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The mean velocity follows a logarithmic scaling in the surface layer when normalized
by the friction velocity, i.e. a velocity scale derived from the wall-shear stress. The same
logarithmic scaling exists for the mean temperature when one normalizes the temperature
with the friction temperature, i.e. a scale derived from the wall heat flux. This temperature
normalization poses challenges to adiabatic walls, for which the wall heat flux is zero,
and the logarithmic temperature scaling becomes singular. This paper aims to establish a
temperature transformation that applies to both isothermal walls and adiabatic walls. We
show that by accounting for the diffusive flux, both the Van Driest transformation and the
semi-local transformation (and other transformations alike) apply to adiabatic walls. We
also show that the classic Walz equation works well for adiabatic walls because it models
the diffusive flux, albeit in a rather crude way. For validation/testing, we conduct direct
numerical simulations of supersonic Couette flows at Mach numbers M = 1, 3 and 6, and
various Reynolds numbers. The two walls are adiabatic, and a source term is included
to cancel the aerodynamic heating in the domain. We show that the adiabatic wall data
collapse onto the same incompressible logarithmic law of the wall like the isothermal wall
data.
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1. Introduction

Thermal transport is an important process in both nature and engineering (Kays &
Crawford 1980; Incropera & DeWitt 1990; Bergman et al. 2011), and the scaling of the
basic thermal quantity, i.e. temperature, has received much attention (Wolfshtein 1969;
Kader 1981; Bradshaw & Huang 1995). For flows at low speeds, the Reynolds analogy and
the logarithmic scaling of the mean velocity together give rise to the logarithmic scaling of
the temperature in the constant-stress-layer/logarithmic-layer/constant-flux-layer (Kader
1981)

T̄w − T̄
θτ

= 1
κT

log( y+) + B(Pr), (1.1)

where T̄ is the mean temperature, T̄w is the wall temperature, θτ = q̄w/(ρwcpuτ ) is a
temperature scale, q̄w is the mean wall heat flux, cp is the heat capacity, uτ = √

τ̄w/ρw
is the friction velocity, κT ≈ 0.47 is the counterpart of the von Kármán constant, y+ is
the viscous-scaled wall-normal distance, the subscript w denotes quantities evaluated at
the wall, and B is a function of the molecular Prandtl number. (For low-speed flows, the
fluid density is a constant and ρ = ρw, and the subscript w is redundant.) The temperature
scaling in (1.1) shares a form similar to the velocity scaling (Marusic et al. 2013). The
basic logic is that turbulent eddies that carry the momentum flux also carry the heat
flux (Yang & Abkar 2018), and therefore the temperature and the velocity should have
similar behaviours. Equation (1.1) and its variants like Kader’s formula (Kader 1981) have
received much empirical support at low speeds; see e.g. Kader (1981), Kim & Moin (1989),
Kasagi, Tomita & Kuroda (1992), Abe, Kawamura & Matsuo (2004), Pirozzoli, Bernardini
& Orlandi (2016), Zhang, Huang & Xu (2021) and Alcántara-Ávila, Hoyas & Pérez-Quiles
(2021). However, because the temperature scale θτ is proportional to the wall heat flux,
the scaling in (1.1) is defined if and only if there is a non-zero wall heat flux. This poses
challenges to adiabatic walls.

Adiabatic walls are not much of an issue at low speeds. At low speeds, aerodynamic
heating is negligible (Van Driest 1956; Yang et al. 2018). In the absence of aerodynamic
heating, the heat flux in the constant stress layer sustains only if T̄w − T̄ /= 0. Hence
an adiabatic wall necessarily implies T̄w − T̄ = 0 at the equilibrium condition. In other
words, in the absence of aerodynamic heating, the limit

lim
θτ →0

T̄w − T̄
θτ

(1.2)

degenerates to T̄ = T̄w. The situation is rather different at high Mach numbers/high speeds.
At high speeds, aerodynamic heating generates much heat in the wall layer, leading to
a non-zero T̄w − T̄ above an adiabatic wall. Consequently, the limit in (1.2) becomes
singular. This paper aims to address the above issue and arrive at a unified scaling for
both the adiabatic and non-adiabatic walls.

The issue concerns flow compressibility and adiabatic walls. Compressibility can be
tackled via ‘transformations’. Morkovin (1962) hypothesized that ‘the essential dynamics
of (compressible) shear flows will follow the incompressible pattern’. It follows that there
should be ‘transformations’ that map compressible flow statistics to their incompressible
counterparts. In the past 70 years or so, Howarth (1948), Van Driest (1951), Brun et al.
(2008), Zhang et al. (2012), Trettel & Larsson (2016), Volpiani et al. (2020b), Patel,
Boersma & Pecnik (2016) and Griffin, Fu & Moin (2021), among others, have proposed
scalings that map the velocity to the conventional logarithmic law of the wall. The effort
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has been quite prolific (Modesti & Pirozzoli 2016; Zhang, Duan & Choudhari 2018; Yao
& Hussain 2020; Yu & Xu 2021). Meanwhile, temperature scalings have received much
less attention. In a recent work, Patel, Boersma & Pecnik (2017) studied flows above
non-adiabatic walls. They concluded first, that the Van-Driest-type temperature scaling,
which reads

θvd =
∫ θ/θτ

0

√
ρ̄

ρw
d

(
θ

θτ

)
, (1.3)

does not collapse data, and second, that the semi-local-type temperature scaling, which
reads

θsl =
∫ θvd

0

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
dθvd, (1.4)

collapses data. Here, θ = T̄w − T̄ is the mean temperature difference, ρ̄ is the mean
density, Re∗

τ = Reτ

√
ρ̄/ρw μw/μ̄ is the semi-local-scaled Reynolds number, Reτ is the

typical friction Reynolds number defined based on the fluid density, viscosity and stress at
the wall, μ̄ is the mean dynamic molecular viscosity, and the subscripts vd and sl denote
‘Van Driest (type)’ and ‘semi-local (type)’, respectively. Like other temperature scalings,
the scaling in Patel et al. (2017) uses θτ for normalization and therefore is singular for
adiabatic walls. Because of flow compressibility, both the fluid density ρ̄ and the dynamic
viscosity μ̄ are functions of the wall-normal distance y, and we will use the subscript w
when referring to a quantity’s wall value. The scaling in (1.4) is subsequently examined
in Wan et al. (2020) and Chen et al. (2022) for flows above non-adiabatic walls, and
the results are in general favourable. Modesti, Pirozzoli & Grasso (2019) and Modesti &
Pirozzoli (2019) established a similar scaling for passive scalars. In all, the community has
much experience dealing with compressibility. However, we do not have much experience
dealing with adiabatic walls, at least in the context of temperature scaling. When the wall
is adiabatic, it is immediately clear that the following two limits do not exist:

lim
θτ →0

θvd, lim
θτ →0

θsl. (1.5a,b)

Consequently, the scalings in (1.3) and (1.4) fail. In the existing literature, a scaling that
potentially can handle adiabatic walls is the Walz equation (Walz 1969):

T̄
T̄c

= T̄w

T̄c
+ Tr − T̄w

T̄c

(
ū
ūc

)
− r

γ − 1
2

M2
c

(
ū
ūc

)2

, (1.6)

where Tr = T̄c[1 + r(γ − 1)M2
c/2] is the recovery temperature, r is the recovery factor,

and the subscript c denotes quantities evaluated at the channel centreline/freestream. The
scaling in (1.6) does not involve θτ and is therefore not singular for adiabatic walls (Duan,
Beekman & Martin 2010):

T̄
T̄c

= T̄w

T̄c
− r

γ − 1
2

M2
c

(
ū
ūc

)2

. (1.7)

Nonetheless, (1.7) suffers from two weaknesses. First, it is not a y scaling. Here, we clarify
why we consider this as a weakness. Conventional wall laws are functions of y. These
scalings are strong scalings. A scaling that expresses one flow quantity as a function of
another flow quantity – e.g. u2 as a function of Ū (Yang, Pirozzoli & Abkar 2020; Yang
et al. 2022), or 〈exp(qu)〉 as a function of 〈exp( pu)〉 (where p and q are real numbers, and
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p /= q) (Yang et al. 2016) – are often considered weak scalings. We do not favour weak
scalings because of possible error cancellation and error propagation. Second, (1.7) relies
on the direct assumption that T̄ is a function of ū and an empirical recovery factor (Van
Driest 1951).

The primary objective of this work is to find a y scaling for the temperature. The scaling
should be able to handle both adiabatic walls and non-adiabatic walls. We will carry out
direct numerical simulations (DNS) of supersonic Couette flow for validation and testing.
The rest of the paper is organized as follows. We derive the scaling in § 2. Details of our
DNS are provided in § 3. The results are presented and discussed in § 4. The paper finishes
with conclusions in § 5.

2. Temperature scaling

The available temperature scalings, i.e. the Van Driest scalings in (1.3) and the semi-local
scaling in (1.4), are singular for adiabatic walls. In this section, we attempt to account
for adiabatic walls. The method applies to any temperature scaling, but, for brevity,
the discussion is limited to the two scalings used most extensively, i.e. the Van Driest
scaling and the semi-local scaling. In addition to a rigorous derivation, we present a
heuristic argument in § 2.1, so that we do not obscure the physics with long mathematical
derivations.

2.1. Heuristics
When the previous authors derive (1.3) and (1.4), the momentum and the heat flux
are assumed to be constants in the constant-stress-layer/constant-flux-layer. The constant
momentum flux and heat flux give rise to the velocity scale u∗

τ = √
τ̄w/ρ̄ (Patel et al. 2015,

2017), and similarly the temperature scale θ∗
τ = q̄w/(cpρ̄u∗

τ ). While the momentum flux is,
by definition, a constant in the constant stress layer, the heat flux is not. If we follow the
logic that motivated the semi-local scaling, i.e. one must use local quantities for scaling,
then we must also use the local heat flux rather than the wall heat flux to scale θ . The above
heuristic argument leads to the temperature scale θ∗

τ,c = (q̄w + q̄)/(ρ̄cpu∗
τ ), where q̄ is the

diffusive flux, and the subscript c denotes ‘corrected’. We note that this temperature scale
θ∗
τ,c is not attached to a specific scaling. In the following, we will show that by replacing

θ∗
τ with θ∗

τ,c, we will be able to remove the adiabatic wall singularity in any temperature
scaling. Here, we will show this for the Van Driest scaling and the semi-local scaling.

It follows from the definition of θ∗
τ,c that the Van Driest transformation and the

semi-local scaling must be

θvd,c =
∫ θ

0

dθ

θ∗
τ,c

(2.1)

and

θsl,c =
∫ θ

0

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
dθ

θ∗
τ,c

. (2.2)

In (2.1) and (2.2), θvd,c and θsl,c do not carry any dimension, and dθ = d(T̄w − T̄) and θ∗
τ,c

carry the dimension of temperature. The expectation is

θvd,c =
⎧⎨⎩Prwy+ at the wall,

1
κT

log
(

y+) + B(Pr∗) in the logarithmic layer,
(2.3)
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and

θsl,c =
⎧⎨⎩Prwy∗ at the wall,

1
κT

log ( y∗) + B(Pr∗) in the logarithmic layer,
(2.4)

where

y∗ =
√

ρ̄

ρ̄w

μ̄w

μ̄
y+ (2.5)

is the conventional semi-local-scaled wall-normal distance, and Pr∗ = cpμ̄/k̄ is the
semi-local-scaled Prandtl number. In the following, we derive rigorously the scalings in
(2.1) and (2.2).

2.2. Governing equations
We first list the governing equations. The mass conservation reads

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.6)

the momentum equation reads

∂

∂t
(ρui) + ∂

∂xj
(ρujui) = − ∂p

∂xi
+ ∂σij

∂xj
, (2.7)

and the energy equation reads

∂

∂t

[
ρ

(
cvT + 1

2
uiui

)]
+ ∂

∂xj

[(
cvρT + 1

2
ρuiui+p

)
uj

]
= ∂σijui

∂xj
+ ∂

∂xj

(
k

∂T
∂xj

)
+ φ,

(2.8)
where u, v, w are the instantaneous velocities in the streamwise, wall-normal and spanwise
directions, respectively, σij is the viscous stress tensor, k is molecular thermal conductivity,
φ is a heat source, f ′′ = f − f̃ , f̃ = ρ̄f /ρ̄ denotes the Favre average, and f is a generic flow
quantity.

2.3. Derivation
We derive rigorously the scalings in (2.1) and (2.2) from the governing equations in § 2.2.
The derivation follows roughly the steps in Patel et al. (2016, 2017) and Chen et al. (2022).

We begin by deriving the scaling in (2.2). In anticipation of the results in the next
section, we will assume Couette flow. For a fully developed Couette flow, Reynolds
averaging the x momentum equation and the energy equation gives

∂

∂y

(
σxy − ρv′′u′′

)
= 0 (2.9)

and

∂

∂y

[
k

∂T
∂y

− cpρv′′T ′′ + σi2ui + σ ′
i2u′

i − ρv′′u′′
i ũi − ρv′′ 1

2
u′′

i u′′
i

]
+ φ = 0. (2.10)

Here, the pressure term in (2.8) has been absorbed into the turbulent diffusion of the
temperature term, i.e. −cvρvT − pv = −cpρvT = −cpρv′′T ′′, where the last equality is
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because ṽ = 0. We have followed Huang, Coleman & Bradshaw (1995) and decomposed
the (instantaneous) kinetic energy flux as

ρv 1
2 uiui = ρ (ṽ + v′′)

(
1
2 ũiũi + ũiu′′

i + 1
2 u′′

i u′′
i

)
= ρv′′u′′

i ũi + ρv′′ 1
2 u′′

i u′′
i . (2.11)

The flux terms in (2.10) are the molecular diffusion of the temperature, the turbulent
diffusion of the temperature, the molecular diffusion of the mean kinetic energy, the
molecular diffusion of the turbulence kinetic energy, the turbulent diffusion of the mean
kinetic energy, and the turbulent diffusion of the turbulence kinetic energy, respectively.
We define

q̄ = σi2ui + σ ′
i2u′

i − ρv′′u′′
i ũi − ρv′′ 1

2 u′′
i u′′

i , (2.12)

which are neglected in Patel et al. (2017). Substituting (2.12) into (2.10), we have

∂

∂y

[
k

∂T
∂y

− cpρv′′T ′′ + q̄

]
+ φ = 0. (2.13)

Integrating (2.13) from the bottom wall to the top wall leads to the familiar total energy
balance for a Couette flow with adiabatic walls:

2τ̄wUw + 2φδ = 0. (2.14)

Hence φ = −τ̄wUw/δ, and (2.13) becomes

∂

∂y

[
k

∂T
∂y

− cpρv′′T ′′ + q̄

]
− Uwτw

δ
= 0, (2.15)

which leads directly to

∂

∂y

[
k

∂T
∂y

− cpρv′′T ′′ + q̄ − Uwτw
y
δ

]
= 0. (2.16)

Like previous work (Tennekes & Lumley 1972; Patel et al. 2016, 2017; Trettel & Larsson
2016), we also focus on the constant stress layer, where y/δ 	 1. Following Tennekes &
Lumley (1972) (the derivation in § 5.2), we can neglect the O( y/δ) term in (2.14), and the
equation becomes

∂

∂y

[
k

∂T
∂y

− cpρv′′T ′′ + q̄

]
= 0. (2.17)

By invoking the eddy-viscosity/eddy-conductivity assumption, (2.9) and (2.17) lead to

d
dy

[(
1 + μt

μ̄

)
μ̄

dũ
dy

]
= 0 (2.18)

and
d
dy

[
cp

(
1

Pr∗ + kt

cpμ̄

)
μ̄

dT̃
dy

+ q̄

]
= 0, (2.19)

where μt and kt are the eddy viscosity and conductivity, respectively. By integrating
(2.18) and (2.19) from the no-slip wall to a distance y, and by defining u+ = ũ/uτ
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and θ = T̃w − T̃ , (2.18) and (2.19) yield(
1 + μt

μ̄

)
μ̄

μ̄w

du+

dy+ = 1 (2.20)

and
ρ̄wcpuτ θref

q̄w + q̄

(
1

Pr∗ + kt

cpμ̄

)
μ̄

μ̄w

d
dy+

(
θ

θref

)
= 1, (2.21)

where θref is a reference temperature used for non-dimensionalization and is left
unspecified. It will be clear in the following derivation that θref is not critical to this
derivation.

Per (2.5) and the definition of Re∗
τ , we have

y∗

y+ = Re∗
τ

Reτ

(2.22)

and

dy∗

dy+ = Re∗
τ

Reτ

+ y+

Reτ

dRe∗
τ

dy+ = Re∗
τ

Reτ

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
=

√
ρ̄

ρ̄w

μ̄w

μ̄

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
.

(2.23)
It follows from (2.20) and (2.21) that(

1 + μt

μ̄

)√
ρ̄

ρ̄w

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
du+

dy∗ = 1 (2.24)

and

ρ̄wcpuτ θref

q̄w + q̄

(
1

Pr∗ + kt

cpμ̄

)√
ρ̄

ρ̄w

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
d

dy∗

(
θ

θref

)
= 1. (2.25)

Define u∗ and θsl,c such that

du∗ =
[

1 + y
Re∗

τ

dRe∗
τ

dy

] √
ρ̄

ρ̄w
du+ (2.26)

and

dθsl,c = ρ̄cpu∗
τ θref

q̄w + q̄

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
d

(
θ

θref

)
. (2.27)

Then (2.24) and (2.25) become (
1 + μt

μ̄

)
du∗

dy∗ = 1 (2.28)

and (
1

Pr∗ + kt

cpμ̄

)
dθsl,c

dy∗ = 1. (2.29)

Here, (2.26) is the semi-local velocity scaling (Patel et al. 2016), and (2.27) is (2.2). Also,
u∗ and θsl,c are functions of y∗ only (Huang et al. 1995; Patel et al. 2015, 2017; Trettel
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& Larsson 2016), and it follows that (1 + μt/μ̄) and (1/Pr∗ + kt/(cpμ̄)) are functions of
y∗ only. Notice that in (2.25) and (2.27) θref in the integrant (in the integration variable)
cancels with that outside the integrant, and therefore the exact specification of θref is not
critical to the derivation.

We now derive the scaling in (2.1), by following the same steps that lead to (2.20) and
(2.21) but neglecting the diffusion/conduction terms in the logarithmic layer as done in
Van Driest (1951). The following relations are obtained:

τ̄w = ρ̄νt
dũ
dy

(2.30)

and

q̄w + q̄ = ρ̄(kt/ρ̄)
dθ

dy
. (2.31)

Invoking the mixing length model νt = (κy)2 dũ/dy, (2.30) and (2.31) become√
ρ̄

ρ̄w

du+

dy
= 1

κy
(2.32)

and

q̄w + q̄ = ρ̄cp
κT

κ
(κy)2 dũ

dy
dθ

dy
. (2.33)

Equation (2.33) may be simplified further by substituting (2.32) into it:

ρ̄cpu∗
τ θref

q̄w + q̄
d
dy

(
θ

θref

)
= 1

κTy
. (2.34)

If one defines uvd such that duvd/dy ∼ 1/y, then (2.32) leads directly to

duvd

dy
=

√
ρ̄

ρ̄w

du+

dy
, (2.35)

i.e. the Van Driest transformation. Similarly, if one defines θvd such that dθvd/dy ∼ 1/y,
then (2.34) leads directly to

dθvd,c = θref

θ∗
τ,c

d
(

θ

θref

)
, (2.36)

i.e. (2.1). Again, θref in the integrant (in the integration variable) cancels with that outside
the integrant and therefore is not critical to the derivation.

Equations (2.27) and (2.36) are the adiabatic-wall-compatible Van-Driest-type and
the semi-local-type temperature scalings. Notice that both the nominators and the
denominators in (2.27) and (2.36) are zero at the wall when the wall is adiabatic. In the
following, we show that this is a removable singularity. Since θsl,c and θvd,c are 0 at the
wall (integration from 0 to 0), in order to show that the singularity at the wall (y = 0)
is a removable singularity, we need to show only that dθsl,c/dy and dθvd,c/dy are finite.

951 A38-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

86
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.860


A temperature transformation for high-Mach-number flows

Applying L’Hospital’s rule, we have

lim
y→0

dθsl,c

dy
= lim

y→0

ρ̄cpu∗
τ θref

q̄w + q̄

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
d
dy

(
θ

θref

)
= ρwcpuτ lim

y→0

d2θ

dy2

dq̄
dy

(2.37)

and

lim
y→0

dθvd,c

dy
= lim

y→0

θref

θ∗
τ,c

d
dy

(
θ

θref

)
= lim

y→0

θref
d2

dy2

(
θ

θref

)
dθ∗

τ,c

dy

= ρwcpuτ lim
y→0

d2θ

dy2

dq̄
dy

. (2.38)

Hence the singularity at the wall is a removable singularity. Also, notice that we have not
yet specified θref . The purpose of θref is to make the integration variable non-dimensional,
and it is not critical to our derivation or the resulting scalings. We may define θref =
(q̄w + τwuτ )/(ρ̄cpuτ ), which conforms to the friction temperature θτ at low speeds (when
qw � τ̄wuτ and θref ≈ θτ ) (authors’ unpublished observations). We may also define θref =
Tw, which conforms to the Walz equation (Walz 1969).

Finally, notice that the flux q̄ involves high-order statistics and is unclosed. This is a
weakness. Closures for q̄ are available in the literature. Here, we invoke the closure model
used commonly in equilibrium wall models (Kawai & Larsson 2012; Yang & Lv 2018;
Yang et al. 2018; Chen et al. 2022):

q̄m = τ̄xyũ, (2.39)

where τ̄xy = (μ̄ + μt) dū/dy is the total shear stress, and the subscript m denotes
‘modelled’. A more detailed discussion of the validity of the model is outside the scope of
this work. Invoking (2.39), (2.2) and (2.1) become

θvd,c,m =
∫ θ

0

dθ

θ∗
τ,c,m

(2.40)

and

θsl,c,m =
∫ θ

0

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
dθ

θ∗
τ,c,m

, (2.41)

where θ∗
τ,c,m = (q̄w + τ̄xyũ)/ρ̄cpu∗

τ .

2.4. A mathematical property of the scalings in the viscous sublayer
We show, mathematically, that the behaviours of θvd,c( y+) and θsl,c( y∗) in the viscous
sublayer are insensitive to the wall condition. This property allows the scalings in (2.1)
and (2.2) to handle both adiabatic and non-adiabatic walls. Evaluating dθvd,c/dy+ and
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dθsl,c/dy∗ at y = 0, we have

dθvd,c

dy+

∣∣∣∣
y=0

=
[

dθvd,c

dθ

dθ

dy+

]
y=0

=
[

1
θ∗
τ,c

μ̄w

ρ̄wuτ

dθ

dy

]
y=0

=
[

ρ̄cpu∗
τ

q̄w + q̄
μ̄w

ρ̄wuτ

dθ

dy

]
y=0

=
[

Prw

(
cpμ̄w

Prw

dθ

dy

)
/(q̄w + q̄)

]
y=0

= Prw
q̄w

q̄w + q̄(y = 0)
≡ Prw (2.42)

and

dθsl,c

dy∗

∣∣∣∣
y=0

=
[
ρ̄wcpuτ

q̄w + q̄
μ̄

μ̄w

μ̄w

ρ̄wuτ

dθ

dy

]
y=0

=
[

Prw

(
cpμ̄w

Prw

dθ

dy

)
/(q̄w + q̄)

]
y=0

≡ Prw, (2.43)

i.e. irrespective of the wall thermal condition.

2.5. Walz equation
We connect the Walz equation and the scalings in (2.1) and (2.2). For illustration purposes,
the discussion focuses on the corrected semi-local scaling in (2.2).

A direct consequence of (1.7) is

dT̄ = −r
ū
cp

dū = −r
τ̄wū
cpτ̄w

dū (2.44)

for flows above adiabatic walls. In the following, we attempt to get (2.44) from the
semi-local scaling. In the logarithmic layer, we have du∗/dy∗ = 1/κy∗ and dθsl,c/dy∗ =
1/κTy∗, and therefore

dū
dy

= τ̄w

μ̄

1
κy∗ (2.45)

and
dθ

dy
= − q̄

cpμ̄

1
κTy∗ (2.46)

above adiabatic walls. Equations (2.45) and (2.46) together give rise to

dθ = κ

κT

q̄
cpτ̄w

dū. (2.47)

Because dT̄ ≈ −dθ , q̄ ≈ τ̄wũ in a Couette flow, (2.44) is (2.47) if r ≈ κ/κT . The typical
numbers are r = 0.89 and κ/κT ≈ 0.9 (Smits & Dussauge 2006), and indeed r ≈ κ/κT .
A connection between the Walz equation and the temperature transformations in (2.2) is
hereby established.

3. Computational setups

We acknowledge that there are online DNS databases that host high-speed
boundary-layer/channel data (Coleman, Kim & Moser 1995; Modesti & Pirozzoli 2016;
Zhang et al. 2018; Volpiani, Bernardini & Larsson 2020a; Yao & Hussain 2020).
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A temperature transformation for high-Mach-number flows

We conduct DNS ourselves because most databases do not report q̄. Also, our new DNS
study will enrich the literature.

In the present study, the Couette flow configuration is considered, and the adiabatic
condition is imposed on the two walls. A negative body heat source is added following Yu,
Xu & Pirozzoli (2019, 2020) and Yu & Xu (2021), in order to keep the temperature Tb =∫

ρT dV/ρb a constant in time, where ρb = ∫
ρ dV/V is the bulk density. The in-house

high-order finite-difference code Hoam-OpenCFD (Li, Fu & Ma 2008) is employed for
our DNS. The code solves the compressible Navier–Stokes equations. It uses a fifth-order
WENO for the convective terms, a sixth-order centre differential scheme for the viscous
terms, and a third-order explicit Runge–Kutta scheme for time stepping. The working
fluid is an ideal gas. The molecular viscosity varies with the temperature according to
Sutherland’s law:

μ

μref
=

(
T

Tref

)3/2 Tref + Ts

T + Ts
, (3.1)

where Ts = 110.4 K and Tref = 288.15 K are the Sutherland temperature and the reference
temperature, respectively. The molecular Prandtl number is Pr = 0.7, kept constant. The
code has been used extensively for high-speed flows (Zhu et al. 2018; Yu et al. 2019, 2020).
Further details can be found in Li, Fu & Ma (2006) and are not shown here for brevity.

The details of our DNS are as follows. We vary the Mach number from 1 to 6, and
the bulk Reynolds number from 5000 to 50 000. The size of the computational domain
is Lx × Ly × Lz = 2π × 2 × 4π/3(δ), which is sufficiently large to capture the low-order
statistics (Lozano-Durán & Jiménez 2014). Nonetheless, it is worth noting that the Couette
flow configuration gives rise to streamwise rollers that extend O(100π) in the streamwise
direction at Reτ ∼ 500 (Lee & Moser 2018), and therefore the present domain is not
sufficient for high-order statistics. A Cartesian grid is employed. The grid spacing is
constant in the streamwise and the spanwise directions. The wall-normal grid is stretched
according to

yj/δ = tanh
[

bg

(
2

j − 1
Ny − 1

− 1
)]

/ tanh (bg), (3.2)

where j = 1, 2, . . . , Ny, and Ny is the grid number index, and bg controls the grid
stretching. Because it is hard to know the mean flow a priori, one must refine/coarsen
the grid as needed. The grid resolution is such that it is comparable to or finer than
the previous DNS (Pirozzoli, Grasso & Gatski 2004; Pirozzoli & Bernardini 2011a, ;
Modesti, Bernardini & Pirozzoli 2015; Volpiani, Bernardini & Larsson 2018). Table 1
shows further details of our DNS. We have 14 Couette flow cases. The nomenclature
is M[Uw/aref ]R[Reb/1000][A/C/QA/H], where the last letter stands for the thermal
condition on the walls: ‘A’ for ‘adiabatic’, ‘C’ for ‘cold’, ‘QA’ for ‘quasi-adiabatic’, and
‘H’ for ‘heated’. Here, aref is the speed of sound at the reference temperature, and Uw is
the wall speed. Cases ‘QA’, ‘C’ and ‘H’ are cases with isothermal walls, and ‘A’ cases
are cases above adiabatic walls. In addition to the Couette flow DNS, we also conduct two
channel flow DNS, CHM3R05C and CHM3R10C. The details of the two channels are also
listed in table 1. We employ a slightly larger computational domain for the two channel
flow cases: Lx × Ly × Lz = 4π × 2 × 2π(δ). In all, we have had 8 cases with isothermal
walls, and 8 cases with adiabatic walls. The discussion will focus on the adiabatic wall
cases, considering that the behaviours of the mean temperature above adiabatic walls have
received comparably less attention than the behaviours of the mean temperature above
isothermal walls.
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Figure 1. A sample time history of the friction Reynolds number in M1R15A after the flow reaches a
statistically stationary state. Here, Tf is the flow through time, i.e. Tf = t/(Lx/Uw).
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Figure 2. Terms in the momentum budget equation, for (a) M1R30A, (b) M3R50A, and (c) M6R25A. Here,
y is the distance from the bottom wall. The data are symmetric with respect to the channel centreline, and we
show data in the bottom half-channel only.

Ensuring statistical convergence is critical to the evaluation of scaling transformations
(Chen et al. 2022). Figure 1 shows a sample time history of the friction Reynolds
number in M1R15A. The flow is statistically stationary, and the instantaneous Reynolds
number fluctuates around its mean. All statistics are averaged in time for about 120–150
flow-throughs after the flow reaches a statistically stationary state. The excessive
time average ensures the statistical convergence of the thermal field (Chen et al.
2022). Following Oliver et al. (2014), one may verify the statistical convergence of
DNS by examining the budgets. In a Couette flow, the momentum budget reads
−ρ̄ ũ′′v′′ + μ ∂u/∂y = τ̄w. Figure 2 shows the turbulent flux −ρ̄ ũ′′v′′ and the viscous
flux μ ∂u/∂y as functions of the wall-normal coordinate in cases M1R30A, M3R50A
and M6R25A, i.e. the cases with the highest Reynolds numbers at their respective Mach
numbers. The viscous term dominates in the wall layer, and the turbulent term dominates
in the core. The sum of the two terms is the total momentum flux and is a constant in
the channel. The error in the total momentum flux is less 1 % and is comparable to the
previous DNS (Lee & Moser 2015; Pirozzoli et al. 2016). In addition to the momentum
budget, ensuring statistical convergence of the energy budget is also important, especially
considering that temperature is the quantity of interest here. Figures 3(a–c) show the terms
in the energy budget (2.17). The sum of the fluxes should give the total energy flux yφ,
which is borne out in figure 3.

4. Results and discussions

Adiabatic wall DNS data are not available extensively. The DNS in table 1 fill in this gap
in the literature. In addition to testing the temperature scalings in (2.1) and (2.2), we will
also report the basic flow statistics.
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Figure 3. Terms in the energy budget equation (2.17), for (a) M1R30A, (b) M3R50A, and (c) M6R25A.
Here, we have chosen a frame of reference such that the bottom wall is stationary and at y/δ = 0.

The rest of the section is organized as follows. We examine the instantaneous flow field
in § 4.1. The basic flow statistics are reported in § 4.2. Finally, we compare our DNS to
(2.1) and (2.2) in § 4.3.

4.1. Basic flow phenomenology
Figure 4 shows the instantaneous streamwise velocity and temperature at a constant x
location in the cases M1R30A, M3R50A and M6R25A. The flow is very well mixed, with
high-speed fluid intrusions from the top wall to the bottom wall, and vice versa. A pair of
large-scale vortices is found in both the u and T fields in all three cases (Lozano-Durán
& Jiménez 2014), leading to a high-momentum pathway and a low-momentum pathway
across the spanwise direction. Again, while a small domain is less of a concern for
low-order statistics, streamwise rollers that arise in Couette flow are not resolved, and
we see high- and low-momentum pathways spanning the entire streamwise domain (Lee
& Moser 2018). M6R25A is at a lower Reynolds number than M1R30A and M3R50A,
and the flow lacks fine-scale eddies. A higher Mach number leads to a larger variation of
the fluid temperature in the flow field: the variation is about a few per cent of Tb in the
case M1R30A, and a few times Tb in the case M6R25A.

Figure 5 shows the contours of the instantaneous wall-shear stress and wall temperature
in the cases M1R30A, M3R50A and M6R25A. Footprints of the high- and low-momentum
pathways are clearly visible in both the wall-shear stress and the wall temperature.
Coherence in the streamwise direction, manifested as streaks, is found in the two lower
Mach number cases, i.e. M1R30A and M3R50A (Yao & Hussain 2020). In the Mach 6
cases, we see spanwise coherence. The same is observed in Yu et al. (2019) and is a result
of bouncing acoustic waves in the channel.
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Figure 4. Instantaneous streamwise velocity at a constant x location in (a) M1R30A, (b) M3R50A, and
(c) M6R25A. Instantaneous temperature at a constant location in (d) M1R30A, (e) M3R50A, and ( f ) M6R25A.
Here, Uw is the wall velocity, and Tb is the bulk temperature. For visualization purposes, the colour bar ranges
in (d–f ) are different.

4.2. Flow statistics
Figure 6 shows the Favre-averaged temperature, the mean density, the mean molecular
viscosity and the semi-local-scaled wall-normal coordinate. The temperature decreases as
a function of y. Consequently, the density is an increasing function of y (the mean pressure
is approximately a constant in the channel), and the dynamic viscosity is a decreasing
function of y. The increasing density and the decreasing viscosity together give rise to
a y∗ such that y∗ > y+. The gradient of the temperature is zero at the wall because of
the adiabatic condition, and similarly for the gradients of the density and the viscosity.
Integrating the density profile ρ̄/ρb from the wall to the centre of the channel gives unity as
a result of mass conservation. The Mach number strongly affects the statistics in figure 6.
Higher Mach numbers lead to significant variations in temperature, density and viscosity
across the channel.

Figure 7 shows the mean velocity according to the Van Driest transformation (Van Driest
1951) and the semi-local transformation (Patel et al. 2016). The data follow the linear
scaling in the viscous sublayer in figures 7(a,b). Both the Van Driest transformation and
the semi-local transformation collapse the adiabatic wall data in the logarithmic layer,
but the transformed velocities are slightly above the incompressible logarithmic law of
the wall. The upshift in the log layer has also been observed in the literature (Modesti
& Pirozzoli 2016; Zhang et al. 2018; Yu et al. 2019). A more in-depth discussion of the
velocity falls outside the scope of this work.
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Figure 5. Instantaneous wall-shear stress in (a) M1R30A, (b) M3R50A, and (c) M6R25A. Instantaneous
wall temperature in (d) M1R30A, (e) M3R50A, and ( f ) M6R25A.

Figures 8(a–c) show the root-mean-square (r.m.s.) of the streamwise, wall-normal and
spanwise velocity fluctuations. The streamwise velocity fluctuation is by far the most
energetic component. The Couette flow configuration is known to give rise to a more
energetic inner peak than the channel configuration (Pirozzoli, Bernardini & Orlandi
2014). This explains an energetic inner peak in figure 8(a). A plateau develops in u′′

rms at
the (comparably) high Reynolds number cases above the buffer layer. A logarithmic layer
could not yet be found in the profiles (u2 is not shown) because of the limited Reynolds
number. In addition to a more energetic inner peak, the Couette flow configuration is also
known to give rise to a peak in v′′

rms at the centreline, which is also borne out in figure 8(b).
Figure 8(d) shows the temperature r.m.s. We know from figure 6(a) that a large Mach
number gives rise to a large temperature variation across the flow field, which, because of
turbulence mixing, in turn leads a large temperature r.m.s.

4.3. Temperature scaling
In this subsection, we compare the two scalings in (2.1) and (2.2) to DNS. We keep in mind
that the original Van Driest temperature scaling and the original semi-local temperature
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Figure 7. Velocity profiles: (a) Van Driest transformed (Van Driest 1951); (b) semi-local transformed (Patel
et al. 2016). The two black lines are U = y and U = log( y)/κ + B (with proper normalization).

scaling are singular for flows above adiabatic walls, and a data comparison with regard to
those original scalings is not possible in this case.

Figure 9(a) shows the temperature profiles transformed according to the corrected
Van Driest transformation in (2.1). We have the following observations. First, the
transformation in (2.1) is non-singular for adiabatic walls, and the transformed adiabatic
wall data follow the expected linear scaling in the viscous sublayer. Second, the adiabatic
wall data and the hot wall data follow the expected logarithmic scaling closely in the
logarithmic layer. Third, accounting for the flux q̄ in the Van Driest transformation does
not help collapse the cold wall data (Patel et al. 2017). A direct conclusion of Van
Driest transformation is the universality of kt as a function the viscous-scaled wall-normal
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Figure 9. (a) Temperature profiles transformed according to the corrected Van Driest transformation (2.1).
(b) The eddy conductivity.

coordinate y+. Figure 9(b) shows the eddy conductivity as a function of the viscous-scaled
wall-normal distance. We see that the adiabatic and hot wall data collapse and follow the
scaling κTy+ in the logarithmic layer, whereas the cold wall data fall below, which is
consistent with the results in figure 9(a).

Figure 10(a) shows the temperature profiles transformed according to the corrected
semi-local scaling in (2.2), and figure 10(b) shows the eddy conductivity as a function
of the semi-local-scaled wall-normal coordinate y∗. It is seen from figure 10(a) that except
for the case M6R25A, which is at an exceptionally low Reynolds number Reτ = 105, all
data follow the expected scaling in (2.4). Specifically, the transformed temperature profiles
follow the linear scaling Prwy∗ in the viscous sublayer irrespective of whether the wall is
adiabatic or isothermal, hot or cold. A clear log layer emerges and extends as the Reynolds
number increases. Furthermore, we observe in figure 10(b) the universality of the eddy
conductivity as a function of the semi-local-scaled wall-normal distance.

951 A38-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

86
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.860


A temperature transformation for high-Mach-number flows

100 101

101

10–1

10–3

102 103

103

100 101 102 103

M1R05A
M1R15A
M1R30A
M3R15A

M3R05C
M3R05H
M3R10QA
M3R10C
M6R05C
CHM3R05C
CHM3R10C
κt y

∗

M3R25A
M3R50A
M6R10A
M6R25A
M3R05QA

(b)

y∗y∗

20

15

10

5

0

(a)
θ s
l,c

κ
t/

μ̄
cp

Figure 10. Same as figure 9 but for temperature profiles transformed according to the corrected semi-local
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6

5

4

3

2

1
0 0.2 0.4 0.6 0.8
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Figure 12. DNS (lines) and (1.7) (symbols). The recovery factor is set to r = 0.89. The frame of reference is
such that the velocity is 0 at the wall.

So far, we have relied on DNS to compute q̄ exactly. In the following, we test (2.40) and
(2.41), where the term q̄ is modelled according to (2.39). Figure 11 shows the transformed
temperature profiles. We see that the transformed temperature profiles also follow the
incompressible logarithmic law, although not as closely as in figures 9(a) and 10(a),
suggesting that (2.39) is a good model for q̄.

Finally, we compare DNS to the Walz equation in figure 12 to complete the story. For
the DNS in table 1, the temperature at the channel centreline is lower than that at the wall,
and T̃/T̃c is a decreasing function of the velocity ũ/ũc. By adjusting the recovery constant,
the Walz equation is able to match the DNS data very well, as illustrated in figure 12.
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5. Conclusions

Conventional temperature scalings are not applicable to high-speed turbulent flows with
adiabatic walls because the wall heat flux is zero and the corresponding transformations
become singular. By accounting for a specific diffusive flux of the kinetic energy (q̄) in the
Van Driest (temperature) transformation and the semi-local (temperature) transformation,
we show that θ∗

τ,c ∼ q̄w + q̄, i.e. a scale that is proportional to the local heat flux, is an
appropriate temperature scale. The corrected transformations are

θvd,c =
∫ θ

0

dθ

θ∗
τ,c

(5.1)

and

θsl,c =
∫ θ

0

[
1 + y

Re∗
τ

dRe∗
τ

dy

]
dθ

θ∗
τ,c

, (5.2)

where θ = T̃w − T̃ is the temperature, θ∗
τ,c = (q̄w + q̄)/ρ̄cpu∗

τ , q̄ = σi2ui + σ ′
i2u′

i

−ρv′′u′′
i ũi − ρv′′ 1

2 u′′
i u′′

i , σij is the viscous stress tensor, and the superscript ∗ denotes
normalization by local quantities. We show mathematically that the above corrected Van
Driest and semi-local transformed temperatures follow Prwy+ and Prwy∗, respectively,
at the wall, irrespective of whether the wall is adiabatic or isothermal, hot or cold. The
data favour the semi-local scaling in the logarithmic layer. The corrected semi-local
temperature scaling is able to collapse the adiabatic, hot and cold wall data, but the Van
Driest scaling is able to collapse the adiabatic and hot wall data only. In addition, we also
show that the Walz equation is consistent with both the Van Driest transformation and the
semi-local transformation, thereby unifying all existing theories.

This work patches the existing temperature scalings so that they can handle both
adiabatic and non-adiabatic walls. The general framework in Morkovin (1962) remains
intact, and we assume a simple viscous layer plus logarithmic layer structure. This
assumption has recently been shown to be imprecise, particularly when one considers
dissipation (Wei et al. 2005a,b; Zhou, Pirozzoli & Klewicki 2017). Relaxing the above
assumption would break the general framework in Morkovin (1962) and may give rise to
more accurate scalings, but that is left for future investigation.
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