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Abstract
In this paper, the planar problems of three-dimensional (3D) cubic piezoelectric quasicrystal composite wedges and spaces
are investigated. The study focuses on the singular behaviors of interface corner and interface crack of composite wedges and
spaces. To research the stress singularities, the stress function is assumed to have the exponential form. Based on the Stroh
formalism and Barnett–Lothe matrices, we derive a crucial matrix concerned with material properties and wedge angle and
obtain the transcendental equation determining the singular orders by simple multiplication of the crucial matrix. Numerical
examples of the singular orders are given for some general cases including single, bi-material, and tri-material wedges and
spaces under different boundary conditions. The correctness of numerical results is verified by comparison with the existing
results of piezoelectric material. Numerical results show that the phonon field, phason field, electric field, material properties,
and boundary conditions have great influences on singularities.

Keywords Composite wedges · Stroh formalism · 3D cubic piezoelectric quasicrystals (QCs) · Singular orders

1 Introduction

Quasicrystals (QCs) with multi-physics fields, such as the
phonon field and phason field, were firstly discovered in
1982 by Levine and Shechtman [1]. The phonon field in QCs
resembles that in crystals, and its gradient depicts the changes
in the volume and shape of a cell. The gradient of the phason
field is in terms of local rearrangements of atoms [2]. Unlike
crystals and non-crystals, QCs possess quasi-periodic atomic
configurations, causing non-crystallographic rational sym-
metry, e.g., fivefold, eightfold, and tenfold [2, 3]. Due to this
unique structure, QCs have many excellent properties, such
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as high strength, high electrical resistivity, and wear resis-
tance [2, 4]. For these, more and more attention has been
paid to the applications and developments of QCs.

Similar to traditional crystals, piezoelectric quasicrystals
(PQCs) possess great application potential in sensors and
actuators [5]. However, the piezoelectric effect in QCs is
induced by the phonon field or phason field [6], which makes
the investigation of PQC more sophisticated, especially
for non-homogeneous materials and composite construc-
tions. Therefore, the PQCs have aroused researchers’ enor-
mous interest. By virtue of nonlocal strain gradient theory
and pseudo-Stroh formalism, Zhang et al. [7] studied func-
tionally graded (FG) one-dimensional (1D) hexagonal PQC
multilayered nanoplate, and obtained the exact closed-form
expressions of displacements and stresses under multi-
ple loading conditions. Based on the conformal mapping
method, Guo and Wang [8] established the three-phase con-
focal elliptical cylinder model in composite 1D hexagonal
PQC, and obtained the solutions of the phonon, phason,
and electric fields when the model is subjected to different
loading conditions.Muet al. [9] obtained the generalized uni-
form/nonuniform stress solutions of critical wedge angles for
1D PQC wedge through the Stroh formalism.
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The problems of PQC composite material with defects
(cracks, inclusion, and dislocation) have received consid-
erable attention from investigators. Zhang et al. [10] set
the proper potential function and investigated the induction,
phonon, and phason stress fields when a spheroidal inclu-
sion was embedded in the matrix of a 1D hexagonal PQC.
Zhao et al. [11, 12] analyzed the 3D interface crack of arbi-
trary shape in 1D hexagonal piezoelectric bi-material QC
with thermal effect. Mu et al. [13] discussed the planar prob-
lems of FG 2D PQC wedges and spaces with multi-physics
loading conditions. Furthermore, with the aid of Stroh for-
malism, the multi-field coupling problem of an infinite plane
containing two dissimilar 1D PQC half-planes was solved by
Zhang et al. [14]. These studies contribute to a better under-
standing of the complex properties of PQC and inspire stress
singularity problems.

In engineering applications, composite configurations
often contain wedges and junctions. For wedges and junc-
tions, the stress and electric displacement may approach
infinity due to discontinuity of geometric and material prop-
erties or at sharp corners, which will cause the fracture
of structures. Therefore, many researchers have conducted
lots of studies on the stress singularities at the wedge
apices and junctions for structural safety [15, 16]. Xu and
Rajapakse [17] investigated the effects of polarization ori-
entation and electric boundary conditions on the singular
orders of piezoelectric composite wedges and junctions by
means of extending Lekhnitskii’s complex functions. Wang
et al. [18] obtained the singular orders of angularly graded
piezoelectric composite wedges by the variable separation
method.Chen [19] obtained the singular orders by solving the
eigen-equation anddemonstrated the effects of geometric and
material properties on them for multi-material wedges and
junctions. Based on the Stroh formalism, Hwu et al. [20–23]
presented the analytical solutions for the singular orders of
composite wedges and spaces under different boundary con-
ditions. Chuang et al. [24] considered singular orders of a
single wedge with mixed boundary conditions and discussed
the effect of the alignment ofmaterial principal axes on stress
singularities.

To the best of the authors’ knowledge, the singularities of
QC compositewedges and spaces have not been investigated.
In this paper, the general anisotropic singularity problem is
extended to the more complex 3D cubic PQCs, with the aid
of Stroh formalism and Barnett–Lothe matrices. The analyti-
cal expressions containing piezoelectric, phonon, and phason
constants for the singular orders arefirstly establishedby sim-
plemultiplication of the crucialmatrix. The singular orders of
piezoelectric material are compared with the existing results
to verify the accuracy of numerical results. Moreover, the
effects of phonon, phason, and electric fields on singulari-
ties are discussed in detail. Numerical results show that there
exist no singularities when PQC 1—PQC 2/PQC 3 are fully

bonded, and the electric field has a weak effect on singulari-
ties (see Figs. 4, 6).

2 Stroh Formalism

In this section, we consider 3D cubic PQCs with the symme-
try of cubic crystals [2]. They possess quasi-periodic atomic
arrangement in each direction (x1, x2 and x3) [25] and polar-
ize in the x3-axis. According to QC elastic theory [25], the
geometric equations of 3D cubic PQCs are expressed as

εi j � 1

2

(
∂ui
∂x j

+
∂u j

∂xi

)
, wi j � 1

2

(
∂wi

∂x j
+

∂w j

∂xi

)
,

Ei � − ∂φ

∂xi
(1)

where i , j � 1, 2, 3, the phonon displacements ui denote
atomic translation; the phason displacementswi denote rear-
rangements of atoms along the quasi-periodic directions [2];
εi j , wi j , Ei , φ represent phonon strains, phason strains,
electric field intensities, and electric potential, respectively.

The constitutive equations with point group 43m can be
written as [6]

σ11 � C11ε11 + C12ε22 + C12ε33 + R1w11 + R2w22 + R2w33

σ22 � C12ε11 + C11ε22 + C12ε33 + R2w11 + R1w22 + R2w33

σ33 � C12ε11 + C12ε22 + C11ε33 + R2w11 + R2w22 + R1w33

σ23 � σ32 � 2C44ε23 + 2R3w23 − d14E1

σ31 � σ13 � 2C44ε31 + 2R3w31 − d14E2

σ12 � σ21 � 2C44ε12 + 2R3w12 − d14E3

H11 � R1ε11 + R2ε22 + R2ε33 + K11w11 + K12w22 + K12w33

H22 � R2ε11 + R1ε22 + R2ε33 + K12w11 + K11w22 + K12w33

H33 � R2ε11 + R2ε22 + R1ε33 + K12w11 + K12w22 + K11w33

H23 � H32 � 2R3ε23 + 2K44w23 − d123E1

H31 � H13 � 2R3ε31 + 2K44w31 − d123E2

H12 � H21 � 2R3ε12 + 2K44w12 − d123E3

D1 � 2d14ε23 + 2d123w23 + ξ11E1

D2 � 2d14ε31 + 2d123w31 + ξ22E2

D3 � 2d14ε12 + 2d123w12 + ξ33E3

(2)

where σi j , Hi j are the stresses in phonon and phason fields,
respectively. Phonon stresses σi j are analogous to crystals,
while phason stresses Hi j denote the stress components along
the xi -direction in the vertical space E3⊥ applied on the sur-
face orthogonal to the x j -direction in the physical space E3‖
[26]. Dj represent electric displacements; Ci j , Ki j are the
elastic constants in phonon and phason fields, respectively;
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Ri j are the coupling elastic constants; d14 and d123 are the
piezoelectric constants in phonon and phason fields, respec-
tively; and ξi j are the dielectric constants.

The equilibrium equations without body force are
expressed as

∂ jσi j � 0, ∂ j Hi j � 0, ∂ j D j � 0. (3)

Considering the 2D deformation problem, the generalized
displacements u and stresses ϕ satisfying Eqs. (1), (2), and
(3) are assumed to take the following form [14]

u � a f (z), ϕ � b f (z), z � x1 + px3 (4)

where f is an arbitrary function of z; a, b, and p are constants
to be determined by the following eigen-relation

N

[
a
b

]
� p

[
a
b

]
(5)

N �
[
N1 N2N3 NT

1

]
, N1 � −T−1RT,

N2 � T−1, N3 � RT−1RT − Q (6)

In Eqs. (5) and (6), pα(α � 1, 2, . . . , 7), aα and bα are,
respectively, seven pairs of complex conjugates since strain
energy is positive definite. Q, R, and T are 7×7 real matri-
ces, which can be denoted by Eq. (A1) in the “Appendix.”
The superscript T denotes matrix transpose.

We have,

pα+7 � pα , Impα > 0 (7)

aα+7 � aα , bα+7 � bα (8)

where Im represents the imaginary part and the overbar
denotes the complex conjugate.Once pα , aα and bα are deter-
mined, u and ϕ can be represented as

u � Af (zα)+A f (zα), ϕ�B f (zα) + B f (zα),

zα � x1 + pαx3 (9)

where

A � {a1, a2, a3, a4, a5, a6, a7},
B � {b1, b2, b3, b4, b5, b6, b7},
f (zα) �

{
f1(z1), f2(z2), f3(z3), f4(z4), f5(z5), f6(z6),

f7(z7)
}T

(10)

The Barnett–Lothe matrices S, H , and L are introduced
as

[
ABT AAT

BBT BAT

]
�1

2

[
I − iS −iH
iL I − iST

]
(11)

A and B have the following orthogonal relation

BTA + ATB � I � B
T
A + A

T
B

BTA + ATB � 0 � B
T
A + A

T
B

(12)

Considering the polar coordinate system (r , θ ), Eq. (5) is
rewritten as

N̂(θ )ξ � p̂(θ )ξ (13)

where

ξ � { a,b} T, N̂(θ ) � cos θ I + sin θN , p̂α(θ ) � cos θ + pα sin θ

(14)

The surface tractions tθ and tr on the surface θ � constant
and surface r � constant, respectively, are expressed as

tθ � ϕ, r , tr � −ϕ, θ /r (15)

3 Stress Singularities of Composite Wedges
and Spaces

Out of consideration for stress singularities, stress function
can be assumed to have the exponential form. Therefore,
substituting < z1+δ

α > g for f (zα) in Eq. (9), we have

u � A < z1+δ
α > g + A < z1+δ

α > g

ϕ � B < z1+δ
α > g + B < z1+δ

α > g
(16)

where < > denotes diagonal matrix.
If δ is a complex number, theymay appear as a pair of com-

plex conjugate to ensure that the displacements and stresses
have real values. By superposition of this pair, Eq. (16) can
be represented as [27]

u � A < z1+δ
α > g + A < z1+δ

α > g + A < z1+δ
α > gc

+ A < z1+δ
α > gc

ϕ � B < z1+δ
α > g + B < z1+δ

α > g + B < z1+δ
α > gc

+ B < z1+δ
α > gc

(17)
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For the convenience of latter derivation, we have

u � A < z1+δ
α > g + A < z1+δ

α > h

ϕ � B < z1+δ
α > g + B < z1+δ

α > h
(18)

In the polar coordinate system, with the aid of Eqs. (14)
and (15), Eq. (18) is rewritten as

u � r1+δ[A < p̂1+δ
α (θ ) > g + A < p̂

1+δ

α (θ ) > h]

t � (1 + δ)r δ[B < p̂1+δ
α (θ ) > g + B < p̂

1+δ

α (θ ) > h]
(19)

where θ � constant, g and h are two complex coefficient
vectors which are determined by boundary conditions.

Williams [28] assumed that the stresses near the apex are
proportional to r δ . If Re(δ) < 0, the stress is singular at the
wedge apex r � 0. When Re(δ) < −1, the strain energy
of the elastic wedge may become unbounded. So, we are
interested in the region where the real part of δ is in the range

−1 < Re(δ) < 0 (20)

The purpose of this paper is to investigate the appearance
of any value of δ which lies in this region. The singular orders
are governed by Re(δ). Moreover, the existence of a non-
vanishing imaginary part of δ leads to oscillatory singularity
[29].

Using Eq. (14), Eq. (18) is written in matrix form

[
u
ϕ

]
�r1+δ

[
A A
B B

][
< p̂1+δ

α (θ ) > 0

0 < p̂
1+δ

α (θ ) >

][
g
h

]

(21)

We have [30]

N̂(θ )�
[
A A
B B

][
< p̂α(θ ) > 0

0 < p̂α(θ ) >

][
BT AT

B
T
A
T

]
(22)

p̂(θ ) p̂−1(θ0) � p̂(θ , θ0), N̂(θ , ω)N̂(ω, θ0) � N̂(θ , θ0)
(23)

N̂(θ )N̂
−1

(θ0) � N̂(θ , θ0), N̂
λ
(θ , θ0)N̂

λ
(θ0, θ )�I (24)

Using Eqs. (22), (23), (24), and (12), one has

N̂
1+δ

(θ , ω)�
[
A A
B B

][
< p̂1+δ

α (θ , ω) > 0

0 < p̂
1+δ

α (θ , ω) >

]

[
BT AT

B
T
A
T

]
(25)

N̂
λ
(ω, β)�

[
A A
B B

][
< p̂λ

α(ω) p̂
−λ
α (β) > 0

0 < p̂
λ

α(ω) p̂
−λ

α (β) >

]

[
BT AT

B
T

A
T

]
(26)

N̂
λ
(ω, β) plays an important role in determining the singu-

larities.

3.1 Composite Spaces

Considering an infinite composite space (θn � θ0 + 2π ) that
contains several wedges, the nth wedge is fully bonded to the
first wedge, as shown in Fig. 1.

Assuming that n dissimilar wedges are perfectly con-
nected at the interface, eachwedge is located in the following
region

θk−1 ≤ θ ≤ θk , k � 1, 2, . . . , n (27)

Displacement continuity at each interface is

uk(θk) � uk+1(θk), un(θn) � u1(θ0), k � 1, 2, . . . , n−1

(28)

From Eq. (15), we know that the traction continuity con-
ditions can be replaced by stress function continuity, so we
have

ϕk(θk) � ϕk+1(θk), ϕn(θn) � ϕ1(θ0) (29)

where the subscript k denotes the kth wedge.

Fig. 1 The 3D cubic PQC composite space
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Letting Eqs. (28)1 and (29)1 equal to pk and qk , respec-
tively, with the aid of Eq. (21), we obtain

[
pk
qk

]
� N̂

1+δ

k+1(θk , θk+1)

[
pk+1
qk+1

]
(30)

where pk and qk are 7×1 vectors, N̂
1+δ

k+1(θk , θk+1) is the cru-
cialmatrix containing singular orders. The derivation process
of Eq. (30) is shown in Eqs. (A2)–(A4) in the “Appendix.”

In Eq. (A3), setting k � 1 for (gk , hk) and k � n − 1
for (gk+1, hk+1) to get two new equations and substituting
them into the second equation of Eqs. (28), (29), and (21),
we obtain

N̂
1+δ

n (θ0, θn−1)

[
pn−1

qn−1

]
� N̂

1+δ

1 (θ0, θ1)

[
p1
q1

]
(31)

By using Eq. (31) and repeatedly using Eq. (30), one has

⎡
⎣N̂

1+δ

n (θ0, θn−1) −
n−1∏
j�1

N̂
1+δ

j (θ j−1, θ j )

⎤
⎦

[
pn−1

qn−1

]
� 0 (32)

We assume that

[
pn−1

qn−1

]
� N̂

1+δ

n (θn−1, θn)

[
p∗
q∗

]
(33)

where p∗ and q∗ are unknown vectors.
Substituting Eq. (33) into Eq. (32), and using Eq. (24), we

have

[E − I]

[
p∗
q∗

]
� 0 (34)

Nontribal solutions for Eq. (34) exist, if

det(E − I) � 0 (35)

where

E �
n∏
j�1

N̂
1+δ

j (θ j−1, θ j ) (36)

The values of δ can be determined by Eqs. (35) and (36).

3.2 CompositeWedges

In this section, considering a compositewedge (θn < θ0+2π )
composed of several wedges, where the (k-1)th wedge is

bonded together with the kth (k � 2,3,…,n) wedge, we have
the following four types of boundary conditions

ϕ1(θ0) � 0, un(θn) � 0

uk(θk) � uk+1(θk), ϕk(θk) � ϕk+1(θk)

k � 1, 2, . . . , n − 1

(37)

u1(θ0) � 0, un(θn) � 0

uk(θk) � uk+1(θk), ϕk(θk) � ϕk+1(θk)
(38)

ϕ1(θ0) � 0, ϕn(θn) � 0

uk(θk) � uk+1(θk), ϕk(θk) � ϕk+1(θk)
(39)

u1(θ0) � 0, ϕn(θn) � 0

uk(θk) � uk+1(θk), ϕk(θk) � ϕk+1(θk)
(40)

Equations (37)–(40) are called the free–fixed, fixed—
fixed, free–free, and fixed–free (“free” means traction-free
and electrically open, and “fixed” means clamped and elec-
trically closed) wedges, respectively. Since the continuity
conditions in Eqs. (37)–(40) are the same as those in Eqs.
(28)1 and (29)1, we may use the results of Eqs. (30), (33),
and (36) in the subsequent calculation.

Free–FixedCompositeWedge.UsingEqs. (30) and (37),
we obtain

⎡
⎢⎣ N̂

1+δ

1L (θ0, θ1)
n−1∏
j�2

N̂
1+δ

j (θ j−1, θ j )

N̂
1+δ

nU (θn , θn−1)

⎤
⎥⎦

[
pn−1

qn−1

]
� 0 (41)

where the subscripts L andU represent the lower half part of
the matrix and the upper half part of the matrix, respectively.
For example, ξU � a for Eq. (14). The derivation process of
Eq. (41) is shown in Eq. (A5)–(A6) in Appendix.

Substituting Eq. (33) into Eq. (41) and using Eq. (24), we
have

N̂
1+δ

1L (θ0, θ1)
n∏
j�2

N̂
1+δ

j (θ j−1, θ j )

[
p∗
q∗

]
� 0 (42)

[
0 I

][ p∗
q∗

]
� 0 (43)

From Eqs. (42) and (43), we know that

p∗�0, E4q∗ � 0 (44)

where E4 means the lower right of E [Eq. (36)] defined by

E �
[
E1 E2

E3 E4

]
(45)
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only when

det(E4) � 0 (46)

the singular orders of the free–fixed composite wedge can be
acquired.

Following the samemanipulation as the free–fixedwedge,
we can get the singular orders for

Fixed–Fixed Wedge,

det(E2) � 0 (47)

Free–Free Wedge,

det(E3) � 0 (48)

Fixed–Free Wedge,

det(E1) � 0 (49)

More importantly, through proper arrangement, the con-
stitutive law, strain–displacement relation, and equilibrium
equation of 1D and 2D QCs can be written in the similar
mathematical form of 3D cubic QC, and hence the method
and formulation here can be extended to other types of QCs.

4 Special Cases of Crack Included

For a semi-infinite crack (−π , π ) in awedgewith fixed–fixed
surfaces, Eq. (36) may become

(50)

det(A < p̂1+δ
α (θ0) p̂

−1−δ
α (θ1) > AT

+ A < p̂
1+δ

α (θ0) p̂
−1−δ

α (θ1) > A
T
) � 0

With this special angle, Eq. (14)3 may be expressed as

p̂α(±π ) � e±iπ (51)

Substituting Eq. (51) into Eq. (50) yields

|2 sin 2δπH| � 0 (52)

therefore, we have

δ � −0.5 (53)

Based on Eq. (52), the singularity has no concern with
material constants. The singular orders of a single wedge
with free–free, free–fixed, and fixed–free surfaces can be eas-
ily obtained by similar operation. Moreover, for anisotropic
elastic materials, the singularities of the semi-infinite crack

in a single wedge or interfacial crack under different bound-
ary conditions have been investigated by Hwu [20] and Ting
[30].

5 Numerical Examples and Discussion

Owing to the difficulty of the experiment, the material con-
stants of cubic QCs of point group 43m have not been fully
obtained. According to QC elastic theory, the material con-
stants of 3D cubic PQC can be assumed (Table 1).

5.1 The Singularities of a SingleWedge

Toverify the correctness of the numerical results, the singular
orders are compared between Ref. [17] and our results by
considering the PZT-4 wedge with traction-free. Referring
to Fig. 2, most of the results are in good agreement with Ref.
[17].

For a 3D cubic PQC wedge with a wedge angle 2α, two
sides of thewedge are traction-free. Figure 3 shows the varia-
tions of singular orderswithwedge angles 2α. δci (i� 1,2…),
δpi (i � 1,2…), and δei (i � 1,2…) denote the ith root pro-
duced by the phonon field, phason field, and electric field,
respectively. There is no singularity for an infinite half-plane
(2α � 180

◦
), but the semi-infinite crack (2α � 360

◦
) shows

the strongest singularity. All roots δ are real and four roots
exist for all wedge angles, between 180° and 360°. Only one
root δe1 is caused by the electric field, which indicates that
the electric field has a weak effect on singularities. What’s
more, the singularities increase as the wedge angle increases.

The singular orders of a single wedge with different
boundary conditions are shown in Table 2. There are no sin-
gularities for an infinite quarter plane (90°) or half-plane
(180°) when two sides of the wedge are free–free and
fixed–fixed, respectively. The wedge whose two sides are
fixed–fixed produces no singularities except at 2α � 360°,
while the wedge with mixed boundary conditions has singu-
larities between90° and360°.By comparing the third column
and the sixth column, it is found that if δ is a singular order of
an infinite half-plane, then δ/2, (δ − 1)/2 are singular orders
of the infinite plane containing semi-infinite crack with iden-
tical boundary conditions. Table 2 shows that singular orders
have a strong dependence on boundary conditions.

5.2 The Singularities of Bi-materialWedges

Considering a 3D cubic PQC bi-material wedge composed
of two dissimilar wedges, it has a debonded interface, and
two sides of it are traction-free. The changes of singular
orders with wedge angles α are shown in Fig. 4. By com-
paring the symmetry and the magnitude of the graph, the
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Table 1 Material constants of the
3D cubic PQC Material constants PQC 1 PQC 2 PQC 3

Phonon field (GPa) C11 � 166,C12 � 77,

C44 � 88,

C11 � 286,C12 � 173,

C44 � 170.5,

C11 � 276,C12 � 153,

C44 � 140.5,

Phason field (GPa) K11 � 24, K12 � 14,
K44 � 19

K11 � 145, K12 � 57,
K44 � 33

K11 � 140, K12 � 55,
K44 � 31

Couple field (GPa) R1 � 8.85,
R2 � 4.85,
R3 � 5.85,

R1 � 13.7, R2 � 7.5,
R3 � 10.4,

R1 � 10.7, R2 � 6.5,
R3 � 8.4,

Piezoelectric
Constants (cm−2)

d14 � −0.138, d123 �
−0.16,

d14 � −0.247, d123 �
−0.2674,

d14 � −0.26, d123 �
−0.287,

Dielectric Constants
(10−9C2/(Nm2))

k1 � 11.2, k2 � 8.2,
k3 � 4.2.

k1 � 22.4, k2 � 14.3,
k3 � 6.9.

k1 � 21.4, k2 � 11.3,
k3 � 6.9.

Fig. 2 The comparison of
singular orders for PZT-4 wedge

180° 200° 220° 240° 260° 280° 300° 320° 340° 360°
-0.5

-0.4

-0.3

-0.2

-0.1

0.0
Ref. [17]
our results

singularities are identical for α and 360°–α showing sym-
metry about α � 180°, and the most critical singular order
(−0.54498) produced by the phonon field exists at around
120° (240°). There are no singularities produced by the elec-
tric field. Two roots are caused by the phonon field between
90° and 135°, and 225° and 270°, implying that the phonon
field has a strong influence on the singularities. Moreover, no
singularities occur when PQC 1 and PQC 2 are fully bonded
together.

For a 3D cubic PQC bi-material wedge with free–free
boundary conditions, the variations of singular orders with

wedge angle α are displayed in Fig. 5. Obviously, the singu-
larities show symmetry about α � 180°. Two roots caused
by the phonon field appear for all wedge angles, between 90°
and 270°, and two roots caused by the phason field appear at
about 135° and 225°. The singularities induced by the elec-
tric field exist between 120° and 150°, and 210° and 240°.
Moreover, the strongest singularity (−0.57862) produced by
the phonon field exists at around 135° and 225°. Comparison
between Figs. 4 and 5 shows that material properties have a
great influence on singularities. More importantly, there are
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Fig. 3 The singular orders of a
3D cubic PQC wedge with
free–free boundary conditions

180° 200° 220° 240° 260° 280° 300° 320° 340° 360°
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

2
PQC 1

Table 2 Singular orders for a 3D
cubic PQC with different
boundary conditions

Boundary
conditions

Wedge angles (2α)

90° 180° 240° 300° 360°

Free–free – – −0.3602, − 0.25
− 0.1779, − 0.
3337

− 0.4882, − 0.3999
− 0.3022, −
0.3416
−0.4890, −0.3329

− 0.5

Fixed–fixed – – – – −0.5

Free–fixed − 0.2310
− 0.1742

− 0.5013
− 0.5
− 0.4987

− 0.6250, − 0.627,
−0.5889

−0.7, − 0.6708
− 0.1422, − 0.1
− 0.0783, −
0.0123

−
0.75
−
0.25

no singularities in the infinite composite space when PQC 1
and PQC 3 are perfectly bonded together.

5.3 The Singularities of Tri-materialWedges

A PQC 1 half-plane and PQC 2 are bonded to PQC 3 under
free–free boundary conditions, displayed in Fig. 6. The sin-
gular orders induced by the electric field only exist between
180° and 220°, indicating that the electric field has a weak
effect on singularities. Two roots are caused by the phason

field between 270° and 360°. Moreover, there are no singu-
larities when α � 180°, and the strongest singularities appear
at α � 360°.

The singular orders of a 3D cubic PQC composite wedge
with free–fixed boundary conditions are shown in Fig. 7.
Only one root is produced by the phason field from 140°
to 240°. Three roots are induced by the phonon field: δc1
exists for all wedge angles, indicating that singularities have
a strong dependence on the phonon field; but δc2 only occurs
between 190° and 230°, and δc3 appears between 190° and
200°. It is worth mentioning that the singularities become
more rigorous and then relieve with the increase in α, and the
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Fig. 4 The singular orders of
PQC 1 bonded to PQC 2 with
free–free boundary conditions

PQC 2

PQC 1

90° 105° 120° 135° 150° 165° 180° 195° 210° 225° 240° 255° 270°
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

most critical singular order (− 0.6156) caused by the electric
field is observed at around 180°.

6 Conclusion

In this paper, the singularities of 3D cubic PQC composite
wedges and spaces, for the first time, are explored. Based
on the Stroh formalism and the Barnett–Lothe matrices, the
crucial matrix determining the singular orders is obtained.
Some numerical examples are presented to investigate the
effects of phonon, phason, and electric fields on singulari-
ties under different boundary conditions. All roots are shown
in the numerical study to present a complete picture of the
nature of singularities in composite wedges and spaces. The
following conclusions can be drawn:

1. If δ is a singular order of an infinite half-plane, then δ/2,
(δ − 1)/2 are singular orders for a semi-infinite crack
with identical boundary conditions.

2. Quite serious singularities exist in composite wedges and
spaces, which are composed of two or three dissimi-
lar material wedges due to the existence of crack or a
debonding interface.

3. For tri-material wedges, the singularities may get severe
and then relieve with the increase in wedge angle under
mixed boundary conditions (see Fig. 7).

4. Fully bonded PQC 1—PQC 2/ PQC 3 do not show any
singularities. In some cases, the electric field has a weak
effect on singularities (see Figs. 4, 6).

The numerical results are beneficial to performing accu-
rate analysis of stress singularities by considering all roots,
provide some theoretical guidance and reference for design-
ing and selecting wedge structures, and more importantly,
offer a theoretical reference for material reliability evalua-
tion in engineering applications.
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Fig. 5 The singular orders of
PQC 1 bonded to PQC 3 with
free–free boundary conditions

PQC 1

PQC 3
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0.0

Fig. 6 The singular orders of
tri-material wedges under
free–free boundary conditions
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140° 150° 160° 170° 180° 190° 200° 210° 220° 230° 240° 250° 260°
-0.7

-0.6
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-0.4

-0.3

-0.2
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0.0

PQC 1

PQC 2
130°

-40°

40°PQC  3

Fig. 7 The singular orders of tri-material wedges with free–fixed boundary conditions
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Appendix

By using Eqs. (1), (2), (3), and (4), we can obtain the matrics
about x1 − x2

Q �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 0 0 R1 0 0 0
0 C44 0 0 R3 0 0
0 0 C44 0 0 R3 0
R1 0 0 K11 0 0 0
0 R3 0 0 K44 0 0
0 0 R3 0 0 K44 0
0 0 0 0 0 0 −ξ11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

R �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 C12 0 0 R2 0 0
C44 0 0 R3 0 0 0
0 0 0 0 0 0 d14
0 R2 0 0 K12 0 0
R3 0 0 K44 0 0 0
0 0 0 0 0 0 d123
0 0 d14 0 0 d123 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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T �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C44 0 0 R3 0 0 0
0 C11 0 0 R1 0 0
0 0 C44 0 0 R3 0
R3 0 0 K44 0 0 0
0 R1 0 0 K11 0 0
0 0 R3 0 0 K44 0
0 0 0 0 0 0 −ξ22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

Equations (28)1 and (29)1 are equal to pk and qk , respec-
tively. With the aid of Eq. (21), we derive

[
Ak Āk

Bk B̄k

][
< p̂1+δ

αk (θk) > 0
0 < ¯̂p1+δ

αk (θk) >

][
gk
hk

]

�
[
Ak+1 Āk+1

Bk+1 B̄k+1

][
< p̂1+δ

αk+1(θk) > 0
0 < ¯̂p1+δ

αk+1(θk) >

][
gk+1
hk+1

]

�
[
pk
qk

]
(A2)

UsingEq. (12), (gk , hk) and (gk+1, hk+1) can be expressed
by ( pk ,qk), and we have

[
gk
hk

]
�

[
< p̂−1−δ

αk (θk) > 0
0 < ¯̂p−1−δ

αk (θk) >

][
BT
k AT

k

B̄
T
k Ā

T
k

]

[
pk
qk ,

]
,

[
gk+1
hk+1

]
�

[
< p̂−1−δ

αk+1 (θk) > 0
0 < ¯̂p−1−δ

αk+1 (θk) >

]

[
BT
k+1 AT

k+1

B̄
T
k+1 Ā

T
k+1

][
pk
qk

]
(A3)

In the above equation, letting k � k + 1 in Eq. (A3)1 and
using Eq. (26), we can find the relation between ( pk ,qk) and
( pk+1,qk+1) as

[
pk
qk

]
� N̂

1+δ

k+1(θk , θk+1)

[
pk+1
qk+1

]
(A4)

Using Eqs. (37) and (21), we have

[
B1 B1

][< p̂1+δ
α1 (θ0) > 0

0 < p̂
1+δ

α1 (θ0) >

][
g1
h1

]
� 0,

[
An An

][< p̂1+δ
αn (θn) > 0

0 < p̂
1+δ

αn (θn) >

][
gn
hn

]
� 0,

[
Ak Ak

Bk Bk

][
< p̂1+δ

αk (θk) > 0

0 < p̂
1+δ

αk (θk) >

][
gk
hk

]

�
[
Ak+1 Ak+1

Bk+1 Bk+1

][
< p̂1+δ

αk+1(θk) > 0

0 < p̂
1+δ

αk+1(θk) >

]

[
gk+1
hk+1

]
�

[
pk
qk

]
(A5)

In Eq. (A3), setting k � 1 for (gk , hk) and k � n − 1
for (gk+1, hk+1), we obtain two new equations. Substituting
them into Eq. (A5), and together with Eq. (A4), we obtain

⎡
⎢⎣ N̂

1+δ

1L (θ0, θ1)
n−1∏
j�2

N̂
1+δ

j (θ j−1, θ j )

N̂
1+δ

nU (θn , θn−1)

⎤
⎥⎦

[
pn−1

qn−1

]
� 0 (A6)
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