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Progressive capillary waves on the interface between two homogeneous fluids confined
in a channel with rigid walls parallel to the undisturbed interface are investigated. This
problem is formulated as a system of integrodifferential equations that can be solved
numerically via a boundary integral equation method coupled with series expansions of
the unknown functions. With this highly accurate scheme and numerical continuation,
we explore the global bifurcation of periodic travelling waves. It is found that there
are two types of limiting profile, self-intersecting and boundary-touching, which appear
either along a primary branch bifurcating from infinitesimal periodic waves or on an
isolated branch existing above a certain finite amplitude. For particular sets of parameters,
these two types of bifurcation curves can intersect, which can be viewed as a secondary
bifurcation phenomenon occurring on the primary branch. Based on asymptotic and
numerical analyses of the almost limiting waves, it is found that the boundary-touching
solutions feature a circular geometry, i.e. the interface is pieced together by circular arcs
of the same radius. A theoretical investigation yields the necessary conditions for the
existence of these extreme waves, whereby we can predict the limiting configurations
for most parameter sets. The comparisons between theoretical predictions and numerical
results show good agreement.

Key words: capillary flows, capillary waves

1. Introduction

Searching for nonlinear travelling waves in an inviscid fluid layer is a research field with
a long history in the water-wave community dating back to Stokes. It is well known
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Figure 1. Three limiting configurations: (a) type I, (b) type II, and (c) type III.

that the limiting configuration of surface gravity waves, i.e. the Stokes highest wave,
features a stagnation-point singularity at its crest with a local 120◦ angle. For capillary
waves, Crapper (1957) and Kinnersley (1976) found exact analytical solutions in water
of infinite and finite depths, respectively. Their large-amplitude solutions demonstrate an
overhanging U-shaped structure. The profile is considered to reach a limiting configuration
as the free surface develops a point of contact with a ‘trapped bubble’ at the trough (see
figure 1a).

The limiting profiles of free-surface progressive gravity water waves were later
generalized to interfacial waves between two immiscible fluids of constant densities. The
limiting configuration of periodic interfacial gravity waves has been studied for decades
(Meiron & Saffman 1983; Turner & Vanden-Broeck 1986). It is found that the interface
can also develop an overhanging profile tending to be self-intersecting. Grimshaw & Pullin
(1986) proposed a possible limiting configuration that features a closed bubble of heavier
fluid on top of a 120◦ angle crest. However, the exact limiting profiles are numerically
challenging due to the local stagnation-point singularity. Recently, Maklakov & Sharipov
(2018), Guan et al. (2021a) and Guan, Vanden-Broeck & Wang (2021b) extended the
previous works and provided solid numerical evidence for the existence of such limiting
solutions. In particular, Guan et al. (2021b) confirmed that there are actually three types
of limiting configurations, which can coexist and are linked via a secondary bifurcation
point when the relevant parameters are well chosen. Therefore, it is interesting to see if an
analogous bifurcation mechanism and new solutions can be obtained for purely capillary
interfacial waves, in which gravity is neglected.

Based on a hodograph transformation, Crapper (1957) first found a family of exact
travelling-wave solutions for pure capillary waves on a fluid of infinite depth, whose
uniqueness was established by Okamoto & Shoji (1991) and Okamoto (2005) under a
certain positivity assumption. Crapper’s pioneering work was later extended by various
investigators. Kinnersley (1976) generalized Crapper waves to the case of finite depth
and obtained exact nonlinear solutions involving elliptic functions. Crowdy (2000)
provided a different derivation of Crapper waves using conformal maps. Blyth &
Vanden-Broeck (2004) considered capillary waves on fluid sheets with two free surfaces
and found secondary bifurcation branches on the symmetric Kinnersley’s solution branch.
Akers, Ambrose & Wright (2013) computed progressive capillary waves between two
semi-infinite fluids of equal density in the presence of background shear currents. Akers,
Ambrose & Wright (2014) perturbed Crapper waves by gravity to show the existence of
overhanging solutions for capillary–gravity waves. The stability properties of capillary
waves were investigated by Tiron & Choi (2012) for Crapper waves and by Blyth & Părău
(2016) for fluid sheets.

In the present paper, progressive interfacial capillary waves between two immiscible
fluids in a channel are studied numerically via a Cauchy-type boundary integral
formulation (see § 2). Using the Fourier series method, we obtain in § 3 highly accurate
numerical solutions and bifurcations in various cases. New solutions are found to bifurcate
from the branches that arise from infinitesimal periodic waves (referred to as the primary
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Figure 2. Schematic of one wavelength of the waves.

branches hereafter) for special sets of parameters (for example, when both layers are
of the same density and thickness), akin to the bifurcation mechanism found by Guan
et al. (2021b) for interfacial gravity waves. When the parameters are perturbed, these
new branches separate from the primary ones and become isolated curves. Besides the
limiting waves of the self-intersecting type, we also find two other limiting solutions
of boundary-touching type: see figure 1(b) for one-wall touch, and figure 1(c) for
simultaneous two-wall touch. For convenience, the limiting configurations shown in
figures 1(a–c) are termed type I, type II and type III limits, respectively. In § 4, we examine
the geometric characteristics of the boundary-touching interfaces, which are shown to be
piecewise circular. This fact enables us to predict the types of limiting waves for most
parameter settings.

2. Boundary integral formulation

Consider two-dimensional progressive waves of wavelength λ and speed c through the
interface between two incompressible, inviscid and immiscible fluids (see the sketch in
figure 2). We choose a moving frame of reference in which the waves are steady. We denote
by hj and ρj (j = 1, 2) the mean depths and densities in each fluid layer, where subscripts 1
and 2 refer to fluid properties associated with the lower and upper fluid layers, respectively.
A Cartesian coordinate system is introduced such that the x-axis is on the mean level
of the interface, and the y-axis coincides with a line through a wave crest/trough. It is
convenient to choose λ/(2π) and c as the units of length and velocity. In addition, the
only restoring force under consideration is surface tension, and we confine ourselves to
solutions with mirror symmetry about the y-axis. The flows are supposed to be irrotational;
hence there exist potential functions φ1 and φ2 satisfying the Laplace equation in the
respective domains, namely,

φ1,xx + φ1,yy = 0, for −h1 < y < η(x), (2.1)

φ2,xx + φ2,yy = 0, for η(x) < y < h2, (2.2)

where η(x) stands for the displacement of the interface. We denote by wj(z) = φj,x −
i φj,y the complex velocity in the corresponding fluid layer (j = 1, 2), where z = x + iy.
Applying the Schwarz reflection principle to the lower and upper layers, the flow domains
become

S1 = [−π, π] × [−2h1 − η, η], (2.3)

S2 = [−π, π] × [η, 2h2 − η], (2.4)
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and the complex velocities remain analytical functions in the extended regions. It then
follows from the Cauchy integral formula that

wj(z0) = 1
iπ

∮
∂Sj

wj(z)
z − z0

dz, (2.5)

where ∂Sj represents the boundary of the region Sj, z0 denotes a point on ∂Sj, and
the integral is in the Cauchy principal sense. Note that the integral requires only the
information on the interface owing to the Schwarz reflection principle, which significantly
reduces the number of unknowns. Following Papageorgiou & Vanden-Broeck (2004), we
introduce a variable transformation

ζ = e−iz, (2.6)

which maps Sj onto an annular region in the ζ -plane. Note that we can express the complex
velocity wj in terms of the velocity modulus qj and the inclination angle γ as

wj = qj e−iγ . (2.7)

On the interface, γ is defined by

γ = −i ln(dz/ds), (2.8)

where s is the arc length parameter in the physical space. Without loss of generality, we
will let s = 0 be the intersection point of the interface and the y-axis, corresponding to a
wave crest or trough due to symmetry. Using the Cauchy integral formula and assumed
symmetry property of waves, we obtain two integral equations for the lower and upper
layers, respectively:

π q1(σ ) x′(σ )

= −
∫ α

0

(
q1(s) (1 − eY++2h1 cos(X−))

1 + e2(Y++2h1) − 2eY++2h1 cos(X−)
− q1(s) (1 − eY− cos(X−))

1 + e2Y− − 2eY− cos(X−)

)
ds

−
∫ α

0

(
q1(s) (1 − eY++2h1 cos(X+))

1 + e2(Y++2h1) − 2eY++2h1 cos(X+)
− q1(s) (1 − eY− cos(X+))

1 + e2Y− − 2eY− cos(X+)

)
ds,

(2.9)

π q2(σ ) x′(σ )

= −
∫ α

0

(
q2(s) (1 − eY− cos(X−))

1 + e2Y− − 2eY− cos(X−)
− q2(s) (1 − eY+−2h2 cos(X−))

1 + e2(Y+−2h2) − 2eY+−2h2 cos(X−)

)
ds

−
∫ α

0

(
q2(s) (1 − eY− cos(X+))

1 + e2Y− − 2eY− cos(X+)
− q2(s) (1 − eY+−2h2 cos(X+))

1 + e2(Y+−2h2) − 2eY+−2h2 cos(X+)

)
ds,

(2.10)

where Y+ = η(σ ) + η(s), Y− = η(σ ) − η(s), X+ = x(σ ) + x(s) and X− = x(σ ) − x(s).
Here, σ ∈ [0, α] is the arc length parameter of the interface, where α is the total arc length
of the interfacial wave in half period, and the prime notation represents derivative with
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respect to arc length. To close the system, we need the Bernoulli equation

Rq2
2 − q2

1 + 2κ/μ = B, (2.11)

and the arc length equation

x′(s)2 + η′(s)2 = 1, (2.12)

where R = ρ2/ρ1 is the density ratio, κ = x′(s) η′′(s) − x′′(s) η′(s) is the curvature, B is
the unknown Bernoulli constant, and μ = ρ1λc2/(2πT), with T being the surface tension
coefficient. The density ratio R = 0 corresponds to the free-surface capillary waves. Note
that one can fix B = R − 1 or other constants, which amounts to different definitions of
wave speed and background current (Vasan & Deconinck 2013). For solitary waves or
periodic deep-water waves, there is a particular frame of reference where the velocity at
infinity is zero; thus it is a convenient choice for mathematical formulation. However, there
is no preference among all inertial references for periodic waves on water of finite depth.
These waves travel at different speeds in different frames of reference, thus having distinct
Bernoulli constants. Fixing B = R − 1 means choosing a specific frame of reference where
periodic waves bifurcate from a uniform flow, and defining wave speed so that B is
invariant along the whole bifurcation branch. However, in the subsequent calculations,
we treat B as a fundamental unknown and apply the following definition of wave speed:

1 = − 1
2π

∫ π

−π

u1 dx = − 1
2π

∫ π

−π

u2 dx, (2.13)

where the negative sign is chosen so that the background current is from right to left in the
moving frame of reference.

3. Numerical method and results

3.1. Fourier method
Following Guan et al. (2021b), we introduce a normalized arc length τ = s/α ∈ [0, 1] and
write the unknowns q1, q2, x and η as the following Fourier series:

q1(τ ) =
∞∑

n=0

an cos(nπτ), q2(τ ) =
∞∑

n=0

bn cos(nπτ), (3.1a,b)

x(τ ) = c0τ +
∞∑

n=1

cn

nπ
sin(nπτ), η(τ ) = d0 −

∞∑
n=1

dn

nπ
cos(nπτ). (3.2a,b)

Truncating these series after N terms gives 4N unknowns: aj, bj, cj and dj (for j =
0, 1, . . . , N − 1). However, the periodicity condition, x(1) − x(0) = π/2, immediately
gives c0 = π/2. Therefore, together with α, μ and B, there are 4N + 2 unknowns in total
to be found. We introduce N equally spaced collocation points

τj = j − 1
N − 1

, j = 1, 2, . . . , N, (3.3)

at which (2.9)–(2.13) are satisfied. To avoid singularities in the Cauchy integral, we
introduce another set of mesh points

τm
j = τj + τj+1

2
, j = 1, 2, . . . , N − 1, (3.4)

951 A43-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.882


X. Guan, J.-M. Vanden-Broeck and Z. Wang

and evaluate the integrals by applying the midpoint rule. The values of unknowns on
the midpoint τm

j are calculated using (3.1a,b) and (3.2a,b). Note that there are two more
conditions, ∫ π

0
η(x) dx = 0, (3.5)

∫ π

0
η′(x) dx = −H, (3.6)

representing the zero-mean interface and the pre-assigned wave amplitude. A closed
algebraic system with 4N + 2 unknowns and 4N + 2 equations can be obtained if we
abandon two integral equations, for example, those evaluated at τ = 1 (Guan et al. 2021b).
However, in the present work, we select one evaluated at τ = 1 in (2.9), and the other
evaluated at τ = 0 in (2.10). It turns out that this numerical scheme, together with the
Newton iteration method, gives very accurate results. The iteration process terminates
when the maximum residual of the system is less than 10−10. At the same time, we
monitor the residuals of the two abandoned integral equations (denoted by δ), which we
require to be less than 10−4 for an appropriate choice of N. Generally, we start calculating
with N = 300; the value of δ is of O(10−10) for most numerical solutions. So these two
abandoned integral equations are satisfied numerically. When the local curvature increases
drastically, we increase N to ensure that δ < 10−4. All the numerical results presented
were recalculated with a larger N to ensure that they are grid-independent within graphical
accuracy.

3.2. Numerical results
We do not need to worry about the Rayleigh–Taylor instability since we neglect gravity.
Therefore, all non-negative density ratios are allowed. However, solutions for (h1, h2, R)

have a one-to-one relation to solutions for (h2, h1, 1/R) if one notices that the two-fluid
system can be turned upside down, namely by reversing the direction of the y-axis. This
relation can be established by mapping (μ, B) to (Rμ, −B/R) in the Bernoulli equation.
Therefore, we will focus on only R ∈ [0, 1] in the subsequent computations.

In the first example, we set h1 = h2 = 100 to approximate the deep-water limit and
calculate solutions for different values of R. In figure 3(a), we plot a collection of
speed–amplitude bifurcation curves, starting with infinitesimal periodic waves. The linear
dispersion relation is μ ≈ 1/(1 + R) in this situation. In figure 3(b), the same branches
are plotted in the (B, |H|)-plane. On each branch, the Bernoulli constant is B = R − 1.
This is valid under the deep-water assumption. For each value of R, as the wave amplitude
increases, the wave profile gradually overhangs and ultimately develops a point of contact
enclosing a pendant-shaped bubble (i.e. the type I limit). These extreme waves are labelled
by the circles in figures 3(a) and 3(b). For the particular case R = 0, the solutions are
the well-known Crapper waves with a limiting wave height |H| ≈ 1.46π (see Crapper
(1957) for the explicit expression). In figures 3(a) and 3(c), the theoretical results of the
Crapper waves (black dots) are compared with our numerical solutions. The amplitude
of the limiting wave increases as the density ratio increases; therefore the numerical
calculation becomes more difficult for larger R. Typical profiles are shown in figure 3(d)
for various R. The numerical accuracy is shown in table 1 by comparing the values of
μ for h1 = h2 = 100 and R = 0 with the exact values of the Crapper waves for given
wave amplitudes. Remarkably, our numerical scheme provides at least 9-decimal-places
accuracy for most solutions; even for the limiting waves, a 7-decimal-places agreement
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Figure 3. Bifurcation diagrams and limiting profiles for h1 = h2 = 100. (a) Speed–amplitude bifurcation
curves for various density ratios. The circles correspond to the self-intersecting solutions, and the black dots
represent the Crapper waves. (b) Bifurcation curves in the (B, |H|)-plane for various density ratios. (c) Limiting
profiles for R = 0: solid line indicates the numerical solution, and dots indicate the analytic solution. (d) Typical
limiting profiles for R = 0.1, 0.3, 0.5, 0.7 and 0.9, from left to right, respectively.

|H|/(2π) 0.1 0.3 0.5 0.6 0.7 0.730

μ (N = 300) 0.987886702 0.904591811 0.786439100 0.727727183 0.672820992 0.657257889
μ (N = 500) 0.987886702 0.904591811 0.786439100 0.727727183 0.672820992 0.657258103
μ (Crapper) 0.987886702 0.904591811 0.786439100 0.727727183 0.672820992 0.657258092

Table 1. Comparison of μ between numerical results and Crapper’s exact solutions for h1 = h2 = 100 and
R = 0.

can be achieved with N = 500. Both Crapper (1957) and Kinnersley (1976) chose B = −1
in their calculations. This choice is equivalent to our definition of wave speed (2.13) only
when the fluid is of finite depth. Therefore, we choose the Crapper wave, rather than the
Kinnersley solution, to compare, although the latter deals with the finite-depth situation.

In the second numerical experiment, we let h1 = h2 = 1, a shallow-water case. The
linear dispersion relation gives μ = 1/(coth(h1) + coth(h2)) ≈ 0.3808. We start the
computation with small-amplitude sinusoidal waves, and complete this bifurcation curve
via a numerical continuation. Besides this primary branch, other bifurcation curves also
exist. This is illustrated clearly by considering first the particular case R = 1. In figure 4(a),
we plot the primary and new bifurcation curves (shown by blue and red, respectively) in
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Figure 4. Bifurcation mechanism and almost limiting profiles for h1 = h2 = 1. (a) Bifurcation curves in the
(μ, |H|)-plane and the (B, |H|)-plane for R = 1. The black dot is the secondary bifurcation point where the
new branches (red line) grow. The almost limiting profiles denoted by �, � and � correspond to top-touching,
bottom-touching and top-bottom-touching solutions. (b) Typical wave profiles corresponding to the crosses
in (a). (c) Velocity fields of the almost limiting solutions corresponding to � and � in (a). The solid and
dashed curves are interfaces and streamlines, respectively, and velocity magnitudes are shown on the right
with different colours. (d) Bifurcation curves in the (μ, |H|)-plane and the (B, |H|)-plane for R = 1 (black),
R = 0.99 (blue), R = 0.95 (red) and R = 0.8 (yellow).

the (μ, |H|)-plane and (B, |H|)-plane. Interestingly, these curves are linked together via
secondary bifurcations. The black dot represents the secondary bifurcation point where
the new branches start. Note that the left plot has two coinciding red curves. Three typical
solutions corresponding to the crosses are plotted in figure 4(b). One can see that the
solutions on the primary branch are invariant under the upside-down operation, which
yields a zero Bernoulli constant. However, waves on the new branches mirror each other
under an upside-down manipulation, thus having Bernoulli constants of opposite signs.
We stop the numerical continuation when the wave crest/trough almost touches a wall
boundary (shown by �, �, and � in figure 4a), because Newton’s method converges
poorly if the wave amplitude is increased further. These almost limiting profiles (solid
lines), together with the typical streamline pattern (dashed lines) and cloud image of the
velocity field, are shown in figure 4(c). Due to small fluid depths, the waves develop the
type II and type III limits rather than the type I limit. We then vary the value of the density
ratio to understand the bifurcation mechanism for relatively general cases. If the value of
R is decreased slightly, then all these branches break up from the secondary bifurcation
point, forming separated curves, as shown in figure 4(d). We should point out that a
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Figure 5. Bifurcation curves and wave profiles for two sets of parameters: R = 1, h1 = h2 = 5 and R = 1,
h1 = h2 = 10. (a) Primary bifurcation branches (blue) and new branches (red) are linked by a secondary
bifurcation point (black dots). (b,d) Almost limiting profiles for h1 = h2 = 5 and h1 = h2 = 10, respectively.
Blue and yellow waves correspond to ◦ in (a), and red waves correspond to � in (a). (c) Velocity field of the
limiting solutions labelled by � for h1 = h2 = 5. The solid and dashed curves are the interface and streamlines,
respectively, and the velocity magnitudes are shown on the right together with the colour bar.

similar bifurcation mechanism was found by Guan et al. (2021b) for interfacial gravity
waves.

If the fluid depths increase to a certain level, then the limiting configuration is expected
to become self-intersecting, as in the deep-water case shown in figure 3. In figure 5, we set
R = 1, and h1 = h2 = 5 and h1 = h2 = 10, and the speed–amplitude bifurcation curves
are shown in figure 5(a). Similarly, secondary bifurcation points are found on the primary
branches (blue), from which new branches appear. Three (almost) limiting configurations
for h1 = h2 = 5 are plotted in figure 5(b). Solutions on the primary bifurcation branch
feature an upside-down symmetry and ultimately form a top-bottom-touching singularity
labelled by � in figure 5(a). On the new branches, the solutions develop overhanging
profiles as the wave amplitude |H| increases, and become self-intersecting before the
interface touches the boundary. We plot the streamline pattern and velocity cloud image
in figure 5(c) for the type I limit. It is observed that the flow in the upper layer is
almost a uniform flow with unit velocity except near the bubble, where it becomes
almost stationary. As for the lower layer, the flow is almost static under the wave
crest, while the velocity reaches its maximum in a small region under the wave trough.
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The bifurcation mechanism and limiting configuration for h1 = h2 = 10 are similar to
those for h1 = h2 = 5.

As discussed above, the secondary bifurcation and branch separation are found near
R = 1; however, these phenomena also occur for other parameter settings, and we show
an example in figure 6. We set h1 = 3 and h2 = 2, and search for a critical value Rc
under which the primary branch and new bifurcation curve are connected through an
intersection point. Our computations show that the primary and new branches approach
each other when R increases to 0.5178 or decreases to 0.5179. The results for R =
0.5178 and R = 0.5179 are demonstrated in figures 6(a) and 6(b), respectively, where the
solution branches display sharp turning points, as seen in the (B, |H|)-plane. We should
emphasize that although the two speed–amplitude curves appear to intersect mutually in
the (μ, |H|)-plane of figure 6(a), it is clear that they do not have a common solution as
shown in the (B, |H|)-plane. However, we can infer from figures 6(a,b) that an exchange
of sub-branches between the primary and new curves occurs at some particular density
ratio Rc, between 0.5178 and 0.5179. The computations for R ∈ (0.5178, 0.5179) show
some sign changes of the determinant of the Jacobian matrix near the turning points,
giving rise to numerical difficulties in the Newton iterations near Rc. It is therefore
reasonable to conclude that there exists a critical Rc ∈ (0.5178, 0.5179) at which a
secondary bifurcation point emerges to connect the two branches. In that case, following
the primary branch from infinitesimal waves to the secondary bifurcation point, three
sub-branches appear subsequently whose limiting configurations are type I, type II and
type III, respectively. When R deviates slightly from Rc, the bifurcation curves break up
and finally form two separated branches through a pairwise combination. The combination
mode depends on whether R < Rc or R > Rc. In figure 6(c), we plot the typical profiles
of the three almost limiting solutions for R = 0.5178. A similar bifurcation–separation
phenomenon is observed for other parameter settings, indicating a generic mechanism.
We cannot extend these new branches to cases R � 1 or h1,2 → ∞ since the new
solutions tend to approach the wall boundaries as R decreases or h1,2 increases. Thus
one can neither continuously decrease R to zero because of numerical difficulties
nor approximate solutions for h1,2 → ∞ by a series of solutions with increasing
depths.

4. Limiting configurations

4.1. Asymptotic analysis
An asymptotic analysis of the limiting configurations as μ → 0 can be performed if we
rewrite the Bernoulli equation (2.11) as

μ(Rq2
2 − q2

1) + 2κ − μB = 0. (4.1)

There are two possibilities to balance the leading-order terms,

κ ∼

⎧⎪⎨
⎪⎩

μ

2
(Rq2

2 − q2
1), close to the contact point,

μB
2

→ const., far from the contact point,
(4.2)

indicating that the main portion of the wave is almost a circular arc. For the particular
case R = 1 and h1 = h2, it is already known that B = 0 on the primary branch. Therefore,
the main section of the interface should be approximated by straight lines with slopes
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Figure 6. Bifurcation diagrams and almost limiting profiles for h1 = 3 and h2 = 2. (a) Bifurcation curves
in the (μ, |H|)-plane and (B, |H|)-plane for R = 0.5178. (b) Bifurcation curves in the (μ, |H|)-plane and
(B, |H|)-plane for R = 0.5179. (c) From top to bottom, almost limiting profiles correspond to �, ◦ and � in
(a) for R = 0.5178.

±(h1 + h2)/π. This is confirmed by our numerical results (see figures 4 and 5). On the
other hand, we must have the following scaling near the contact point:

Rq2
2 − q2

1 ∼ 1
μβ

, κ ∼ 1
μβ−1 , as μ → 0, (4.3a,b)

where β > 1 is an unknown constant.
In figure 7(a), solutions on the primary branches for R = 1 and h1 = h2 = 1, 5, 10

are selected to give the μ–κ relation at x = 0 (red dots) and the relation between μ

and Rq2
2 − q2

1 at x = 0 (black dots). The almost limiting profiles on these branches are
plotted in figure 4(c) (top plot), figure 5(b) (red curve) and figure 5(d) (red curve). The
numerical results agree with the asymptotic relation (4.3a,b), provided that β = 2.5.
In figure 7(b), we choose two almost limiting solutions shown in the bottom plots of
figures 4(c) and 6(c), and plot the x–κ relations based on the numerical results (red dots)
and theoretical prediction κ = μB/2 (black lines). It is clear from the comparisons that
the segment away from the wave crest and trough approaches a circular arc.
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Figure 7. (a) Plots of κ versus μ (red dots) at x = 0, and Rq2
2 − q2

1 versus μ (black dots) at x = 0 in a log
scale. Numerical solutions are chosen on the primary branches for R = 1 and h1 = h2 = 1, 5, 10. The straight
lines are the asymptotic approximations (4.3a,b) with β = 2.5. (b) Plots of κ versus x for the almost limiting
solutions shown in the bottom plots of figures 4(c) and 6(c).

We can propose two possible boundary-touching limits based on the above analyses and
comparisons, as shown in figure 1. These limiting waves occur only when μ = 0. If the
interface becomes boundary-touching, then for the region enclosed by the interface and
solid wall, mass flux must vanish due to the zero-thickness fluid layer at the touching
points. Closed streamlines can be excluded due to the irrotational nature of motion.
Therefore, the fluid becomes static inside the closed region. Using the dimensional version
of the definition of wave speed (2.13),

c = 1
2λ

∫ λ
−λ

u1,2 dx, (4.4)

we must conclude that c = μ = 0 when the interface touches the boundary. This can also
be seen from the bifurcation curve, e.g. figures 4(a) and 5(a). The value of μ is gradually
approaching zero. It is also worth mentioning that both the type II and type III limits rely
on the geometry of the channel, i.e. h1,2, rather than the density ratio R, since the fluids
cannot ‘feel’ the influence of density difference when the flows become stationary.

4.2. Geometry of limiting configurations

4.2.1. Type II
In figure 8, we plot the typical geometric structure of the type II limit. For convenience,
we assume that the wave has a sharp angle 2θ at the contact point. Applying Pythagoras’s
theorem to the triangle OAB, we can derive the following relation between the wave height
|H| and limiting radius r:

r2 = (r − |H|)2 + π2 =⇒ r = |H|
2

+ π2

2|H| . (4.5)

To determine uniquely |H| and r, one needs the condition that the volume is conserved,
i.e. that the area between the interface and the boundary in one spatial period is a constant
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Figure 8. Geometric structure of the type II limit. The blue curve and black horizontal lines denote the
interface and rigid walls.

for all waves since we fix the x-axis on the mean level of the interface. Thus we have

SOAC − SOAB = πh, (4.6)

SOAC = (π/2 − θ)r2/2, (4.7)

SOAB = π(r − |H|)/2, (4.8)

where SOAC and SOAB represent areas of the sector OAC and triangle OAB, respectively,
and h represents h2 (top-touching) or h1 (bottom-touching). Eliminating r and θ , we have
the equation for H:[

π

2
− sin−1

(
π2 − H2

π2 + H2

)] (
π2

2|H| + |H|
2

)2

− π

(
π2

2|H| − |H|
2

)
= 2πh. (4.9)

The value of |H| must be within [0, π] to ensure that θ � 0. By drawing the graph, one can
easily show that the left-hand side of (4.9) is an increasing function of |H|. The maximum
value, π3/2, is obtained at |H| = π. Therefore, the necessary condition for the existence
of the type II limit is

h � π2

4
. (4.10)

If not satisfied, then θ would become negative, implying that waves tend to overhang, and
one should expect the type I limit. When the condition (4.10) is met, the monotonicity of
the left-hand side of (4.9) guarantees the uniqueness of the type II limit.

4.2.2. Type III
For the type III limit shown in figure 9, applying Pythagoras’s theorem to the triangle ODE
yields

r2 = (r sin θ + |H|)2 + (r cos θ − π)2 =⇒ r = π2 + H2

2(π cos θ − |H| sin θ)
. (4.11)
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Figure 9. Geometric structure of the type III limit. The blue curve and black horizontal lines denote the
interface and channel walls.

For consistency of notation, the smaller one of the two crest angles is denoted by 2θ , and
the larger one by 2ε, where ε and θ satisfy the expressions

sin ε = r sin θ + |H|
r

, (4.12)

cos ε = r cos θ − π

r
. (4.13)

Using the conservation of volume, we have

SOACE − SODE − SOAD = πh, (4.14)

SOACE = (2|H| + r sin θ)r cos θ/2, (4.15)

SODE = (r cos θ − π)(r sin θ + |H|)/2, (4.16)

SOAD = (ε − θ)r2/2, (4.17)

where SOACE, SODE and SOAD represent areas of the trapezoid OACE, triangle ODE and
sector OAD, respectively, and h represents h1 if the steeper crest contacts the top wall, or
h2 if the other way around. Combining the above equations, we have

(|H| cos θ + π sin θ)r + π|H| −
[

sin−1
(

(π2 − |H|2) sin θ + 2π|H| cos θ

π2 + |H|2
)

− θ

]
r2

= 2πh. (4.18)

One can see from figure 9 that there is an extra constraint on θ :

r cos θ � π =⇒ tan θ � π2 − |H|2
2π|H| , (4.19)

951 A43-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.882


New interfacial capillary waves

which gives a lower bound on θ . On the other hand, since θ � ε, the upper bound is
obtained when θ = ε, i.e. tan θ = |H|/π. As a result, there are two possible ranges for θ :

θ ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0, tan−1

(
π

|H|
)]

, |H| � π,

[
tan−1

(
π2 − |H|2

2π|H|
)

, tan−1
(

π

|H|
)]

, |H| < π.

(4.20)

A plot of the left-hand side of (4.18) as a function of θ yields an increasing function
with the maximum value π|H|. Note that |H| = h1 + h2 for the type III limit, and hence
h � (h1 + h2)/2, i.e. the steeper crest is always formed in the deeper layer. When h1 = h2
and r → ∞, the interface becomes piecewise straight lines with slopes ±(h1 + h2)/π.
Using the monotonicity property, we can derive from (4.18) the range of h for the type III
limit:

(i) |H| � π,

|H| 3π2 + H2

4π2 − sin−1
(

2π|H|
π2 + H2

)
(π2 + H2)2

8π3 � h � |H|
2

; (4.21)

(ii) |H| < π,

π2 + 3H2

4|H| − cos−1
(

π2 − H2

π2 + H2

)
(π2 + H2)2

8πH2 � h � |H|
2

. (4.22)

When these conditions are satisfied, the monotonicity of the left-hand side of (4.18)
guarantees the uniqueness of the type III limit for given fluid depths.

4.3. Limiting configurations in the (h1, h2)-plane
Next, we can predict the possible limiting configurations by considering the values of
h1 and h2. The (h1, h2)-plane can be divided into several regions, and the boundaries
between different regions can be determined by the critical conditions given in the previous
analyses. In figure 10, the two straight lines CP and CF originating from the point
(π2/4, π2/4) are plotted according to condition (4.10). It is easily found that the L-shaped
region between the two axes and PCF is where the type II limits exist. On the other hand,
curves OA and OB are the lower bound of (4.22), where the coordinates of A and B
are (π2/4, π − π2/4) and (π − π2/4, π2/4), respectively. Curves AG and BQ are the
lower bound of condition (4.21), where the coordinates of D and E are (5.4243, π2/4)

and (π2/4, 5.4243), respectively. Therefore, the region between the red curves is where
the type III limits exist. Note that the two triangular zones GDF and QEP support neither
the type II limits nor the type III limits; hence only the type I limits may exist in these
areas.

In figure 11, we exhibit the limiting configurations of R = 0.5 with two different
settings of h1 and h2. In figure 11(a), we choose h1 = 7 and h2 = 3. This choice of
parameters is located in the GDF region. Based on the above argument, three different
extreme solutions of type I exist, and the numerical calculations confirm this fact. In
figure 11(b), we choose h1 = 6 and h2 = 2, and this setting is within the L-shaped
region where type II limits appear. Indeed, since h2 < π2/4, a top-touching solution is
plausible. On the other hand, this setting is outside the wedge-shaped region between the
red curves and thus excludes the type III limits. Therefore, we can infer that one limiting
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Figure 10. The (h1, h2)-plane is divided into six regions. The L-shaped region between the axes and PCF
accounts for the existence of the type II limits. The wedge-shaped area between the two red curves is where
the type III limits exist. Type II and type III waves, therefore, coexist in the overlap of these two regions. The
marked points are: O (0, 0), A (π2/4, π − π2/4), B (π − π2/4, π2/4), C (π2/4, π2/4), D (5.4243, π2/4), E
(π2/4, 5.4243).
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Figure 11. Limiting configurations for R = 0.5 and: (a) h1 = 7, h2 = 3; (b) h1 = 6, h2 = 2. In (b), the red
dots represent the theoretical prediction of the limiting profile of type II.

configuration of type II and two limits of type I coexist, which is again confirmed by the
numerical results. At the bottom of figure 11(b), we compare the almost limiting profile
of type II (blue) with the predicted limiting solution (red), and a satisfactory agreement is
achieved.
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Figure 12. Comparisons between the numerical solutions of the almost limiting waves (blue curves) and
theoretical approximations (red dots), for: (a) R = 1, h1 = h2 = 1; (b) R = 0.5178, h1 = 3; (c) R = 0.5178,
h2 = 2.

Other numerical experiments presented in § 3 also support our theoretical results.

(i) The case R = 1 and h1 = h2 = 1, shown in figure 4, is within the overlap area
of the L-shaped and wedge-shaped regions, thus possessing both type II and type
III limits. A comparison between the almost limiting solution and the theoretical
approximation is shown in figure 12(a).

(ii) The cases R = 1 and h1 = h2 = 5, 10, shown in figure 5, are outside the L-shaped
region but inside the wedge-shaped region, thus possessing only one limit of type
III. Since there are generally two bifurcation branches, two extra limits of type I can
be expected.

(iii) The case R = 0.5178, h1 = 3 and h2 = 2, shown in figure 6, is within the overlap
area of the L-shaped and wedge-shaped regions. Since h1 > π2/4, there is only one
limit for type II (top-touching) and one for type III. As a consequence, an extra limit
of type I should exist. Comparisons between the numerical solutions of type II and
III limits and theoretical predictions are shown in figures 12(b,c).

On the boundaries of the L-shaped and wedge-shaped regions (see figure 10), the
extreme waves usually show mixed features. Figure 13 exhibits a series of theoretical
limiting solutions on these boundaries. On curve OA, type III limits are characterized
by θ > 0 and ε = π/2, i.e. the crests of waves are tangential to the top wall. Therefore,
these profiles can also be considered particular type II limits. As the solution moves on
OA, the value of θ gradually decreases until it ultimately vanishes at point A, which can
be recognized in figures 13(a) and 13(A). If we continue moving onto AG, solutions are
characterized by θ = 0 and 0 < ε < π/2 (see the typical profile in figure 13d). However,
if we trace the solution along AP after passing through point A, i.e. fixing h1 = π2/4
and increasing h2, type II limits become a series of semicircles with θ = 0 (see the typical
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Figure 13. A series of theoretical limiting waves on boundaries of the L-shaped and wedge-shaped regions in
the (h1, h2)-plane.

profiles in figures 13b,C). Finally, we should point out that although the theoretical analysis
is elementary, numerical calculations become extremely difficult near these boundaries.

5. Concluding remarks

The present paper is concerned with two-dimensional progressive interfacial capillary
waves between two immiscible fluids of finite thicknesses. Highly accurate numerical
solutions have been obtained via a boundary integral equation formulation and the Fourier
series method. Global bifurcations and three limiting waves, type I, type II and type III
(see figure 1), have been investigated. New bifurcation branches are found in various cases,
and the bifurcation mechanism is analogous to that of the interfacial gravity waves (Guan
et al. 2021b). In a special case, R = 1 and h1 = h2 < ∞, a secondary bifurcation point has
been found on the primary branch, where two new curves branch out. Solutions on these
new branches mirror each other under an upside-down transformation . More generally,
there are particular sets of parameters (Rc, h1c, h2c) for which a secondary bifurcation
point emerges on the primary curve and connects all these branches. When any parameter
deviates slightly from the original one, new bifurcation curves break up with the primary
branch to form ultimately two isolated curves. Besides this novel bifurcation mechanism,
the geometry characteristics of type II and type III limits have been studied thoroughly.
The limiting profiles can be approximated by piecewise circular arcs except for the regions
near wave crests and troughs, where a power-law singularity is observed. Based on these
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geometry properties, the (h1, h2)-plane can be divided into six regions, whereby the types
of limiting configuration in each region can be predicted.

Let us briefly discuss the possibility of performing experiments to check these interfacial
capillary waves. According to the linear dispersion relation of interfacial waves,

c2
p = (ρ1 − ρ2)g/k + Tk

ρ1 coth(kh1) + ρ2 coth(kh2)
, (5.1)

where cp is the phase velocity, k is the wavenumber, g is the acceleration due to gravity,
and T is the interfacial tension between two immiscible fluids. Gravity would be relatively
unimportant if

k �
√

(ρ1 − ρ2)g
T

. (5.2)

Therefore, the proper wavelength λ for interfacial capillary waves must satisfy

λ� 2π

√
T

(ρ1 − ρ2)g
. (5.3)

For various two-fluid systems – for example, a water–mercury interface or a
water–kerosene interface – the typical wavelength of interfacial capillary waves is of
millimetre scale. Therefore, the influence of viscosity must be checked before designing
any experiments. According to the linear theory, the mechanical energy of the wave decays
exponentially with time (E ∝ e−Δt). To measure the relative importance of viscosity, we
introduce a non-dimensional number ξ = Tperiod/Tdecay = Δ/ω, where ω is the frequency
of waves. To guarantee that the expected interfacial capillary waves are observed before
they are dissipated, it is required that ξ � 1. Following Benielli & Sommeria (1998) and
Jeng et al. (1998), we can obtain the following expressions for ξ :

ξB =
√

2

[
k coth5(kh)

T(ρ1 + ρ2)3

]1/4

⎡
⎢⎢⎢⎣ ρ1

√
ν1(

1 + ρ1

ρ2

√
ν1

ν2

)2 + ρ2
√

ν2(
1 + ρ2

ρ1

√
ν2

ν1

)2

⎤
⎥⎥⎥⎦ , for h1,2 = h,

(5.4)
and

ξJ =
√

2
[

k
T(ρ1 + ρ2)3

]1/4 ρ1ρ2
√

ν1ν2

ρ1
√

ν1 + ρ2
√

ν2
, as h1,2 → ∞, (5.5)

where ν1 and ν2 are the kinematic viscosities of the lower and upper fluids, respectively.
Here, we list ranges of ξ for several typical two-fluid systems when k ∈ [100, 1000] (and
hence coth(kh) ∼ 1).

(i) Water–mercury interface: ξB ∈ [0.0033, 0.006] and ξJ ∈ [0.0033, 0.006].
(ii) Water–ethyl acetate interface: ξB ∈ [0.021, 0.038] and ξJ ∈ [0.021, 0.038].

(iii) Water–dodecane interface: ξB ∈ [0.017, 0.032] and ξJ ∈ [0.017, 0.032].
(iv) Water–kerosene interface: ξB ∈ [0.031, 0.057] and ξJ ∈ [0.031, 0.057].

Therefore, it seems that the two-fluid systems listed above could be considered candidates
to perform experiments on interfacial capillary waves. The best place would be in
space where the gravity acceleration can be decreased significantly, and thus the typical
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wavelength of interfacial capillary waves can be increased to a centimetre scale. Due
to the smallness of the characteristic wavelength, a centimetre scale fluid depth can
be regarded as a deep-water situation while conducting experiments on the surface of
the Earth. Figure 10 suggests that the most likely observable limiting configurations
are the overhanging waves (i.e. interfacial Crapper waves). When reducing the gravity
acceleration and thus increasing the typical wavelength to the centimetre scale, the
possibility of observing the other two types of limiting waves (i.e. boundary-touching)
increases significantly.
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