points.
To evaluate the Eulerian body force density 𝐅b, the force acting on

the Lagrangian points 𝐅𝓁 is distributed to the lattice nodes next to the
boundary using

𝐅b(𝐱, 𝑡) =
∑

𝐱𝓁
𝐅𝓁(𝐱𝓁 , 𝑡)𝛷(𝐱 − 𝐱𝓁)𝛥𝑠 , (14)

where 𝛥𝑠 is the spacing between the Lagrangian markers. Considering
the boundary force expressions given by Eqs. (12) and (13), the force
distribution operation in Eq. (14) can be evaluated in the following way

𝛿𝐮(𝐱, 𝑡) =
∑

𝛿𝐮𝓁(𝐱𝓁 , 𝑡)𝛷(𝐱 − 𝐱𝓁)𝛥𝑠 . (15)
3

𝐱𝓁
he interpolation and distribution procedures described respectively
n Eqs. (8) and (15) are the source of the diffusive effects due to the
mplementation of discrete delta functions [13].

The hydrodynamic force 𝐅h and torque 𝐓h acting on a solid object
re calculated by

h(𝐱, 𝑡) = −
∑

𝐱𝓁
𝐅𝓁(𝐱𝓁 , 𝑡)𝛥𝑠 + 𝐅i , (16)

h(𝐱, 𝑡) = −
∑

𝐱𝓁

(

𝐱𝓁 − 𝐗
)

× 𝐅𝓁(𝐱𝓁 , 𝑡)𝛥𝑠 + 𝐓i , (17)

here 𝐅i and 𝐓i are respectively the force and torque resulting from
he internal fluid mass [29], and 𝐗 is the centre of mass of the solid
bject.

In contrast to the diffuse-interface IBM, the partially saturated
ethod (PSM) provides an alternative sharp-interface representation

24]. PSM approximates complex boundaries by identifying lattice
odes as pure fluid, pure solid, and partially saturated according to
heir solid fraction 0 ≤ 𝜀 ≤ 1. As a consequence, the interface thickness
s limited to one lattice. In the PSM algorithm, the standard LBM
quation given by Eq. (2) is modified in the following way

i(𝐱 + 𝐜i 𝛥𝑡, 𝑡 + 𝛥𝑡) =𝑓i(𝐱, 𝑡) + (1 − 𝐵)𝛺𝑖 𝛥𝑡 + 𝐵𝛺s
𝑖𝛥𝑡

+ (1 − 𝐵)𝑆𝑖(𝐱, 𝑡)𝛥𝑡 ,
(18)

where 𝛺s
𝑖 is the collision operator for solid nodes and 𝐵 is a numerical

weighting parameter based on the solid fraction 𝜀. A significant disad-
vantage of the PSM is the cumbersome process of calculating correct
values for the solid fraction 𝜀, which has to be updated at every time
step for moving boundary problems.

Within the PSM framework, Tsigginos et al. [26] model solid objects
and the surrounding fluid as a two-phase mixture by introducing a vir-
tual fluid with infinite viscosity in place of solid bodies. A momentum
exchange algorithm (MES-I) is used to account for the presence of the
fluid–solid interface in order to enforce the no-slip condition on the
virtual fluid phase velocity. Since the velocity of partially saturated
nodes is also dependent on the fluid phase velocity, to improve MES-
I, another momentum exchange algorithm (MES-II) is implemented
by directly enforcing the solid object velocity on both virtual fluid
phase and partially saturated nodes. This work also derives a second-
order accurate scheme for calculation of the body force, which resolves
inaccuracy caused by the weighting parameter 𝐵 formulation in the
original PSM [26]. Because of their accuracy, the PSM results will be
used in this work to evaluate the performance of the diffuse-interface
IBM.

3. Numerical simulations

In contrast to sharp-interface approaches, the accuracy of the IB-
LBM scheme deteriorates quickly as particulate flow becomes more
confined due to the diffusive boundary effect. To alleviate this, the
simple but effective boundary retraction strategy is applied here. The
performance is evaluated in four cases: flow past a cylinder, settling
of a particle under gravity, flow around two impacting particles, and
drafting–kissing–tumbling process of two particles settling in a channel.
These test cases are arranged to show how the diffusive effect of
IBM influences flows with very different confinements and to examine
the effectiveness of the boundary retraction scheme. The simulation
results will be compared with experimental data, and numerical results
obtained with the sharp-interface approach PSM in Ref. [26].

3.1. Flow past a cylinder

The flow past a stationary circular cylinder in a two-dimensional
channel is used to test the performance of the IB-LBM scheme for fixed
boundary problems in both confined and unconfined geometries.
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Table 1
Geometry and fluid properties for unconfined flow past a cylinder.

Geometry Parameters

Diameter 𝐷 1 Density 𝜌f 1
Square domain width 𝐿 50 Viscosity 𝜇f 0.001

Fig. 1. Contours of the dimensionless horizontal velocity 𝑢∕𝑢i for unconfined flow past
a cylinder at 𝑅𝑒 = 40.

3.1.1. Unconfined flow
The stationary circular cylinder of diameter 𝐷 is positioned at the

centre of a square of size 𝐿. A fixed constant velocity 𝑢i is prescribed at
inlet, top and bottom boundaries, while a pressure boundary condition
is imposed at the outlet. The results from extensive experiments of
Tritton [30] and the sharp-interface approach PSM of Tsigginos [26]
are employed for a quantitative comparison.

The geometry parameters and fluid properties listed in Table 1 are
normalised the same as Tsigginos et al. [26] for consistent comparison.
The Reynolds number is increased from 1 to 40 by varying the inlet
velocity 𝑢i according to the equation 𝑅𝑒 = 𝜌f𝑢i𝐷∕𝜇f, where 𝜌f and 𝜇f
are respectively the density and the dynamic viscosity of the fluid. The
drag coefficient 𝐶d is calculated from

𝐶d =
2𝐹

𝜌f𝑢2i 𝐷
. (19)

A lattice size 𝛥𝑥 = 𝐷∕30 is used in the current case as it was demon-
strated to be sufficiently accurate [26].

The contours of the normalised horizontal velocity 𝑢∕𝑢i are dis-
played in Fig. 1. The results are shown for 𝑅𝑒 = 40, representing the
corresponding regime characterised by a steady wake with separated
flow. The calculated drag coefficients 𝐶d for different 𝑅𝑒 values are
plotted in Fig. 2 showing a good agreement with both the experimental
data [30] and the numerical results [26]. Therefore, for the unconfined
flow above, the diffuse interface does not lead to significant numerical
error, and the boundary retraction scheme is not required.

3.1.2. Confined flow and wall interaction effects
The flow past a cylinder of diameter 𝐷 in a channel of width 𝑊

and length 𝐿 is simulated to investigate the confinement effect on
the flow behaviour in the creeping laminar flow regime, where the
bounding walls of the channel alter the characteristic features of the
flow field. The channel confinement ratio 𝜅 = 𝐷∕𝑊 is the characteristic
parameter for measuring the extent of confinement. This classical case
has been studied extensively and detailed description of the available
analytical studies, computational simulations and experiments have
been presented in several works, e.g. Refs. [36–39].

The computational domain geometry and the fluid field are dis-
played in Fig. 3. A parabolic velocity profile with a maximum speed
of 𝑢m is imposed at the inlet and outlet boundaries. No-slip boundary
conditions are applied at the top and bottom channel walls with the
halfway bounce-back scheme. The geometry and fluid properties used
in the simulations are listed in Table 2.
4

Fig. 2. Drag coefficient 𝐶d for unconfined flow past a cylinder at different Reynolds
numbers 𝑅𝑒. Experimental results from Tritton [30] and MES-II numerical results in
Ref. [26] are given for comparison.

Fig. 3. Flow past a fixed cylinder: (a) schematic of the computational domain; (b)
contours of the dimensionless horizontal velocity 𝑢∕𝑢m.

For the current flow past a cylinder in the creeping laminar flow
regime, the wall effect on the drag force can be estimated using a wall
correction factor 𝜆, which is defined as

𝜆 (𝜅) =
𝐹d (𝜅)
𝑢m𝜇f

, (20)

where 𝐹d is the drag force, and 𝜇f is the fluid viscosity. As one of
the most common expressions for the wall correction factor that can
offer an accurate analytical solution for Stokes flow, the wall correction
factor 𝜆F derived by Faxén [26] is expressed in the form [26,36]

𝜆F (𝜅) =
4𝜋

𝑓 (𝜅) + 𝑔 (𝜅)
, (21)

where 𝑓 (𝜅) and 𝑔 (𝜅) are defined as

𝑓 (𝜅) = 𝐴0 −
(

1 + 0.5 𝜅2 + 𝐴4 𝜅
4 + 𝐴6 𝜅

6 + 𝐴8 𝜅
8) ln (𝜅) ,

𝑔 (𝜅) = 𝐵2 𝜅
2 + 𝐵4 𝜅

4 + 𝐵6 𝜅
6 + 𝐵8 𝜅

8 ,
(22)

and the corresponding numerical coefficients are

𝐴0 = −0.9156892732 , 𝐵2 = 1.26653975 ,

𝐴4 = 0.05464866 , 𝐵4 = −0.9180433 ,

𝐴6 = −0.26462967 , 𝐵6 = 1.8771010 ,

𝐴8 = 0.792986 , 𝐵8 = −4.66549 .

To evaluate the performance of the IB-LBM scheme, the calculated
wall correction factor 𝜆 is compared to the Faxén wall correction factor
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Table 2
Geometry and fluid properties for the flow past a cylinder simulations.

Geometry Parameters

Diameter 𝐷 1 Density 𝜌f 1
Channel width 𝑊 2.5 Viscosity 𝜇f 0.005
Channel height 𝐻 40 Velocity 𝑢m 10−6

Confinement ratio 𝜅 0.4 Reynolds number 𝑅𝑒 2 × 10−4

Fig. 4. Wall correction factor error 𝐸𝜆 for confined flow past a cylinder for the
confinement ratio 𝜅 = 0.4. The numerical results (MES-I, MES-II) reported in Ref. [26]
are given for comparison.

𝜆F. The numerical error 𝐸𝜆 is given by the expression,

𝐸𝜆 =
|

|

|

|

𝜆 − 𝜆F
𝜆F

|

|

|

|

. (23)

Simulations are performed for different lattice sizes, i.e. 𝛥𝑥 = (𝐷∕12,
𝐷∕16, 𝐷∕20, 𝐷∕30, 𝐷∕40) to show the effect of the computational grid.
The corresponding numerical error 𝐸𝜆 with 𝜅 = 0.4 is plotted in Fig. 4
and compared to the results in Ref. [26]. As Fig. 4 shows, the simulation
results accuracy increases drastically for a larger lattice resolution.
Importantly, the accuracy of the present simulation is comparable to
the MES-I scheme, but it is less accurate than the second-order algo-
rithm MES-II. It seems that the diffuse interface in the highly-confined
geometry (𝜅 = 0.4) has a more significant impact on the performance
of the IB-LBM scheme compared to sharp-interface methods including
MES-I and MES-II.

The approach of retracting the Lagrangian surface grid points is
applied to the simulations with the retraction distance 𝑟d = (0, 0.3, 0.35,
0.4)𝛥𝑥, where the case with 𝑟d = 0 does not include boundary retraction.
As displayed in Fig. 4, the wall correction factor error 𝐸𝜆 decreases
considerably as 𝑟d grows. The error 𝐸𝜆 with 𝑟d = 0.35𝛥𝑥 decreases
significantly from 4.7% to 0.58% for the lattice size 𝛥𝑥 = 𝐷∕40 and
from 26% to 9.9% for 𝛥𝑥 = 𝐷∕12. It can also be noted that retracting
the Lagrangian points by 𝑟d = 0.4𝛥𝑥 for lattice size 𝛥𝑥 = 𝐷∕40 makes
the results even more accurate than the ones for 𝛥𝑥 = 𝐷∕100 without
retraction. The above results suggest an appropriate 𝑟d = 0.4𝛥𝑥, which
is close to the optimal value suggested by Breugem [11] and Peng
et al. [14]. Additionally, a larger retraction distance 𝑟d = 0.8𝛥𝑥 is also
considered in Fig. 4. It is clear that 𝑟d = 0.8𝛥𝑥 performs significantly
worse. The effect of the retraction distance is further investigated by
expanding the value range to 0 ≤ 𝑟d ≤ 0.8 with an interval of
0.1. The corresponding error results 𝐸𝜆 are presented in Fig. 7. It is
demonstrated that the error progressively reduces when the boundary
retraction scheme is used, reaching a minimum for 𝑟d = 0.4𝛥𝑥.

Since a larger degree of confinement accentuates interface diffusion
in the IB-LBM simulations, it is interesting to compare the results of
different confinement ratios 𝜅 = (0.1, 0.2, 0.4), where the corresponding
5

Fig. 5. Wall correction factor error 𝐸𝜆 for confined flow past a cylinder for the
confinement ratio 𝜅 = 0.2.

Fig. 6. Wall correction factor error 𝐸𝜆 for confined flow past a cylinder for the
confinement ratio 𝜅 = 0.1.

Fig. 7. Confined flow past a cylinder: variation of the wall correction factor error 𝐸𝜆
with the retraction distance 𝑟d for confinement ratio 𝜅 = 0.4.

channel widths 𝑊 are (10, 5, 2.5). By comparing the cases in Figs. 4–6,
it can be seen that the wall correction factor error 𝐸 becomes much
𝜆
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Fig. 8. Sedimentation of a particle under gravity: (a) schematics of the computational
domain and (b) contours of the vertical velocity 𝑉 .

Table 3
Particle and fluid properties for sedimentation of a particle under gravity.

Geometry Parameters

Diameter 𝐷 1 Density 𝜌f 1
Channel width 𝑊 5 Viscosity 𝜇f 0.005
Channel height 𝐻 80 Particle density 𝜌s 2.6
Confinement ratio 𝜅 0.2 Reynolds number 𝑅𝑒 5 × 10−4

smaller as the confinement ratio 𝜅 decreases. Specifically for lattice size
𝛥𝑥 = 𝐷∕40, when the confinement ratio 𝜅 is reduced from 0.4 to 0.1,
the error 𝐸𝜆 for cases without retraction decreases from 4.7% to 1.5%,
while 𝐸𝜆 for cases with 𝑟d = 0.35𝛥𝑥 reduces from 0.58% to 0.3%.

As demonstrated in Figs. 4–6, the interface diffusion effect can be
compensated successfully by applying different retraction distances,
𝑟d = (0.3, 0.35, 0.4)𝛥𝑥. To be specific, as the retraction distance 𝑟d grows
from zero to 0.4𝛥𝑥, in Fig. 5 with 𝜅 = 0.2, the error 𝐸𝜆 reduces from
2.4% to 0.2% for lattice sizes 𝛥𝑥 = 𝐷∕40 respectively, while in Fig. 6
with 𝜅 = 0.1, 𝐸𝜆 decreases from 1.5% to 0.13% for 𝛥𝑥 = 𝐷∕40.
However, the retraction distance 𝑟d = 0.8𝛥𝑥 makes the accuracy of the
IBM much worse for all the tested confinement ratios 𝜅. Therefore, the
boundary retraction strategy is competitive in reducing computational
cost while maintaining simulation accuracy, as long as an appropriate
retraction distance is used.

3.2. Sedimentation of a single particle under gravity

The case of a cylindrical particle settling under gravity in a two-
dimensional channel is simulated to investigate confined flow with
moving boundaries in the creeping laminar flow regime. In addition to
approximate analytical formulations [26], this problem has been inves-
tigated by various numerical and experimental studies, and extensive
benchmark results are available [36,40–45].

As represented in Fig. 8, the problem geometry is schematised by a
vertical channel of width 𝑊 and height 𝐻 . The computational domain
is bounded by solid walls and a no-slip boundary condition is imple-
mented using a halfway bounce-back scheme. The initial geometry and
fluid flow conditions used in the simulations are listed in Table 3. A
cylindrical particle of diameter 𝐷 initially at rest is released along the
centreline of the channel. As the particle starts moving downwards
under the action of gravity, the drag force exerted by the surrounding
fluid increases. Once the drag force balances the gravitational force, the
particle settles with a constant velocity known as the terminal velocity
𝑉 .
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Fig. 9. Velocity error 𝐸v for sedimentation of a particle under gravity for the
confinement ratio 𝜅 = 0.2. The numerical results in Ref. [26] are given for comparison.

Because of the interaction with the walls, the settling velocity is
lower than the corresponding one in the unconfined flow case [20,
42,45]. A wall correction factor 𝜆F is introduced to account for the
effect of the bounded geometry. By balancing the gravitational force
𝐹g =

(

𝜋 𝑔𝐷2 (𝜌s − 𝜌f
))

∕4 and the drag force acting on the particle
𝐹d = 𝜆F 𝜇f 𝑉t , the wall-corrected terminal velocity of a settling particle
can be estimated as [26,45]

𝑉t =
𝜋𝑔𝐷2 (𝜌s − 𝜌f

)

4𝜇f𝜆F (𝜅)
, (24)

where 𝜌s is the particle density, 𝑔 is the gravitational acceleration, and
𝜆F is the Faxén wall correction factor. For this case, the Faxén wall
correction factor is calculated as [26,46]

𝜆F = 4𝜋
𝐴0 − ln (𝜅) + 𝐴2 𝜅2 + 𝐴4 𝜅4 + 𝐴6 𝜅6 + 𝐴8 𝜅8

, (25)

where 𝜅 is the channel confinement ratio and the numerical coefficients
are 𝐴0 = −0.9156892732, 𝐴2 = 1.7243844, 𝐴4 = −1.730194, 𝐴6 =
2.405644, and 𝐴8 = 4.59131. The gravitational acceleration value 𝑔 is
calculated using Eq. (24) to match the specified value of the Reynolds
number 𝑅𝑒 = 𝜌f𝑉t𝐷∕𝜇f , where 𝑉 is the numerical value of the termi-
nal velocity. As the terminal velocity 𝑉t can be accurately calculated
by Eq. (24), it is used to evaluate the numerical velocity error 𝐸v in
the diffusive IB-LBM scheme as follows,

𝐸v =
|

|

|

|

𝑉 − 𝑉t
𝑉t

|

|

|

|

. (26)

Simulations are run for different lattice sizes, i.e. 𝛥𝑥 = (𝐷∕12, 𝐷∕16,
𝐷∕20, 𝐷∕30, 𝐷∕40). The calculated 𝐸v for different lattice sizes is
illustrated in Fig. 9 and compared to the numerical results of the sharp-
interface method reported in Ref. [26]. The boundary retraction scheme
with distance 𝑟d = (0.3, 0.35, 0.4)𝛥𝑥 is applied to alleviate the diffusive
effects. Fig. 9 shows that the velocity error 𝐸v decreases significantly
when the boundary retraction approach is used. It can be estimated
that the velocity error 𝐸v for retraction distance 𝑟d = 0.4𝛥𝑥 decreases
from 11% to 3.6% for the lowest resolution case 𝛥𝑥 = 𝐷∕12 and from
2.5% to 0.21% for lattice size 𝛥𝑥 = 𝐷∕40. The IB-LBM with retracted
interface shows a better performance compared to the MES-I scheme,
but the accuracy is still lower than the second-order MES-II model.

To investigate the effect of confinement, the particle sedimentation
case is simulated in a wider computational domain with the confine-
ment ratio 𝜅 = 0.1. The values of velocity error 𝐸v for lattice sizes
𝛥𝑥 = (𝐷∕12, 𝐷∕16, 𝐷∕20, 𝐷∕30, 𝐷∕40) and the retraction distance 𝑟d =
(0, 0, 3, 0.35, 0.4)𝛥𝑥 = are shown in Fig. 10. As observed in Fig. 10, the
terminal velocity error 𝐸 for the case of 𝑟 = 0.4𝛥𝑥 is reduced from
v d
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Fig. 10. Velocity error 𝐸v for sedimentation of a particle under gravity for the
confinement ratio 𝜅 = 0.1.

Table 4
Particle and fluid properties for flow around the two impacting particles.

Geometry Parameters

Diameter 𝐷 1 Density 𝜌f 1
Channel width 𝑊 50 Viscosity 𝜇f 0.0015
Channel height 𝐻 50 Velocity 𝑈 0.15
Initial gap 𝐺 2 Reynolds number 𝑅𝑒 50

1.5% to 0.13% for 𝐷 = 40𝛥𝑥 and from 6.4% to 2.2% for 𝐷 = 12𝛥𝑥.
Moreover, it can be noted that due to the less significant confinement
effect, the error 𝐸v for 𝑟d = 0.4𝛥𝑥 in comparison to its corresponding
case in Fig. 9 decreases from 3.6% to 2.2% and from 0.21% to 0.13%
for 𝐷 = 12𝛥𝑥 and 𝐷 = 40𝛥𝑥, respectively. In this case, the retraction
distance 𝑟d = 0.4𝛥𝑥 still shows the best accuracy.

3.3. Flow around two impacting particles

The test case of flow around two impacting cylindrical particles in
a two-dimensional channel has been chosen to investigate the effect
of diffuse interface for moving objects with a variable confinement
and considering the interaction between particles where two diffuse
interfaces could overlap. This problem has been studied by Bampalas
and Graham [47] using a finite element method with a body-fitted
mesh.

The computational domain used for the simulations is a channel
of width 𝑊 and length 𝐿, as illustrated in Fig. 11a. Two identical
particles of diameter 𝐷 are placed at the centre of the channel with
an initial horizontal separation 𝐺. The fluid is initially stationary and
the particles are moving towards each other along the centreline of
the channel with the same velocity 𝑈∕2. The computational domain is
bounded by four stationary walls, where gradient boundary condition is
imposed. Geometry and fluid properties used in this case are the same
as in Ref. [26], which are listed in Table 4. Figs. 11b and c show the
velocity contours at different instants, where the normalised time 𝑡∗ is
defined by the following expression [26,47],

𝑡∗ = 𝑈 𝑡 − 𝐺
𝐷

, (27)

where 𝑈 is the relative velocity of the particles.
Simulations are carried out for different lattice sizes, i.e. 𝛥𝑥 =

(𝐷∕12, 𝐷∕30, 𝐷∕60, 𝐷∕80). Fig. 12 presents the evolution in time of
the drag coefficient 𝐶d for the different computational grids. As shown
in Fig. 12, the accuracy of the IB-LBM model improves significantly by
increasing the lattice resolution from 𝐷 = 12𝛥𝑥 to 𝐷 = 30𝛥𝑥, which
is favoured. However, in spite of the great computational cost when
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Table 5
Particle and fluid properties for the sedimentation of two particles simulations.

Geometry Parameters

Diameter 𝐷 0.2 cm Density 𝜌f 1 g/cm3

Channel width 𝑊 2 cm Viscosity 𝜇f 0.08 cm2∕s
Channel height 𝐻 6 cm Particle density 𝜌s 1.1 g/cm3

Initial gap 𝐺 0.3 cm Gravitational acceleration 𝑔 981 cm∕s2
Initial separation 𝑆 0.006 cm

increasing the lattice grid refinement to 𝐷 = 60𝛥𝑥 and 𝐷 = 80𝛥𝑥, the
error on the drag coefficient 𝐶d can hardly be much smaller.

The numerical error on the drag coefficient 𝐶d appears to be related
to the interface diffusion effect associated with the IBM model. Consid-
ering Fig. 11, it is evident that as the particles approach each other, the
diffuse interface has an increasingly significant impact on the results.
Therefore, the boundary retraction approach is used to minimise the
interface diffusion effect, and improve simulation accuracy. The impact
of this strategy can be visualised in Fig. 13 for three different grid
resolutions, i.e. 𝐷 = (12, 30, 60)𝛥𝑥. It is evident that the results obtained
using the boundary retraction scheme show a much close match to the
ones presented in Ref. [26,47].

The difference between the drag coefficient 𝐶d values for 𝑟d = 0
and 𝑟d = 0.8𝛥𝑥 can be quantified by calculating the relative difference
𝐸Cd. Fig. 13 shows the evolution of 𝐸Cd as a function of the separation
distance 𝐺∕𝐷 between the particles for 𝐷∕𝛥𝑥 = [12, 30, 60]. Initially,
the drag coefficient 𝐶d values for 𝑟d = 0 and 𝑟d = 0.8𝛥𝑥 are similar
and 𝐸Cd is negligible. As the separation distance 𝐺∕𝐷 between the
particles is progressively reduced, the results for 𝑟d = 0 and 𝑟d = 0.8𝛥𝑥
diverge and 𝐸Cd becomes significant. In particular, when the separation
distance 𝐺 becomes smaller than 4𝛥𝑥, the diffuse interfaces start to
overlap, and the numerical error for the drag coefficient 𝐶d grows
exponentially. As shown in Fig. 13, although the retraction distance
𝑟d = 0.4𝛥𝑥 works well for single-particle problems, a much larger
retraction distance is needed, i.e. 𝑟d = 0.8𝛥𝑥 when the interaction
between different diffuse interfaces becomes much stronger.

3.4. Drafting–kissing–tumbling process of two particles settling in a channel

The sedimentation of two circular cylindrical particles in a two-
dimensional channel is considered to investigate moving boundary
problems with a variable confinement. Since this test case involves a
close interaction including collision between the falling particles, the
diffuse interfaces could have a significant influence on their movement.

The fundamental mechanism associated with pairwise coupling of
particles settling in a channel was first described by Fortes et al. [48]
who performed experiments on spherical particles in fluidised beds. Sig-
nificant work has been conducted to investigate this problem using var-
ious lattice Boltzmann models [49–51] and different IBM schemes [20,
52,53].

As shown in Fig. 14, the computational domain is geometrically
represented by a vertical channel of width 𝑊 and height 𝐻 . Two
identical particles of diameter 𝐷 are placed along the centreline of
the channel with an initial vertical separation 𝐺. The trailing particle
is initially displaced off-centre with a horizontal separation distance
from the centreline 𝑆. Non-slip boundary conditions are prescribed
at the channel walls by applying a halfway bounce-back scheme. The
computational domain geometry and fluid flow conditions used in the
simulations are listed in Table 5, and these non-dimensional values are
the same as Ref. [31].

Two particles settling in close proximity in a channel under gravity
undergo a typical sequence of movements, known as the drafting–
kissing–tumbling (DKT) process, which can be visualised in Fig. 14.
After the particle are released, the trailing particle is caught in the
wake of the leading particle and it experiences a reduction in its drag
force. In the drafting part of the process, the trailing particle velocity
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Fig. 11. Flow around two impacting cylinders: (a) schematics of the computational domain; (b) contours of the horizontal velocity 𝑈 at 𝑡∗ = −1; and (c) 𝑡∗ = −0.1.
Fig. 12. Drag coefficient 𝐶d evolution in time for the flow around two impacting
cylinders. The numerical results in Ref. [26] (MES) and Ref. [47] (Bampalas) are given
for comparison.

increases and it starts to fall faster than the leading one. The trailing
particle eventually catches up with the leading one in the kissing stage,
when the pair of particles are in contact. Because this configuration
is unstable, the trailing particle rotates around the leading one and
overtakes it in a tumbling movement.

Since the DKT process involves a contact stage, the IB-LBM im-
plements the discrete element method to handle collision between
particles. In the soft-sphere approach used, the interaction between
particles is approximated by constructing the contact force as a function
of the overlap and the relative velocity at the contact point. A linear
spring–dashpot model is applied to both particle–particle and particle–
wall interactions when the distance is less than the critical value 𝜀c. The
contact force 𝐅c can be decomposed into normal 𝐹cn and tangential 𝐹ct
terms that are respectively calculated as follows,

𝐹cn = 𝑘n 𝛿n + 𝑐n 𝑣n , (28a)

𝐹ct =

{

𝑘t 𝛥 𝛿t + 𝑐t 𝑣t 𝐹ct < 𝜇 𝐹ct ,
𝜇 𝐹ct 𝐹ct ≥ 𝜇 𝐹ct ,

(28b)

where 𝑘n, 𝑘t are the normal and tangential spring coefficients, 𝑐n, 𝑐t
are the normal and tangential damping coefficients, 𝑣n, 𝑣t are the
normal and tangential relative velocity at contact point, 𝛿n is the normal
overlap, 𝛥 𝛿t is the increment of the relative tangential displacement,
and 𝜇 is the friction coefficient. In the present work, the critical value
𝜀c is set to 2𝛥𝑥 to accommodate the range of the four-point discrete
delta function [29].
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Simulation results are illustrated in Fig. 15, where the evolution
of the velocity of the particles is plotted and compared to the sharp-
interface method presented by Ardekani and Rangel [31]. Since the
separation distance between the two particles for most of the DKT
process approaches zero, the effect of the interface diffusion associ-
ated with the IBM becomes increasingly significant and the numerical
accuracy is affected. In Fig. 15, the diffusive effect is alleviated by
introducing the retraction distance scheme with 𝑟d = 0.4𝛥𝑥 and 𝑟d =
0.8𝛥𝑥, which can achieve accuracy equivalent to an increased spatial
resolution.

From the above case for two impacting particles, we show that when
the two particles are not in close contact, the usual 𝑟d of 0.4𝛥𝑥 can be
chosen. However, when the two particles move close to each other, the
value of 𝑟d should be switched to 0.8𝛥𝑥 as the diffuse interfaces start to
overlap (𝐺 becomes 4𝛥𝑥 or less). To make computation simple, we test
the retraction distance 𝑟d of 0.4𝛥𝑥 and 0.8𝛥𝑥 in the current DKT process,
and both show satisfactory results. However, the collision model used
in the simulations has a significant influence on the interface retraction
scheme. The present DEM scheme allows particle overlap by modelling
their interaction using a linear spring–dashpot model, which is consid-
erably different from the strategy used in Ref. [31]. Further work is
required to improve the interface retraction technique.

4. Conclusion

Because of its versatility, diffuse-interface IBM is a viable method
to simulate complex fluid–solid interaction problems. An important
drawback of this approach is the diffuse interface, which changes both
the apparent size of solid object and the exact surface location. In
this work, the coupled IB-LBM has been applied to four benchmark
problems to investigate the effects of interface diffusion. It has been
found that the diffuse interface has negligible impact on unbounded
geometries. However, in confined computational domains, surface in-
teraction enhances interface diffusion effects and reduces the numerical
accuracy of diffuse-interface IBM compared to sharp-interface methods.
Interactions between particles is another challenging issue for tradi-
tional diffusive IBM formulations. When particles are in close contact,
diffuse interfaces start to overlap which leads to more pronounced
effects.

A boundary retraction approach has been tested to compensate
for these sources of error. This strategy has been proved effective
in achieving a better representation of the solid boundary and im-
proving the results accuracy with limited computational costs. It has
been demonstrated that compared to a traditional implementation,
multi-direct-forcing IBM with boundary retraction achieves a better
performance for confined geometries and particle interaction problems.
The easy-to-use retraction distance is found numerically to be 𝑟d =
0.4𝛥𝑥, which is to be doubled when two diffuse interfaces start to
overlap.
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Fig. 13. Flow around two impacting cylinders: effect of the diffuse-interface thickness on the drag coefficient 𝐶d evolution in time for lattice sizes: (a) 𝛥𝑥 = 𝐷∕12, (b) 𝛥𝑥 = 𝐷∕30,
and (c) 𝛥𝑥 = 𝐷∕30. The numerical results in Ref. [26] (MES) and Ref. [47] (Bampalas) are given for comparison. (d) Drag coefficient difference 𝐸Cd as a function of the separation
distance between the particles 𝐺∕𝐷.

Fig. 14. Sedimentation of a pair of particles in a channel under gravity: (a) computational domain, contours of the vertical velocity 𝑉 at (b) 𝑡 = 0.4, (c) 𝑡 = 0.8, and (d) 𝑡 = 1.2.
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Fig. 15. Effect of the interface diffusion on the motion of the two particles in time: (a) the transverse velocity 𝑢p and (b) the longitudinal velocity 𝑣p. The numerical results in
Ref. [31] are given for comparison.
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