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A B S T R A C T

Direct numerical simulations of a turbulent channel flow developing over convergent–divergent (C–D) riblets at
a Reynolds number of 𝑅𝑒𝑏 = 2800 are presented. It is found that, with a fixed normalized riblet height of ℎ+ = 5,
as the ratio of the riblet spacing and the height, 𝑠∕ℎ, increases from 2 to 10, the strength of the large-scale
secondary flow motion 𝛤 generated by the C–D riblets peaks around 𝑠∕ℎ = 4 when the C–D riblets behavior lies
between 𝑑- and 𝑘-type roughness. Compared to the baseline case with smooth walls, the turbulent activities
and energy level increase significantly and peak at 𝑠∕ℎ = 4 when 𝛤 is the highest. It is shown that while the
intense local turbulent kinetic energy (TKE) production occurring in the diverging region is caused by the high
local velocity gradient due to the downwelling of the secondary flow, the strong local TKE production occurring
in the converging region is caused by the high turbulent shear stress associated with upwelling. Furthermore,
the TKE transport characteristics are significantly altered by the secondary flow motion, especially over the
converging and diverging regions. The secondary flow is not caused by the local imbalance between turbulent
kinetic energy production and dissipation but by the yawed riblets. It is then more appropriate to classify
this flow as a Prandtl’s secondary flow of the first kind, also known as the geometry-driven secondary flow.
Finally, in comparison with the baseline case, the drag increases for all the riblet cases examined, and a direct
correlation between the amount of drag and intensity of the secondary flow exists, both peaking at 𝑠∕ℎ = 4.
. Introduction

Spanwise heterogeneous surface patterns are a category of surface
atterns that are very small in height but have, for wall-bounded flows,
spanwise length scale comparable to the dominant length scale, as,

or instance, the boundary layer thickness, the channel height or the
ipe diameter. Such surface roughness patterns may occur for rivets
n aircraft, ridges of foreign-material deposition on damaged turbine
lades or sedimentation on riverbeds, for instance. Despite their small
eight, spanwise heterogeneous surface patterns can induce large-scale
econdary flow motions capable of altering the flow field in an entire
oundary layer. These patterns have attracted a considerable amount
f research attention in the recent years (Anderson et al., 2015; Hwang
nd Lee, 2018; Medjnoun et al., 2020; Kevin et al., 2017; Xu et al.,
020).

Convergent–divergent (C–D) riblets, inspired by nature, are a type
f spanwise heterogeneous surface roughness pattern. They exist, for
nstance, on shark skins (Koeltzsch et al., 2002) and secondary flight
ird feathers (Chen et al., 2014). The C–D riblets spanwise hetero-
eneity arises from a spanwise alternating orientation of the yawed

∗ Corresponding author.
E-mail address: guotongbiao@imech.ac.cn (T. Guo).

microgrooves, see Fig. 1(a). From the perspective of the oncoming flow,
the lines along which microgrooves on adjacent riblet sections appear
to diverge away from (resp. converge toward each other) are called
the diverging (resp. converging) lines, e.g DL (resp. CL). In a time-
averaged sense, a pair of weak recirculating secondary flow motion
(roll mode) is produced over a wavelength of C–D riblets in the wall-
normal-spanwise plane, whereby an upwelling/downwelling over the
converging/diverging region is created. It has been well established
that in a laminar flow that the roll mode is caused by a surface flow
directing from the diverging region to the converging region driven
by the yawed microgrooves (Xu et al., 2018; Guo et al., 2020b).
The large-scale secondary roll mode consequently leads to a strong
spanwise modulation of the boundary layer, with a thinner boundary
layer present over the diverging line and a thicker boundary layer over
the converging line (Nugroho et al., 2013; Kevin et al., 2017). Such
a secondary flow motion is capable of enhancing momentum transfer
across a boundary layer with a demonstrated ability in delaying flow
separation (Quan et al., 2018; Liu et al., 2019; Guo et al., 2020a).
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Guo et al. (2020b) have carried out a parametric study of the effects of
the riblet geometry, including riblet height, yaw angle and wavelength,
on the characteristics and strength of the roll mode, in their laminar
flow simulations. While the riblet height had the strongest impact on
the roll mode with taller riblets generating a stronger roll mode, as ex-
pected, a yaw angle of 45◦ or a wavelength of about one boundary layer
thickness was found to give rise to a stronger roll mode when other
parameters were kept unchanged (Guo et al., 2020b). Furthermore, a
riblet spacing to height ratio of 4 had been found to be an optimal ratio
to ensure a stronger roll mode in a laminar channel flow (Guo et al.,
2020a).

Although both C–D and longitudinal riblets consist of microgrooves,
their influence mechanism on a boundary layer are inherently differ-
ent (Choi et al., 1993; Bechert et al., 1997; Modesti et al., 2021).
As the impact of the longitudinal riblets is exerted on the near-wall
streaks and confined within the near-wall region, the C–D riblets are
capable of producing a big modification of the entire boundary layer,
due to spanwise heterogeneity. The secondary flow motions created by
the C–D riblets are found to radically modify both the time-averaged
turbulence characteristics and the instantaneous vortex structures in
a boundary layer. While reduced near-wall turbulence intensity is
observed over the diverging region, increased near-wall turbulence
intensity is found over the converging region (Koeltzsch et al., 2002;
Kevin et al., 2017; Xu et al., 2019). Xu et al. (2019) examined the C–
D riblets influence on vortical structures, and found that there was a
significant increase in the population of prograde and retrograde span-
wise vortices over the converging region while the influence around
the diverging region was much less acute. Based on their single hot-
wire measurements across the boundary layer in the wall-parallel plane
in the logarithmic region, Nugroho et al. (2013) found that the roll
mode led to a region with low-speed fluid via high vortical activities
over the converging region of the C–D riblets. They speculated that
the directional surface roughness redistributes the large-scale energetic
structures and preferentially arranges the large-scale motions over the
converging region. Such an observation was also supported by the
particle image velocimetry (PIV) measurements of Kevin et al. (2017).
To date, most studies on turbulent flow developing over C–D riblets
have been carried out experimentally (Koeltzsch et al., 2002; Nugroho
et al., 2013; Kevin et al., 2017; Xu et al., 2019). Due to limitations in
experimental tools to measure the near-wall flow, however, turbulent
flow data in the near-wall region, especially inside the riblet grooves,
are unavailable. As a result, there is still a lack of understanding of
how the strength of the secondary flow motion affects the production
of turbulence in the flow developing over C–D riblets, and how the
secondary flow motion affects the profile of each term in the turbulence
energy budget and the balance among these terms in general.

C–D riblets have been reported to be able to suppress the flow
separation. Quan et al. (2018) applied an array of C–D riblets upstream
of a double ramp and found that C–D riblets could mitigate the shock-
induced flow separation. Liu et al. (2019) placed C–D riblets over
the suction surface of diffuser blades in a linear cascade, and the
experimental results revealed that the pressure loss coefficient had
an apparent decrease. Recently, Guo et al. (2022) conducted a direct
numerical simulation (DNS) of the shock-induced flow separation in
supersonic turbulent flows. They reported that, although the riblet
height was only 3.3% of the boundary layer thickness, the area of the
separation zone was reduced by 56%. Furthermore, they (Guo et al.) ob-
tained the momentum flux arising from the dispersive velocity caused
by the large-scale secondary flow, and proved quantitatively that C–D
riblets could enhance the near-wall momentum mixing. Compared with
the widely applied vortex generators (Lin, 2002), the riblet height of
C–D riblets is much smaller and is expected to bring less parasitic drag,
which is highly desirable in engineering applications.

In this paper, the results from DNSs of a turbulent channel flow
developing over C–D riblets at a Reynolds number 𝑅𝑒𝑏 = 2, 800, based
2

n the channel half height and the bulk velocity, are presented. The
simulations were carried out on C–D riblets with a fixed normalized
riblet height of ℎ+ = 5 (expressed in wall units using the friction
velocity and kinematic viscosity) and a range of riblet spacing 𝑠 from
𝑠∕ℎ = 2 to 10, which effectively introduces secondary flow motion of
different strengths into the channel flow. The impact of the C–D riblets
on the time-averaged flow field, the instantaneous turbulent flow field
and the turbulent kinetic energy budget is examined in detail. New
insights on the generation mechanism of the secondary flow motion
and its impact on the re-balance of the turbulent kinetic energy budget
terms are obtained for the first time. Furthermore, with the aid of drag
decomposition analyses, the influence of the secondary flow motion on
the drag characteristics of the turbulent channel flow is assessed. The
results in the present paper can be used to inform the choice of the
riblet spacing for maximizing the intensity of the secondary flow, which
plays a dominant role on the control effect of the flow separation.

2. Methodology

2.1. Computational domain and C–D riblets geometry

Our numerical simulations were undertaken for a weakly com-
pressible turbulent channel flow with a computational domain size of
𝐿 = 12𝛿 in the streamwise direction, 2𝛿 in the wall-normal direction
nd 𝑊 = 6𝛿 in the spanwise direction, 𝛿 being the half height of
he channel, see Fig. 1(b). In the streamwise and spanwise directions,
eriodic boundary conditions are set, and at the bottom and top wall,
sothermal no-slip boundary conditions are enforced. The coordinate
ystem adopted in our study is also shown in Fig. 1, in which the
treamwise, wall-normal and spanwise directions are denoted by 𝑥 (or
1), 𝑦 (or 𝑥2) and 𝑧 (or 𝑥3), respectively.

The C–D riblets are mounted on the bottom and top walls of the
hannel and their surface patterns are symmetric relative to the central
lane of the channel. Fig. 1(a) shows the lower half of the channel.
he diverging and converging lines are aligned with the 𝑥-axis, and the
iblet valleys are at 𝑦 = 0 on the bottom wall. The yaw angle 𝛾 denotes
he angle between the riblet grooves and the 𝑥-axis direction, and the
avelength 𝛬 is the width of two adjacent riblet sections. For all the

iblet cases studied in this paper, the yaw angle is fixed as 𝛾 = 30◦

hich is the yaw angle observed on birds’ secondary feathers (Chen
t al., 2014), and the wavelength is chosen as 𝛬 = 1.5𝛿 which was
ound to produce a strong secondary flow motion when the other riblet
arameters are fixed (Kevin et al., 2017; Guo et al., 2020b). Riblets
ith a triangular cross-section are used, and their characteristics are
escribed by their height (ℎ), spacing (𝑠) and ridge angle (𝛼). In our
imulations, the riblet height and ridge angle are fixed as ℎ = 𝛿∕36 and
= 53◦, and the spacing changes from 𝑠 = 2ℎ to 𝑠 = 10ℎ, as illustrated

n Fig. 1(c).

.2. Governing equations and numerical schemes

An in-house code ‘ASTR’ (Advanced flow Simulator for Turbulence
esearch) is used for all the simulations carried out in this work. It
as already been used for DNSs of turbulent boundary layers with
low controls (Ni et al., 2016, 2019). The unsteady, three-dimensional,
ompressible Navier–Stokes equations expressed below are solved,

𝜕𝜌
𝜕𝑡

+
𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0,

𝜕𝜌𝑢𝑖
𝜕𝑡

+
𝜕𝜌𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

+
𝜕𝑝
𝜕𝑥𝑖

−
𝜕𝜎𝑖𝑗
𝜕𝑥𝑗

= 𝛿𝑖1𝑓1,

𝜕𝐸
𝜕𝑡

+
𝜕𝐸𝑢𝑗
𝜕𝑥𝑗

+
𝜕𝑝𝑢𝑗
𝜕𝑥𝑗

+
𝜕𝑞𝑗
𝜕𝑥𝑗

−
𝜕𝑢𝑖𝜎𝑖𝑗
𝜕𝑥𝑗

= 𝑓1𝑈𝑏,

(1)

where the standard Einstein notation is adopted with summation on
repeated indices with 𝑖, 𝑗 = 1, 2, and 3; 𝑢 (or 𝑢1), 𝑣 (or 𝑢2) and 𝑤 (or
𝑢3) are the streamwise, wall-normal and spanwise velocity components
respectively. The time coordinate is denoted by 𝑡. The other primitive
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Fig. 1. (a) Local enlargement of the computation domain to introduce the geometry parameters. (b) Computational domain of C–D riblets mounted on the bottom and top wall
of a channel flow model. A symmetry exists, with respect to the channel center plane. (c) Riblet parameters in the cross-sectional plane that is perpendicular to the riblet grooves
for each riblet case with 𝑠 changing from 2ℎ to 10ℎ at a fixed riblet height ℎ and ridge angle 𝛼. 𝛿 is the channel half height; 𝐿 = 12𝛿 is the domain length; 𝑊 = 6𝛿 is the domain
width; DL and CL are abbreviations for the diverging and converging line respectively; 𝛬 and 𝛾 are the riblet wavelength and yaw angle.
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variables are the density, 𝜌, the pressure, 𝑝, and the temperature 𝑇
which are related to each other via the equation of state of an ideal
gas, 𝑝 = 𝜌𝑅𝑇 , with a gas constant of 𝑅 = 287.1 J∕(kg K). The total
energy, 𝐸, is expressed as 𝐸 = 𝑝∕(𝜅 − 1) + 𝜌𝑢𝑗𝑢𝑗∕2, where 𝜅 is the ratio
of specific heats. It is taken as 1.4 in the present study.

The stress tensor, 𝜎𝑖𝑗 , is expressed as,

𝜎𝑖𝑗 = 𝜇
(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

− 2
3
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)

, (2)

here 𝜇 is the dynamic viscosity of the fluid, and is calculated via the
utherland’s law,

= 𝜇0

(

𝑇
𝑇0

)1.5 (𝑇0 + 𝑇𝑠
𝑇 + 𝑇𝑠

)

, (3)

where 𝑇0=298.15 K is the reference temperature, 𝜇0 is the viscosity at
the reference temperature, and 𝑇𝑠=110.4 K is Sutherland’s constant for
the gaseous material.

The heat flux, 𝑞𝑖, is expressed as,

𝑞𝑖 = −𝑘 𝜕𝑇
𝜕𝑥𝑖

, (4)

where the thermal conductivity, 𝑘, is given by, 𝑘 = 𝜇𝐶𝑝∕𝑃𝑟, in which
𝐶𝑝 = 𝜅𝑅∕(𝜅 − 1) is the specific heat capacity of the gas at constant
ressure, and 𝑃𝑟 is the Prandtl number. A constant value of 𝑃𝑟 = 0.72
s used in the present study.

Some source terms, 𝑓1 and 𝑓1𝑈𝑏, are added to the right-hand-side of
treamwise momentum and energy equations, respectively, to account
or the effect of the body force, 𝑓1 that drives the flow in the channel.
𝑏 is the bulk velocity, denoting the average velocity across the whole

luid domain.
In this study, the Navier–Stokes equations (Eq. (1)) are solved

n the non-dimensional form, projected to a generalized coordinate
ystem. All the variables in the equations are non-dimensionalized
sing the reference value, and both the resultant bulk velocity 𝑈𝑏 and
he half-channel height 𝛿 are set to 1. The equations are discretized
ithin the framework of the finite-difference method, and all the

patial derivatives are approximated with a sixth-order compact central
cheme (Fang et al., 2019), which is fully parallelized for distributed-
3

emory computers. To remove the non-physical aliasing errors induced o
y spatial discretization of the nonlinear convective terms and thus to
tabilize the simulations, a tenth-order compact filter (Gaitonde and
isbal, 2000) is introduced. Once the spatial terms are solved, the
olution is advanced in time using an explicit third-order three-stage
unge–Kutta method.

.3. Computational setup and mesh

To enable our compressible flow DNS code to be applicable to
ncompressible flows, the Mach number 𝑀𝑎 in our study is set as 0.2 for
ll cases in order to eliminate the compressibility effect. The Reynolds
umber of all the cases is fixed as 𝑅𝑒𝑏 = 2, 800, where 𝑅𝑒𝑏 = 𝑈𝑏𝛿∕𝜈
𝜈 = 𝜇∕𝜌 is the kinematic viscosity of the fluid). The corresponding
riction Reynolds number for the baseline case is 𝑅𝑒𝜏 = 𝑈𝜏𝛿∕𝜈 = 180,
n which 𝑈𝜏 is the friction velocity and 𝜏𝑤 is the wall shear stress.
he non-dimensional time-step 𝛥𝑡𝑈𝑏∕𝛿 for the baseline case is 0.00015,
hile for all the riblet cases, the value is 0.0001. After the flow reaches

tatistically converged results, the statistics are acquired by averaging
he flow field every 30 and 45 time steps for the baseline case and riblet
ases, respectively. A total of 60,000 instantaneous flow field samples
re collected for all the cases with the total time length being 270𝛿∕𝑈𝑏,
o ensure the statistical convergence.

In this study, the normalized riblet height scaled with the wall
nits of the baseline case is fixed at ℎ+ = 5, whereas the scaled riblet
pacing 𝑠+ is allowed to vary from 10 to 50 resulting in a range of 𝑠∕ℎ
f 2 to 10. A seemingly small value of ℎ+ = 5 is chosen to avoid a
ignificant protrusion of the riblets to the channel flow. Nevertheless,
s it can be seen in the results presented in the subsequent sections, a
trong modification of the channel flow behavior with respect to the
aseline channel flow behavior, can be observed with the chosen riblet
eight. The fact, that the experimental studies on turbulent boundary
ayers developing over C–D riblets carried out by Kevin et al. (2017)
nd Xu et al. (2019) did not report an overall drag reduction within the
ange of ℎ+ = 8 − 20, implies that the optimal scaling of riblet height
ℎ+ ∼ 10 Bechert et al., 1997) found for longitudinal riblets does not
pply to C–D riblets. This is not surprising and can be explained by the
ery different interaction mechanisms at play in the flow developing

ver these two different types of riblets.
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Fig. 2. (a) Part of the computational domain with the mesh plotted every 10th grid line in each direction. (b) Mesh distribution near the bottom wall in the longitudinal (𝑥–𝑦)
lane. The mesh here is for the riblet case with 𝑠∕ℎ = 2.
Table 1
Computational domain size and mesh distributions for all the DNS cases. The superscript ’+’ denotes variables in wall units,
based on the wall friction velocity of the baseline case (𝑈𝜏 )

Case 𝑅𝑒𝑏 𝑅𝑒𝜏 𝐿∕𝛿 𝑊 ∕𝛿 𝑠∕ℎ ℎ+ 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝛥𝑥+ 𝛥𝑦+ 𝛥𝑧+

Baseline 2800 180 12 6 216 154 270 10 0.3 − 4 4
Riblet cases 2800 12 6 2,3,4,6,8,10 5 2160 154 560 1 0.1 − 4 1.9
2
b

𝑢

𝑇

A structured grid is employed to mesh the entire computational
omain. Uniform grid spacing is applied in the wall-parallel (𝑥–𝑧) plane
xcept for the ribbed-wall region. The mesh topology is presented in
ig. 2(a), where the domain shown has a size 1/6th of the streamwise
ength, a half of the height and a quarter of the spanwise width,
he mesh being presented for every 10th grid line in each direction.
ig. 2(b) illustrates the near-wall mesh distribution in a (𝑥–𝑦) plane. It
an be seen that the mesh is orthogonal inside the riblets’ region. The
esh resolution of the first node from the wall is 𝑦+ = 0.1 and 𝑦+ = 0.3

at the riblet tips and valleys, respectively. This is sufficient to resolve
the wall turbulence. Table 1 shows the number of nodes in each axial
direction in both the baseline and riblet cases.

2.4. Averaging methodology

Since the Mach number is low and the flow is nearly incompressible,
there is no need for Favre averaging. By using time-averaging, the
instantaneous velocity 𝑢𝑖 can be expressed as 𝑢𝑖 = 𝑢𝑖+𝑢′𝑖 , where 𝑢𝑖 is the
time-averaged velocity for the velocity component in the 𝑥𝑖 direction,
and 𝑢′𝑖 is the time fluctuating component. As a result, the Reynolds
stress tensor is denoted as 𝑢′𝑖𝑢

′
𝑗 , while the turbulent kinetic energy 𝑘

s written as 𝑘 = 1∕2𝑢′𝑖𝑢
′
𝑖 .

Spatial averaging can be further applied to time-averaged variables.
or an arbitrary variable 𝛩, the intrinsic spatial averaged variables are
enoted by the angle brackets as, Nikora et al. (2007)

⟨𝛩⟩𝑥(𝑦, 𝑧) =
1

𝜓(𝑦, 𝑧)𝐿 ∫𝐿
𝛩(𝑥, 𝑦, 𝑧)𝑑𝑥,

⟨𝛩⟩𝑥𝑧(𝑦) =
1

𝜙(𝑦)𝐿𝑊 ∬𝐿𝑊
𝛩(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑧,

(5)

where ⟨⋅⟩𝑥 represents the intrinsic averaging in the 𝑥 direction, and ⟨⋅⟩𝑥𝑧
ndicates averaging in the 𝑥–𝑧 plane. The geometry function, 𝜓(𝑦, 𝑧),
epresents the ratio of the length occupied by the fluid to the length
𝐿) of the flow domain in the 𝑥-direction at (𝑦, 𝑧), whereas 𝜙(𝑦) is the
atio of area occupied by the fluid to the total area (𝐿𝑊 ) in the wall
arallel plane located at 𝑦. For the baseline case, both 𝜓(𝑦, 𝑧) and 𝜙(𝑦)
re equal to 1.

Based on different averaging operations, a triple decomposition of
he velocity 𝑢 is employed (Vanderwel et al., 2019; Medjnoun et al.,
4

𝑖

020). For the turbulent channel flow over C–D riblets, the velocity can
e decomposed as,

𝑖(𝑥, 𝑦, 𝑧, 𝑡) = ⟨𝑢𝑖⟩𝑥𝑧(𝑦) + �̃�𝑖(𝑥, 𝑦, 𝑧) + 𝑢′𝑖(𝑥, 𝑦, 𝑧, 𝑡), (6)

where the dispersive velocity, �̃�𝑖(𝑥, 𝑦, 𝑧), represents a steady secondary
flow. Based on the velocity decomposition defined in Eq. (6), the total
shear stress that is responsible for the momentum transport in the
wall-normal direction is defined as (Vanderwel et al., 2019),

𝜏𝑥𝑦
⏟⏟⏟

𝑜𝑡𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠

= 𝜈𝜕⟨𝑢⟩𝑥𝑧∕𝜕𝑦
⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑉 𝑖𝑠𝑐𝑜𝑢𝑠 𝑠𝑡𝑟𝑒𝑠𝑠

−�̃��̃�
⏟⏟⏟

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑠𝑠

−𝑢′𝑣′
⏟⏟⏟

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑠𝑡𝑟𝑒𝑠𝑠

, (7)

In addition to the common viscous and Reynolds stress, the total
shear stress contains the dispersive stress, which can be used to quantify
the amount of stress resulting from the spanwise heterogeneity of the
velocity field caused by the C–D riblets.

2.5. Validation of the computational method

Since C–D riblets are a type of surface structures which only began
to attract research attentions in the recent years the amount of exper-
imental data is very scarce, in particular experimental data obtained
in a turbulent channel flow are not available. Therefore, in this paper
the suitability of the present computational method is validated against
existing published results on the channel flow with the smooth-wall and
longitudinal riblets.

2.5.1. Smooth wall
In order to validate the computational method, the mean velocity

profile and the Reynolds stress profile in the baseline case, i.e. the
turbulent channel flow without riblets, are compared with the incom-
pressible DNS data of Moser et al. (1999), the so-called KMM database,
at a similar Reynolds number. Fig. 3 shows a very good agreement
between the present DNS results and the KMM database, indicating that
the computational method is adequate.



International Journal of Heat and Fluid Flow 98 (2022) 109069T. Guo et al.

b

p

𝑈

t

Fig. 3. Profiles of (a) mean streamwise velocity and (b) Reynolds stress of the baseline case at 𝑅𝑒𝑏 = 2, 800 or 𝑅𝑒𝜏 = 180. 𝑢+ = 𝑢∕𝑈𝜏 , 𝑦+ = 𝑈𝜏𝑦∕𝜈, 𝑢′𝑖𝑢′𝑗
+
= 𝑢′𝑖𝑢

′
𝑗∕𝑈

2
𝜏 .
Fig. 4. Profiles of turbulence kinetic energy budget terms using the (a) outer scale and (b) inner scale of the baseline case at 𝑅𝑒𝑏 = 2, 800 or 𝑅𝑒𝜏 = 180. All the terms are normalized
y 𝑈 4

𝜏 ∕𝜈.
The transport equation of the turbulence kinetic energy (𝑘) is ex-
ressed as:

𝜕𝑘
𝜕𝑡

⏟⏟⏟
𝑛𝑠𝑡𝑒𝑎𝑑𝑦

= −𝑢𝑗
𝜕𝑘
𝜕𝑥𝑗

⏟⏟⏟
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′
𝑗
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⏟⏞⏞⏟⏞⏞⏟
𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑃𝑘

−𝜈
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𝜕𝑥𝑗

𝜕𝑢′𝑖
𝜕𝑥𝑗

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛, 𝜖𝑘

−1
2

𝜕𝑢′𝑗𝑢
′
𝑖𝑢

′
𝑖

𝜕𝑥𝑗
+ 𝜈 𝜕

2𝑘
𝜕𝑥2𝑗

− 1
𝜌

𝜕𝑝′𝑢′𝑗
𝜕𝑥𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛, 𝐷𝑘

(8)

The turbulence kinetic energy budget terms consist of the convec-
ion term, 𝐶𝑘, the production term, 𝑃𝑘, the dissipation term, 𝜖𝑘, and the

diffusion term, 𝐷𝑘. The diffusion term, 𝐷𝑘, contains the contributions
from turbulence transport, 𝜕𝑢′𝑗𝑢

′
𝑖𝑢

′
𝑖∕𝜕𝑥𝑗 , the viscous diffusion, 𝜈𝜕2𝑘∕𝜕𝑥2𝑗 ,

and the pressure transport, 𝜕𝑝′𝑢′𝑗∕𝜕𝑥𝑗 . The balance term is calculated as
the sum of all the terms of the right-hand side of Eq. (8). Fig. 4 displays
the profile of each turbulence kinetic energy budget term, including the
balance term, normalized by 𝑈4

𝜏 ∕𝜈. The results obtained by the present
simulation are in an excellent agreement with the DNS data of Moser
et al. (1999), and the budget equation is well balanced, indicating that
the turbulence structure is fully resolved down to the dissipation scale.
The good agreement with the DNS data of Moser et al. (1999) displayed
in Figs. 3 and 4 also suggests that the potential compressible effect of
the present DNS at 𝑀𝑎 = 0.2 can be negligible.
5

2.5.2. Longitudinal riblets
Longitudinal riblets are streamwise-aligned microgrooves, i.e. ri-

blets with zero yaw angle, on the wall surface. Their ability to reduce
the wall skin friction has been extensively studied (Bechert et al., 1997;
Garcia-Mayoral and Jiménez, 2012), and the drag reduction is up to
10% (Bechert et al., 1997) for turbulent flows. In this section, the flow
field experienced by the channel flow with longitudinal riblets is ex-
amined to further validate the suitability of the present computational
method.

The size of the computational domain and the numerical scheme are
the same for the longitudinal riblet cases as for the C–D riblet cases.
Longitudinal riblets with triangular grooves are added to the channel
bottom wall, in the same way Choi et al. (1993) did. Fig. 5 shows the
profiles of the mean streamwise velocity and the Reynolds stresses,
normalized by 𝑈2

𝜏 . The results from the present simulation compare
well with the DNS results of Choi et al. (1993). This can be taken as the
evidence that the present computational method is able of simulating
turbulent flows over non-smooth walls.

3. Results and discussion

3.1. Time-averaged velocity field

3.1.1. Velocity field in a wall-normal-spanwise plane
The impact of changing riblet spacing on the velocity field is in-

vestigated in the case of a turbulent channel flow. Unless otherwise



International Journal of Heat and Fluid Flow 98 (2022) 109069T. Guo et al.
Fig. 5. Profiles of (a) the mean streamwise velocity and (b) the Reynolds stresses in the channel with longitudinal riblets at the bottom wall at 𝑅𝑒𝜏 = 180. Triangular riblets with
𝑠+ = 20, ℎ+ = 17.3 and ridge angle 𝛼 = 600 are applied. The results of Choi et al. (1993) are included for comparison.
Fig. 6. Contours of streamwise velocity superimposed with in-plane velocity vectors in wall-normal-spanwise planes for riblet cases at (a) 𝑠∕ℎ = 2, (b) 𝑠∕ℎ = 4, (c) 𝑠∕ℎ = 10, and
(d) for the baseline case. The riblet teeth are shown with the dash line showing the position of the riblet crests.
indicated, all the results presented in the following analyses are based
on the time and 𝑥-direction averaged statistics.

The contours of the streamwise velocity and in-plane velocity vec-
tors in the wall-normal-spanwise plane of the lower half of the channel
are shown in Fig. 6. For simplicity, the flow field is presented over
only one riblet wavelength in the spanwise direction. The results of the
baseline case are also provided for comparison in Fig. 6(d) in which
no in-plane velocity vectors are shown due to the absence of secondary
flow motion. For all the riblet cases, a well-defined secondary motion
is clearly observed, which is characterized by a pair of weak 𝛬-scale
counter-rotating vortices or roll mode. This secondary motion induces
a downwelling motion in the diverging region and an upwelling motion
in the converging region. Similar secondary flow patterns were also
observed by other researchers who studied C–D riblets (Kevin et al.,
2017; Xu et al., 2020; Nugroho et al., 2013; Guo et al., 2020b).
6

Despite the small magnitude of the secondary flow motion, it in-
duces a spanwise variation in the streamwise velocity component as
shown by the velocity contours in Fig. 6, and a high- (resp. low-)
momentum pathway in the diverging (resp. converging) region, which
is consistent with the experimental results from Kevin et al. (2017)
and Xu et al. (2020). As 𝑠∕ℎ increases from 2 to 4, both the strength
of the secondary flow and the spanwise variations in the streamwise
velocity increase. An opposite trend is observed as 𝑠∕ℎ increases from
4 to 10.

To examine the impact of the secondary flow motion on the wall-
normal-spanwise flow field, the dispersive velocity components, ⟨�̃�⟩𝑥
and ⟨�̃�⟩𝑥, are presented in Figs. 7(a–h). Using the symmetry in the flow,
only the flow domain over a half riblet wavelength is shown. The wall-
normal dispersive velocity, ⟨�̃�⟩𝑥, reveals a downwelling motion around
the diverging line and an upwelling motion near the converging line
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Fig. 7. Contours of (a–d) wall-normal dispersive velocity ⟨�̃�⟩𝑥, (e–h) streamwise dispersive velocity ⟨�̃�⟩𝑥 and (i–l) dispersive stress ⟨−�̃��̃�⟩𝑥 in wall-normal-spanwise planes for riblet
cases at (a, e, i) 𝑠∕ℎ = 2, (b, f, j) 𝑠∕ℎ = 4 and (c, g, k) 𝑠∕ℎ = 10, and (d, h, l) for the baseline case. The dash line denotes the vertical position of the riblet crest.
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with the magnitude of the wall-normal dispersive velocity reaching
5%𝑈𝑏 (see Figs. 7a–d). Correspondingly, the streamwise dispersive ve-
locity exhibits a significant positive and negative perturbation up to
25%𝑈𝑏 in the region of downwelling and upwelling, respectively (see
Figs. 7(e–h)).

The dispersive stress, ⟨−�̃��̃�⟩𝑥, which is responsible for the mo-
mentum exchange by the dispersive motion, is shown in Figs. 7(i–l),
where in the cases with riblets, a significant dispersive stress is pro-
duced around the diverging/converging region where a local strong
upwash/downwash motion occurs, implying a strong local momentum
transport. Furthermore, a high level of streamwise dispersive velocity
and dispersive stress are seen to penetrate deep into the riblet grooves
in the diverging region as a result of the local downwelling motion.
�̃�, �̃� and −�̃��̃� are the highest at 𝑠∕ℎ = 4. Such an observation is
consistent with the qualitative impression drawn from the strength of
the large-scale secondary flow motion shown in Fig. 6.

In all the riblet cases, the regions with large dispersive velocity
components and a dispersive shear stress extend across a substantial
portion of the half channel height 𝛿 (more than 0.4𝛿 at 𝑠∕ℎ = 4),
despite the riblet height being only 2.8%𝛿. The region of influence
differs significantly from that of the homogeneous roughness where the
dispersive stress is restricted to the vicinity of the surface with riblets
(Mignot et al., 2009). Such a difference is attributed to the fact that
the C–D riblets are capable of inducing a large-scale secondary flow,
which is able to bring the fluid with a higher momentum in the outer
part of the channel towards the near-wall region and vice versa. In
contrast, the fluid mixing effect caused by a homogeneous roughness is
confined in the region local to the roughness. Similar findings are also
reported in other types of spanwise heterogeneous roughness patterns
7

(Vanderwel et al., 2019; Medjnoun et al., 2020).
Furthermore, the fact that the dispersive stress −�̃��̃� is low inside the
iblet grooves and around individual riblet tips across the span of the
iblet section except for a small region closely above the diverging line,
ndicates that the observed dispersive stress is not contributed locally
y the individual riblet. It is the large-scale secondary flow motion
nduced by the directional orientated riblets that is responsible for the
eneration of the high levels of −�̃��̃� observed in Fig. 7.

To enable a quantitative comparison of the intensity of the sec-
ndary flow motion for different riblet cases, the intensity of the
econdary flow motion is introduced and defined as:

= 1
𝑉 ∫𝑉

√

𝑣2 +𝑤2∕𝑈𝑏 𝑑𝑥𝑑𝑦𝑑𝑧 (9)

where 𝑉 is the volume of the entire computational domain. The vari-
ations of 𝛤 with 𝑠∕ℎ are presented in Fig. 8(a), which shows that 𝛤 ’s
distribution is consistent with the finding reported above and that it
peaks at 𝑠∕ℎ = 4.

As the magnitude of 𝛤 is directly related to the velocity field in the
wall-normal-spanwise plane, it is worth examining how the spanwise-
and wall-normal velocity varies as 𝑠∕ℎ changes. The variations of the
mean spanwise velocity in the 𝑥–𝑧 plane over a half riblet wavelength,
⟨𝑤⟩𝑥𝑧, in the wall-normal direction for riblets with different 𝑠∕ℎ are
shown in Fig. 8(b). For all the riblet cases, the positive peak of ⟨𝑤⟩𝑥𝑧
lies slightly below the riblet crest, indicating the role that the riblet
grooves play in generating a spanwise flow in the near-wall region.
Furthermore, ⟨𝑤⟩𝑥𝑧 tends to zero around 𝑦 = 0.2𝛿, which is where
he center of the weak recirculating secondary flow motion lies. ⟨𝑤⟩𝑥𝑧

exhibits a negative peak around 𝑦 = 0.3𝛿, indicating the reversal of
the spanwise velocity direction. In accordance with the trend of 𝛤 , the
magnitude of the spanwise velocity also peaks at 𝑠∕ℎ = 4.
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Fig. 8. (a) Variations of 𝛤 with an increasing riblet spacing. (b) Profile of the 𝑥–𝑧 plane-averaged (within half wavelength) spanwise velocity. (c) Profile of the 𝑥-averaged vertical
elocity (⟨𝑣⟩𝑥) over the diverging and converging lines. (d) Profile of the 𝑥–𝑧 plane-averaged dispersive stress ⟨−�̃��̃�⟩𝑥𝑧. The vertical dashed line denotes the position of the riblet
rest.
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The variations in the wall-normal velocity in the wall-normal di-
ection of the diverging plane reveal that the peak of the downward
elocity is located near the riblets’ crest (see Fig. 8c), which is coin-
ident with the location of the peak spanwise velocity. On the other
and, the peak of the upward velocity is located at about the same
eight as the center of the roll mode. It shifts away from the wall as

increases. The profiles of the 𝑥–𝑧 plane-averaged dispersive stress
−�̃��̃�⟩𝑥𝑧 are presented in Fig. 8(d). Again, in accordance with the trend
f 𝛤 , the magnitude of the wall-normal velocity and dispersive stress
−�̃��̃�⟩𝑥𝑧 peak at 𝑠∕ℎ = 4.

.1.2. Fluid motion in the vicinity of riblets
To understand how the riblet spacing affects the strength of the

econdary flow, the flow field is examined in the vicinity of the riblet
all. Fig. 9 presents the mean streamlines inside and above the riblet
assage in the riblet case with 𝑠∕ℎ = 2, 𝑠∕ℎ = 4 and 𝑠∕ℎ = 10,
espectively. The streamwise velocity contours and the streamlines in
plane perpendicular to the riblet passage are also shown alongside.

n all the three cases, the fluid propagates along the riblet passage
rom the diverging line towards the converging line in a helicoidal
anner. Furthermore, as 𝑠∕ℎ increases from 2 to 10, an increasing

mount of fluid is seen to flow out of the riblet passages and over
he riblet crests before reaching the converging line. The helicoidal
otion and the overflow phenomenon were also observed in the dye

isualization experiment carried out by Xu et al. (2018) for a laminar
low. At 𝑠∕ℎ = 2, a recirculating flow pattern is seen to fill up the entire
iblet passage. As 𝑠∕ℎ increases, however, the recirculating flow pattern
ppears to occupy a decreasing portion of the riblet passage. As such,
8

he streamlines external to the recirculating bubble are seen to bend 𝑘
ownwards towards the passage floor. At 𝑠∕ℎ = 10, the fluid is en-
rained into the riblet passage, causing a significant rise in the velocity
agnitude inside the riblet passage. The case with 𝑠∕ℎ = 4 appears to

e the intermediate case in which a transition between the flow pattern
bserved at 𝑠∕ℎ = 2 and 𝑠∕ℎ = 10 occurs. A similar phenomenon was
lso observed in the numerical simulation of a laminar channel flow
eveloping over C–D riblets (Guo et al., 2020a).

A large number of studies have focused on flows developing over
-D roughness elements. Depending on the pitch-to-height ratio of the
iblets, wall roughness in the form of spanwise ribs can be classi-
ied into 𝑑- and 𝑘-type roughness (Jiménez, 2004). The 𝑑-roughness
s referred to closely spaced 2-D roughness elements with a pitch-
o-height ratio less than 3∼4 (Jiménez, 2004), for which a stable
ecirculating vortex occupies the entire inter-riblet spacing and the flow
bove the riblet crests seems to ride nearly undisturbed over them. In
ontrast, the 𝑘-roughness is referred to sparely spaced 2-D roughness
lements, for which the recirculating bubble within the inter-riblet
pacing reattaches before the windward side of the downstream riblet,
eading to a momentum mixing between the fluid inside and outside
he inter-riblet spacing. Based on the results presented in Fig. 9, the
–D riblets with 𝑠∕ℎ = 2 appear to act like the 𝑑-type roughness with
he low-momentum fluid being trapped inside the riblet passage. In
ontrast, the C–D riblets with 𝑠∕ℎ = 10 appear to behave like the 𝑘-
ype roughness, the fluid having a relatively high momentum outside
he riblet passage, and managing to penetrate into the passage flow.
espite the significant difference in geometric shape between the 2-D

oughness elements and the C–D riblets, a pitch-to-height ratio around
remains to be at the boundary which divides the 𝑑-type from the

-type roughness.
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Fig. 9. Streamlines in the vicinity of riblet grooves and contours of streamwise velocity in the cross-section perpendicular to the riblet passage for the riblet cases at (a) 𝑠∕ℎ = 2,
b) 𝑠∕ℎ = 4 and (c) 𝑠∕ℎ = 10.
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The peak of 𝛤 occurs at 𝑠∕ℎ = 4, where the transition from 𝑑-
ype to 𝑘-type roughness takes place. The same trend is also observed
or laminar channel flows developing over C–D riblets (Guo et al.,
020a). For the riblet case with 𝑠∕ℎ = 2, the C–D riblets act like the
-type roughness, whereas at 𝑠∕ℎ ≥ 2, they behave like the 𝑘-type

roughness, in a way that the resultant near-wall velocity is enhanced
via momentum mixing between the flow inside and outside the riblet
passages. As a result, the near-wall spanwise velocity and hence the
strength of the secondary flow have a sharp increase as 𝑠∕ℎ changes
from 2 to 4. As 𝑠∕ℎ increases further, the riblets distributed in the
streamwise direction become increasingly sparse. More fluid inside the
riblet grooves tends to move across the riblet crests and downstream
(see Fig. 9), instead of moving along the riblet passages from the
diverging region to the converging region. As a result, the near-wall
spanwise velocity and the strength of secondary flow show a decreasing
trend.

3.2. Turbulence structures

3.2.1. Instantaneous velocity field
To investigate the effects of the C–D riblets on the near-wall tur-

bulence structures, the instantaneous streamwise velocity fluctuations
(consisting of the second and third terms of Eq. (6)) are plotted in
Fig. 10, in the 𝑥–𝑧 plane slightly over the riblet crests at 𝑦 = 0.05𝛿
(𝑦+ = 9). In this figure, the velocity fluctuations are normalized by
the time-averaged bulk velocity. For the baseline case, the streamwise
high- and low-speed streaks occur randomly in the wall-parallel plane
(see Fig. 10d). These meandering streaks are induced by the near-wall
turbulence coherent structures, which take the form of hairpin vortices
and clusters of hairpin vortices (Moin and Kim, 1982). The approximate
spacing between the adjacent streaks in the baseline case is about 90
to 120 wall units. This is close to the typical distance between adjacent
low-speed streaks found in a turbulence boundary layer of 𝛥𝑧+ = 100
(Kim et al., 1987).

In the riblets cases, the near-wall flow is dominated by localized
low- and high-speed streaks occurring over DL/CL across the channel
width. These streaks appear to be locked in a position with the weaker
and more stochastically appearing streaks occurring in the space be-
tween. Despite their greater strength, the low- and high-speed streaks
occurring over the diverging and converging lines are not captured
as coherent vortices by the iso-surfaces of swirling strength shown in
Fig. 11. Hence, they are the manifestation of the local upwelling and
downwelling motions generated by the large-scale secondary flow. As
expected, the strength of these low- and high- speed streaks appears to
be the strongest with 𝑠∕ℎ = 4, in the case of the riblets.
9

The turbulence coherent structures can be visualized using the 𝜆𝑐𝑖-
criterion (Zhou et al., 1999). The instantaneous iso-surfaces of swirling
strength, 𝜆𝑐𝑖, colored by the instantaneous streamwise vorticity, 𝜔𝑥,
in different cases are shown in Fig. 11. For the baseline case, usual
hairpin vortices and streamwise vortices with positive and negative
vorticity seem randomly distributed across the channel. An increased
number of vortical structures are observed across the channel for all
the C–D riblets cases, indicating that the turbulent activity is amplified
by the presence of the C–D riblets. Among the three C–D riblet cases,
the number of vortices seems to be correlated to the strength of the
secondary flow motion with the 𝑠∕ℎ = 4 case displaying the largest
umber and the 𝑠∕ℎ = 2 case the smallest one.

Furthermore, the clusters of vortices seem to accumulate closer
o the converging regions and the number of vortices is relatively
parse over the diverging regions. This is consistent with the findings
rom the DNS study carried out by Benschop and Breugem (2017) and
he experimental study by Xu et al. (2019), who observed a larger
opulation of prograde and retrograde vortices in the converging plane.
t appears that the region of higher turbulent production activity is
ot co-located within the region of the strong near-wall shear layer
roduced by the downwelling motion near the diverging line. The evi-
ence here supports the hypothesis that the upwelling motion induced
y the secondary flow motion is responsible for the local turbulence
nhancement. Similar observations have been previously reported for
onfigurations where the flow develops over other types of spanwise
eterogeneous surface patterns (Vanderwel et al., 2019). The reason
hat, unlike in the case of Vanderwel et al. (2019), turbulent structures
re not suppressed in the regions of downwelling in the riblet cases
nvestigated here, could be due to the relatively small wavelength used.
ince the distance between the adjacent converging and diverging lines
s only 0.75𝛿 (135 wall units), the turbulent structures generated in the
onverging region can migrate to the diverging region.

.2.2. Turbulence kinetic energy and Reynolds stresses
The turbulence kinetic energy, 𝑘, and the Reynolds shear stresses,

𝑢′𝑣′ and 𝑢′𝑤′, are shown in the wall-normal-spanwise plane are shown
(see Fig. 12). Some spanwise heterogeneity of 𝑘 and −𝑢′𝑣′ exists in the
flow developing over the C–D riblets, resulting from the downwash and
upwash caused by the large-scale secondary flow motion. A similar dis-
tribution is also observed from the experimental results in the turbulent
boundary layer flow (Kevin et al., 2017; Xu et al., 2020). This behavior
is different from the one observed for the flow over a homogeneous
roughness where the heterogeneity only occurs in the vicinity of the

rough wall (Lee et al., 2011).
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Fig. 10. Contours of the instantaneous streamwise velocity fluctuations in the 𝑥–𝑧 plane at 𝑦∕𝛿 = 0.05(𝑦+ = 9) for the riblet cases with (a) 𝑠∕ℎ = 2, (b) 𝑠∕ℎ = 4 and (c) 𝑠∕ℎ = 10,
and (d) for the baseline case. ⟨𝑢⟩𝑥𝑧 is the wall-parallel plane-averaged mean streamwise velocity at 𝑦∕𝛿 = 0.05 for each case.
Fig. 11. Iso-surfaces of the swirling strength 𝜆𝑐𝑖 (𝜆𝑐𝑖𝛿∕𝑈𝑏 = 3.5) for the riblet cases at (a) 𝑠∕ℎ = 2, (b) 𝑠∕ℎ = 4 and (c) 𝑠∕ℎ = 10 as well as (d) for the baseline case, where the
results for the lower half channel are presented. The iso-surfaces are colored by the instantaneous streamwise vorticity 𝜔𝑥.
In comparison with the baseline case, both 𝑘 and −𝑢′𝑣′ for the
riblet case exhibit a substantial increase across a large portion of
the half channel height, with the largest increase occurring around
the converging line, the peaks of both showing an outward shift. A
quantitative comparison is also given in Fig. 13(a) and (b). This pattern
can be attributed to the upward motion of turbulence-rich fluid and
the increased local shear stress 𝜕𝑢∕𝜕𝑦 (see Fig. 14a) where the peaks
of 𝑘 and −𝑢′𝑣′ occur. It is also observed in an undisturbed turbulence
10
channel flow that the ejection motion of turbulence contributes to 80%
of the Reynolds shear stress at 𝑦+ = 50, especially for the intense
−𝑢′𝑣′ events (Kim et al., 1987). Above the diverging line, however,
the turbulence kinetic energy and Reynolds shear stresses are relatively
weaker, although the stronger shear occurs nearby (see Fig. 14a). This
is because, on the one hand, the region with high 𝜕𝑢∕𝜕𝑦 is very close
to the wall where turbulent activities are suppressed by the wall;
on the other hand, the fluids transported by the downward motion
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Fig. 12. Contours of (a–b) turbulent kinetic energy ⟨𝑘⟩𝑥, Reynolds shear stress (c–d) ⟨−𝑢′𝑣′⟩𝑥 and (e–f) ⟨𝑢′𝑤′
⟩𝑥 in wall-normal-spanwise planes for (a, c, e) the riblet case at 𝑠∕ℎ = 4

and (b, d, f) for the baseline case. The dash line denotes the vertical position of the riblet crest.
Fig. 13. Profile of the 𝑥-averaged (a) turbulent kinetic energy ⟨𝑘⟩𝑥 and (b) Reynolds shear stress ⟨−𝑢′𝑣′⟩𝑥 over the diverging and converging lines. Profile of the 𝑥–𝑧 plane-averaged
(c) ⟨𝑘⟩𝑥𝑧 and (d) ⟨−𝑢′𝑣′⟩𝑥𝑧. The dash line denotes the vertical position of the riblet crest.
Fig. 14. Contours of (a–b) vertical and (c–d) spanwise gradient of streamwise velocity in wall-normal-spanwise planes for (a, c) the riblet case at 𝑠∕ℎ = 4 and (b, d) for the
aseline case. The dash line denotes the vertical position of the riblet crest.
re turbulence-poor. With a closer examination of 𝑘 and −𝑢′𝑣′ over
the diverging line around the riblet crest, it can be seen that both 𝑘
and −𝑢′𝑣′ reach their local maxima just around the riblet crests (see
ig. 13(a, b)), owing to the significantly increased shear stress (see
ig. 14a). Considering all the riblets cases, the strongest intensity of
occurs at 𝑠∕ℎ = 4, which is consistent with the strong secondary flow

his case exhibits (see Fig. 13).
Another Reynolds shear stress component, 𝑢′𝑤′, which is associated

to momentum exchanges in the spanwise direction, is further analyzed
(see Figs. 12(e–f)). As expected for the baseline case, 𝑢′𝑤′ is equal to
, as the flow is homogeneous in the spanwise direction. Two positive
eaks of 𝑢′𝑤′ can be identified within half wavelength of the cases

with C–D riblets. Both of them are located near the region where the
magnitude of 𝜕𝑢∕𝜕𝑧 reaches its maximum (see Fig. 14c). The intensity of
𝑢′𝑤′ is large in the region close to the converging line, although 𝜕𝑢∕𝜕𝑧
has larger values on the DL side. This should be also due to the same
mechanisms that causes a larger 𝑘 and −𝑢′𝑣′.
11
3.2.3. Turbulent kinetic energy budget
The analyses carried out in the previous two sections show that C–

D riblets can produce a large-scale secondary flow motion capable of
significantly affecting the characteristics of the velocity and turbulence
fields. In this section, the influence of the C–D riblets on the turbulent
kinetic energy (TKE) budget is investigated by firstly examining the
spatial variations of each term and then by looking how the TKE budget
terms are balanced relative to each other. Hereafter, only the contour
for the riblet case at 𝑠∕ℎ = 4 is presented for simplicity.

The production term 𝑃𝑘 = −𝑢′𝑖𝑢
′
𝑗𝜕𝑢𝑖∕𝜕𝑥𝑗 is the sum of nine com-

ponents, which are the products of the Reynolds stresses −𝑢′𝑖𝑢
′
𝑗 and

the corresponding velocity gradient 𝜕𝑢𝑖∕𝜕𝑥𝑗 (Anderson et al., 2015).
Each component is denoted by a subscript, i.e. 𝑃𝑘,11 = −𝑢′1𝑢

′
1𝜕𝑢1∕𝜕𝑥1,

𝑃𝑘,12 = −𝑢′1𝑢
′
2𝜕𝑢1∕𝜕𝑥2 and 𝑃𝑘,13 = −𝑢′1𝑢

′
3𝜕𝑢1∕𝜕𝑥3.

The contours of 𝑃𝑘 (see its expression in Eq. (8)) are presented in
the wall-normal-spanwise plane (see Fig. 15(a)). They reveal a strong
spanwise variation. In comparison to the baseline case, the magnitude
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Fig. 15. Contours of the turbulent kinetic energy production term ⟨𝑃𝑘⟩𝑥 (normalized by 𝑈 3
𝑏 ∕𝛿) and its components in the wall-normal-spanwise plane for (a, c, e, g) the riblet

case at 𝑠∕ℎ = 4 and (b, d, f, h) the baseline case. (a, b) ⟨𝑃𝑘⟩𝑥; (c, d) ⟨𝑃𝑘,11⟩𝑥; (e, f) ⟨𝑃𝑘,12⟩𝑥; (g, h) ⟨𝑃𝑘,13⟩𝑥. The dash line denotes the vertical position of the riblet crest.
Fig. 16. Profile of the 𝑥–𝑧 plane-averaged (a) turbulent kinetic energy production term ⟨𝑃𝑘⟩𝑥𝑧 and (b) its components of ⟨𝑃𝑘⟩𝑥𝑧 for riblet cases. The vertical dashed line denotes
he position of the riblet crest.
F
f 𝑃𝑘 significantly increases across the span in the riblet cases. Near the
iverging line, a high level of turbulence production is confined within
thin region around the riblets, and the area with high turbulence

roduction expands vertically along the spanwise direction toward the
onverging region. Furthermore, the peak location shifts from inside
he riblet passage near the diverging line to a location set around 0.1𝛿
ver the converging line. Except for the diverging region, 𝑃𝑘 remains
ow inside the riblet passages. Overall, the contour of 𝑃𝑘 exhibits a
imilar pattern as that of the turbulence kinetic energy (see Fig. 12(a)).
ig. 16(a) shows the vertical profile of 𝑃𝑘 with its magnitude averaged
n the 𝑥–𝑧 plane. It can be seen that 𝑃𝑘 for the riblet cases presents
n increase compared to that of the baseline case. As the riblet spacing
aries, the intensity of 𝑃𝑘 shows a similar trend with that of 𝛤 , peaking
t 𝑠∕ℎ = 4.

The three production term components, 𝑃𝑘,11, 𝑃𝑘,12 and 𝑃𝑘,13, which
re driven by the streamwise velocity gradient along the streamwise,
all-normal and spanwise directions, are shown in Figs. 15(c–h). While
𝑘,11 is only non-negligible around the riblet crests near the diverging

ine, the distribution of 𝑃𝑘,12 is very similar to that of 𝑃𝑘 with its
agnitude being slightly smaller, but acting as the dominant term. The

ntensity level of 𝑃𝑘,12 in the riblet passages remains low except for
he diverging region due to low turbulent shear stress intensity (see
12
ig. 12c). While 𝑃𝑘,13 = −𝑢′𝑤′𝜕𝑢∕𝜕𝑧 is zero in the baseline case, in
the riblet cases, two zones with a high value of 𝑃𝑘,13 are observed
with one located near the diverging line and the other one close to
the converging line. This is consistent with what is observed for 𝜕𝑢∕𝜕𝑧
(see Fig. 14c). The inward shift of peak 𝑃𝑘,13 results from the need to
satisfy the symmetry condition on the converging and diverging line
plane. Despite the differences in the spatial distributions of 𝑃𝑘,11, 𝑃𝑘,12
and 𝑃𝑘,13, it appears that while the high turbulent production occurring
in the DL region is caused by the high local velocity gradient due to the
downwelling motion, the high turbulent production occurring in the CL
region is caused by the high turbulent shear stress associated with the
upwelling motion.

In comparison with the baseline case, the intensity of the turbulent
kinetic energy dissipation term −𝜖𝑘 in the riblet cases sees an increase
(see Fig. 17a), especially in the riblet passages near the diverging line
and around the riblet crests where larger velocity gradients exist. Inside
the riblet passages, except a narrow region near the diverging line, the
level of dissipation remains low. The region with high −𝜖𝑘 increases
in height in the direction towards the converging line because a large
region is affected by the secondary flow due to the upwelling motion.

Fig. 17(c, d) displays contours of 𝑃𝑘+𝜖𝑘 in the wall-normal-spanwise

plane. The dissipation is stronger than 𝑃𝑘 in the near-wall region
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Fig. 17. Contours of turbulent kinetic energy budget terms for (a, c, e, g) riblet case with 𝑠∕ℎ = 4 and (b, d, f, h) the baseline case in wall-normal-spanwise plane. (a, b) Dissipation
term ⟨𝜖𝑘⟩𝑥; (c, d) sum of ⟨𝑃𝑘⟩𝑥 and ⟨𝜖𝑘⟩𝑥 (the contour value along the solid lines is zero); (e, f) convection term ⟨𝐶𝑘⟩𝑥; (g, h) diffusion term ⟨𝐷𝑘⟩𝑥. Each term is normalized by
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𝑏 ∕𝛿. The dash line denotes the vertical position of the riblet crest.
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xcept for a very narrow region over the diverging line, whereas the
pposite phenomenon occurs in the region above the riblet crests. This
learly results in a local imbalance between turbulence production
nd dissipation in the wall-normal direction. It is noteworthy that
he sign of 𝑃𝑘 + 𝜖𝑘 remains unchanged along the spanwise direction
xcept for a very narrow region over the diverging line. This situation
iffers significantly from the observations over strip-type and ridge-
ype spanwise heterogeneous roughness (Anderson et al., 2015; Hwang
nd Lee, 2018), where 𝑃𝑘 + 𝜖𝑘 changes sign in the spanwise direction
bove the roughness with 𝑃𝑘+𝜖𝑘 > 0 in the regions of downwelling and
𝑘+𝜖𝑘 < 0 occurring in the regions of upwelling. It is the sign change in
𝑘 + 𝜖𝑘 in the spanwise motion which is believed to be responsible for
ransporting the ‘turbulence-rich’ fluid from the region of 𝑃𝑘+𝜖𝑘 > 0 to
he region of 𝑃𝑘+ 𝜖𝑘 < 0 (Anderson et al., 2015; Hwang and Lee, 2018)
n the spanwise direction.

The secondary flow motion can be categorized as the Prandtl’s
irst kind and the second kind (Erhard et al., 2010). The Prandtl’s
irst kind is known as the geometry-driven secondary flow (Xu et al.,
018), whereas the Prandtl’s second kind is known as the turbulence-
riven secondary flow (Anderson et al., 2015). The secondary flow
nduced by strip-type and ridge-type spanwise heterogeneous roughness
elongs to the Prandtl’s flows of the second kind since it is the local
mbalance between turbulence production and dissipation that induces
he secondary flow motion (Anderson et al., 2015; Hwang and Lee,
018). In contrast, in the C–D riblet case, an imbalance between 𝑃𝑘 and
𝑘 does not exist in the spanwise direction. Moreover, the spanwise flow
nd the large-scale secondary flow motion are induced by the yawed
iblets. Hence, the secondary flow produced by the C–D riblets belongs
o the Prandtl’s secondary flows of the first kind.

The contour of the convection term 𝐶𝑘 = −𝑢𝑗𝜕𝑘∕𝜕𝑥𝑗 in the wall-
normal-spanwise plane is depicted in Figs. 17(e–f). The convection term
results from the convection of the mean flow. In the riblet cases, regions
of significant 𝐶𝑘 appear near the diverging line, in the vicinity of the
wall with riblets and above the riblet crests over the converging line,
respectively. Around the diverging line, the sign of 𝐶𝑘 in the wall-
normal direction changes from positive to negative near the riblet crest
where the turbulent kinetic energy 𝑘 peaks. The opposite occurs in
the region of the converging line, further away from the wall, because
of the flow upward motion. The distribution of 𝐶𝑘 indicates that the

𝑣𝜕𝑘∕𝜕𝑦 is the dominant source of 𝐶 .
13

component − 𝑘
Fig. 17(g–h) displays contours of the diffusion term 𝐷𝑘 in the wall-
normal-spanwise plane. The diffusion term 𝐷𝑘 transports energy from
a region with a high kinetic energy level to a region with a low kinetic
energy level via turbulent activities. Its net contribution to the rate of
change of kinetic energy is zero. The variation trend of 𝐷𝑘 along the
wall-normal direction is similar with that of the baseline case but with
a significantly increased magnitude. The spatial region of 𝐷𝑘 with high
negative and positive magnitude is similar with that of the high 𝑃𝑘
and 𝜖𝑘 respectively, indicating the important role that 𝐷𝑘 plays in the
balance of the TKE budget. In comparison with 𝐶𝑘, 𝐷𝑘 plays a more
important role on transporting ‘turbulence-rich’ fluid from the region
of 𝑃𝑘 + 𝜖𝑘 > 0 to the region of 𝑃𝑘 + 𝜖𝑘 < 0.

To understand how the TKE budget balance is affected by the
induced secondary flow, the profiles of the TKE budget terms at the di-
verging/converging lines and in the 𝑥–𝑧 plane-average across the span
are shown for the riblet case with 𝑠∕ℎ = 4 in Figs. 18(b–d). The profiles
of the baseline case are also included for comparison in Fig. 18(a). In
the baseline case, the diffusion term 𝐷𝑘 and dissipation term 𝜖𝑘 are in
alance with each other in the viscous layer. The production term 𝑃𝑘
eaks in the buffer layer region. It is balanced by the sum of 𝐷𝑘 and
𝑘. In the outer region, the production and dissipation terms are the
ominant contributors to the TKE budget and appear to balance each
ther out, and this is a region called the equilibrium layer (Townsend,
961).

In the riblet case, the way in which the TKE budget terms are
alanced relative to each other appears to be significantly altered by
he secondary flow motion. In particular, the convection term 𝐶𝑘,
hich is essentially zero in the baseline case, becomes significant in

he regions just below and above the riblet crests. It is caused by the
arge-scale secondary motion. Over the diverging line, 𝐶𝑘 is high below
he crest. This means that the secondary flow motion brings a large
mount of TKE into the riblets’ valleys, because of the downwelling
otion. In the outer part of the riblet valleys (0.005 < 𝑦∕𝛿 < 0.03),

he production and convection terms are high because of the direct
mpact of the downwelling motion. As such, the diffusion term changes
ign and joins force with the dissipation term to counteract the balance
gainst the production and convection terms. Above the riblet crests,
he magnitude of all the terms decreases sharply and the sign of 𝐶𝑘

and 𝐷 reverses as the local spanwise flow changes in direction.
𝑘
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Fig. 18. Profiles of the turbulent kinetic energy budget terms for (a) the baseline case; and the riblet case at 𝑠∕ℎ = 4 (b) over the diverging line; (c) over the converging line,
and (d) the 𝑥–𝑧 plane-average. Each term is normalized by 𝑈 3

𝑏 ∕𝛿. The vertical dashed line denotes the position of the riblet crests.
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Over the converging line, the magnitude of all the TKE terms is
much lower than in the diverging line region. Large variations occur
in the TKE terms, in the region above the riblet crests as a result of
the upwelling motion (see Fig. 18c). The diffusion 𝐷𝑘 and dissipation
𝜖𝑘 terms balance against each other within the riblet valleys. The
diffusion term is balanced against the sum of the dissipation term and
the convection term in the region slightly above the riblet crests (see
Fig. 18c). At 𝑦 ≈ 0.1𝛿, the production term peaks, and it is essentially
balanced by the sum of the dissipation and diffusion terms.

In the spanwise-averaged sense, the diffusion 𝐷𝑘 and dissipation 𝜖𝑘
terms balance against each other only near the bottom of the riblet
valleys (see Fig. 18(d)). Both 𝐷𝑘 and 𝜖𝑘 peak at the riblet crests. Above
the riblet crests, the budget terms for the riblet case display essentially
a variation trend similar as those in the baseline case, but with a larger
magnitude. The contribution of the convection term to the spanwise
averaged TKE budget is small, exhibiting only a small oscillation just
below and above the riblet crests. An equilibrium layer exists with
𝑦∕𝛿 > 0.2 as for the baseline case.

3.3. Drag analysis

The drag force experienced by the channel flow when C–D riblets
are present, is examined to understand how the secondary flow motion
affects the drag behavior. The drag force, 𝐹𝐷, can be decomposed into
the skin friction force, 𝐹𝐷𝑣, and the pressure drag, 𝐹𝐷𝑝 respectively.
They act on the bottom and top wall of the channel in the 𝑥-direction.
𝐹𝐷𝑣 and 𝐹𝐷𝑝 are obtained from the surface integration of the viscous
stress and pressure acting on the walls, respectively. 𝐹𝐷𝑝 is caused by
the periodical pressure force acting on the leeward/windward sides of
the C–D riblets, and it is zero for the baseline case. The corresponding
drag coefficients can be defined as:

𝐶𝐷𝑣 =
𝐹𝐷𝑣
2

, 𝐶𝐷𝑝 =
𝐹𝐷𝑝
2

(10)
14

𝜌𝑈𝑏𝑊𝐿 𝜌𝑈𝑏𝑊𝐿
here 𝐹𝐷 = 𝐹𝐷𝑣 + 𝐹𝐷𝑝 and 𝐶𝐷 = 𝐶𝐷𝑣+𝐶𝐷𝑝.
To highlight the changes in the drag coefficients in the riblet cases

ith respect to those in the baseline case, the drag coefficients normal-
zed by the total drag coefficient of the baseline case 𝐶𝐷,0 are presented
n the following. Fig. 19(a) displays the variations of the normalized
rag coefficients versus 𝑠∕ℎ. This figure shows that adding the C–D
iblets to the channel walls leads to a higher 𝐶𝐷 for all the riblet cases
tudied here. This finding is consistent with the numerical simulation
esults obtained by Guo et al. (2020a) for a laminar channel flow
nd by Benschop and Breugem (2017) for a turbulent channel flow.
urthermore, as 𝑠∕ℎ varies, 𝐶𝐷 displays a similar trend as the strength
f the secondary flow, peaking at 𝑠∕ℎ = 4 (see Figs. 19(a) and 8(a) for
omparison). The variations in 𝐶𝐷𝑣 and 𝐶𝐷𝑝 follow a similar trend as
hat of 𝐶𝐷 with 𝐶𝐷𝑣 counting for about 2/3 of the total drag, when
hanging 𝑠∕ℎ. At 𝑠∕ℎ = 2, the viscous drag 𝐶𝐷𝑣 is slightly smaller
han that of the baseline case, despite a substantial increase in the
etted area due to the addition of the riblets. This is because the C–D

iblets with 𝑠∕ℎ = 2 behave like the 𝑑-type roughness. As such, the
iblet spacing is occupied by fluid with low streamwise momentum
see Fig. 9(a)), leading to a lower shear stress than for the baseline
ase. As 𝑠∕ℎ increases further, 𝐶𝐷𝑣 rises above the baseline level due to
n enhanced near-wall momentum mixing that takes place within the
iblet spacing.

To aid the investigation of the spanwise variations in the drag
haracteristics, the skin friction, 𝑓𝑑𝑣, and pressure drag per unit span-
ise length, 𝑓𝑑𝑝, are computed by integrating the viscous stress and
ressure at the wall surface in the 𝑥-direction. The corresponding drag
oefficients are defined as follows:

𝑑 =
𝑓𝑑

𝜌𝑈2
𝑏𝐿

, 𝑐𝑑𝑣 =
𝑓𝑑𝑣
𝜌𝑈2

𝑏𝐿
, 𝑐𝑑𝑝 =

𝑓𝑑𝑝
𝜌𝑈2

𝑏𝐿
(11)

where 𝑓 = 𝑓 + 𝑓 and 𝑐 = 𝑐 + 𝑐 .
𝑑 𝑑𝑣 𝑑𝑝 𝑑 𝑑𝑣 𝑑𝑝
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Fig. 19. (a) Variation of 𝐶𝐷 , 𝐶𝐷𝑣 and 𝐶𝐷𝑝 for riblet cases with various 𝑠∕ℎ. (b) The spanwise distribution of 𝑐𝑑 for riblet cases with various 𝑠∕ℎ. (c) The spanwise distribution of
𝑑 , 𝑐𝑑𝑣 and 𝑐𝑑𝑝 for riblet case with 𝑠∕ℎ = 4. (d) The local drag coefficient 𝑐𝑑 over the diverging line and its components defined in Eq. (12). Each term is normalized by the drag
oefficient of the baseline case 𝐶𝐷,0 (denoted by the horizontal dashed line).
Fig. 19(b) shows that, for all the riblet cases, 𝑐𝑑 varies dramatically
rom the diverging to the converging line across one half of the riblet
avelength. It peaks around the diverging line (𝑧∕𝛬 = 0), and displays a

ignificantly higher value compared to that for the baseline case. 𝑐𝑑 re-
ains relatively constant in the middle section and dips slightly below

he baseline level around the converging line. This figure also shows
hat across the riblet span, 𝑐𝑑 experiences a drag increase compared to
he baseline case except for a narrow area around the converging line
𝑧∕𝛬 = 0.4 − 0.5). Among the riblet cases examined here, 𝑐𝑑 exhibits
similar trend when varying 𝑠∕ℎ with the strongest increase over the

iverging line occurring at 𝑠∕ℎ = 4.
Both results presented in Figs. 19(a) and 19(b) imply a direct link

etween the amount of total drag increase and the strength of the
econdary flow motion generated by the C–D riblets. Fig. 19(b) also
oints to the correlation between a local increase/decrease in drag and
he presence of a downwash/upwash motion, respectively. A closer
xamination of the variations of 𝑐𝑑𝑣 and 𝑐𝑑𝑝 at 𝑠∕ℎ = 4 shows that the

large increase in 𝑐𝑑 over the diverging line is caused by a dramatic
increase in both 𝑐𝑑𝑣 and 𝑐𝑑𝑝. It is understandable that a stronger
ownwash transports the high-momentum fluid toward the wall, which
esults in a larger near-wall shear stress and hence a larger 𝑐𝑑𝑣. The

large pressure drag over the diverging region is likely to be caused
by the pressure difference acting on the windward and leeward face
of the riblet, as the fluid approaches the riblet passages at an inclined
angle from upstream. Although the magnitude of 𝑐𝑑𝑝 is small across the
remaining portion of the riblet section, it acts to offset the drag benefit
in the riblet cases since this drag is absent in the baseline case.
15
To further investigate the drag increase over the diverging line, the
local drag coefficient is decomposed as (see Appendix):

𝑐𝑑 =𝐶𝐷 − 1
𝑈2
𝑏𝐿

∫𝑆
𝑣 𝜕𝑢
𝜕𝑦
𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑑1

+ 𝜈
𝑈2
𝑏𝐿

∫𝑆
𝜕
𝜕𝑧

( 𝜕𝑢
𝜕𝑧

)𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑑2

− 1
𝑈2
𝑏𝐿

∫𝑆
𝜕𝑢′𝑤′

𝜕𝑧
𝑑𝑆

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑐𝑑3

(12)

where 𝑆 is the area of the longitudinal (𝑥–𝑦) plane over the diverging
line.

𝑐𝑑1 is directly caused by the downwelling motion, whereas the
generation of 𝑐𝑑2 and 𝑐𝑑3 results from the spanwise gradient of the
streamwise velocity which is indirectly caused by the downwelling
motion. The variations of each term found in Eq. (12) are shown as a
function of 𝑠∕ℎ in Fig. 19(d). One can see that 𝑐𝑑 over the diverging line
is dominant by 𝑐𝑑1 arising from the downwelling, and the contributions
from 𝑐𝑑2 and 𝑐𝑑3 are relatively small and act to reduce the drag. This
confirms that a downwelling motion will lead to a local increase in drag
for C–D riblets.

To explore the influence of the large-scale secondary flow on the
drag augmentation, the drag decomposition method introduced by Fuk-
agata et al. (2002) is also applied here. Nikora et al. (2019) extended
this method to spanwise heterogeneous roughness, where the drag

coefficient is decomposed into the contributions from the viscous stress
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Fig. 20. The drag coefficient and its components defined in Eq. (13) for the baseline and the riblet cases. Each term is normalized by 𝐶𝐷,0, the drag coefficient of the baseline
case.
(𝐶𝐷𝑙), the Reynolds shear stress (𝐶𝐷𝑡) and the dispersive stress (𝐶𝐷𝑑),
respectively, as:

𝐶𝐷 = 12𝜈
𝑄𝑁
⏟⏟⏟
𝐶𝐷𝑙

+ 12
𝑄2𝑁 ∫

𝛿

0
(𝛿 − 𝑦)𝜙⟨−𝑢′𝑣′⟩𝑥𝑧𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐷𝑡

+ 12
𝑄2𝑁 ∫

𝛿

0
(𝛿 − 𝑦)𝜙⟨−�̃��̃�⟩𝑥𝑧𝑑𝑦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝐷𝑑

(13)

where 𝑄 = ∫ 𝛿0 𝜙⟨𝑢⟩𝑥𝑧𝑑𝑦;𝑁 is a non-dimensional parameter denoting the
low-roughness-wall interaction (Nikora et al., 2019). For the baseline
ase 𝑁 is equal to 2.

The total drag coefficient, 𝐶𝐷, and its components defined in
q. (13) are shown in Fig. 20 for both the baseline case and the riblet
ases. In the latter, the drag component due to the viscous stress (𝐶𝐷𝑙)
s almost the same for both the riblet cases and the baseline case, and
t is almost invariant from 𝑠∕ℎ. The drag contribution of the Reynolds
tress (𝐶𝐷𝑡) is the major component of 𝐶𝐷. Its value is higher for the
iblet cases than for the baseline case. For the baseline case, the drag
ontribution coming from the dispersive stress (𝐶𝐷𝑑) is zero. However,
𝐷𝑑 constitutes to a substantial portion of the total drag in the riblet
ases. Both 𝐶𝐷𝑑 and 𝐶𝐷𝑡 display the same trend as that of 𝛤 as 𝑠∕ℎ

varies, peaking at 𝑠∕ℎ = 4. All these observations indicate that the
generation of large-scale secondary flow and associated momentum
mixing caused by the present C–D riblet cases lead to additional drag.

4. Conclusion

In this paper, the results from DNSs of a turbulent channel flow
developing over C–D riblets at a Reynolds number of 𝑅𝑒𝑏 = 2, 800 are
presented. The simulations are carried out using C–D riblets with a
riblet spacing varying from 𝑠∕ℎ = 2 to 10, while the normalized riblet
height is fixed at ℎ+ = 5. The effect of the C–D riblets on the time-
veraged flow field, instantaneous turbulent flow field and TKE budget
s well as the drag behavior is examined in detail.

C–D riblets can produce a secondary flow motion which is charac-
erized by a pair of weak large-scale counter-rotating vortices. With the
ncrease of 𝑠∕ℎ from 2 to 10, the strength of the secondary flow motion,
, shows a parabolic pattern, peaking at about 𝑠∕ℎ = 4. The magnitude

of the dispersive velocity and dispersive stress is strongly correlated to
the magnitude of 𝛤 and displays a similar trend as 𝑠∕ℎ varies. A close
examination of the near-wall flow reveals that the C–D riblets behave
like 𝑑-type roughness at 𝑠∕ℎ = 2, whereas at 𝑠∕ℎ = 10, they behave
like 𝑘-type roughness. As 𝑠∕ℎ increases from 2 to 4, the enhanced
momentum mixing inside the riblet spacing leads to an increased near-
16

wall spanwise velocity. However, as 𝑠∕ℎ further increases from 4 to 10,
more fluid inside the riblet grooves tends to move across the riblet tips
toward downstream, instead of moving along the grooves, which causes
the near-wall spanwise velocity to decrease.

For all the riblet cases, some spanwise heterogeneity is observed
for all the turbulent quantities including the turbulent kinetic energy,
the Reynolds stresses and the TKE budget terms. In comparison to the
baseline case, the magnitude of these quantities is increased, peaking at
about 𝑠∕ℎ = 4. Furthermore, the way in which the TKE budget terms are
balanced relative to each other is significantly altered by the secondary
flow motion, especially over the DL and CL. It is found that, unlike the
other types of spanwise heterogeneous surfaces, the imbalance between
turbulent kinetic energy production and dissipation exists in the wall-
normal direction instead of the spanwise direction, when C–D riblets
are present. Consequently, it should not be the main factor for the
generation of the large-scale secondary flow. Therefore, the secondary
flow produced by the C–D riblets can be classified as a Prandtl’s
secondary flow of the first kind, also known as the geometry-driven
secondary flow.

In comparison with the baseline case, the drag increases for all
the riblet cases examined in this paper. Furthermore, the variation
of the drag coefficient as a function of 𝑠∕ℎ follows the same trend
as that of the strength of the secondary flow. An examination of the
drag variation across the span reveals that a slight drag reduction only
occurs over a narrow region over the CL, and the increase in the overall
drag is caused by a significantly increased drag in the diverging region
arising from the downwelling and a slightly increased drag between the
DL and CL.

By decomposing the drag into contributions from the viscous stress,
𝐶𝐷𝑙, the Reynolds stress (𝐶𝐷𝑡) and the dispersive stress, 𝐶𝐷𝑑 , it is found
that 𝐶𝐷𝑡 is the major component of 𝐶𝐷. While 𝐶𝐷𝑙 is almost invariant
from 𝑠∕ℎ, both 𝐶𝐷𝑑 and 𝐶𝐷𝑡 display the same trend as that of 𝛤 as
𝑠∕ℎ varies. This further confirms that the generation of the large-scale
secondary flow caused by the present C–D riblets and the associated
turbulent momentum mixing lead to additional drag.
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Appendix. Local drag coefficient over a diverging line

To obtain the local drag coefficient over the diverging line, the
integral form of the 𝑥1-momentum equation across the longitudinal
(𝑥–𝑦) plane over the diverging line is can be written as:

∫𝑆
𝜌𝑢𝑗

𝜕𝑢1
𝜕𝑥𝑗

𝑑𝑆 = ∫𝑆
𝑓 1𝑑𝑆 −∫𝑆

𝜕𝑝
𝜕𝑥1

𝑑𝑆 +∫𝑆
𝜇 𝜕
𝜕𝑥𝑗

(
𝜕𝑢1
𝜕𝑥𝑗

)𝑑𝑆 −∫𝑆
𝜌
𝜕𝑢′1𝑢

′
𝑗

𝜕𝑥𝑗
𝑑𝑆

(A.1)

where 𝑆 is the area of the longitudinal (𝑥–𝑦) plane over the diverging
line, and 𝑉 = 𝑆𝑊 . With the aid of the divergence theorem, each term
f Eq. (A.1) can be simplified as follows:

∫𝑆
𝜌𝑢𝑗

𝜕𝑢1
𝜕𝑥𝑗

𝑑𝑆 = ∮𝑙
𝜌1
2
𝜕𝑢1𝑢1
𝜕𝑥1

𝑛1𝑑𝑙

+ ∫𝑆
𝜌𝑢2

𝜕𝑢1
𝜕𝑥2

𝑑𝑆 + ∫𝑆
𝜌𝑢3

𝜕𝑢1
𝜕𝑥3

𝑑𝑆 = ∫𝑆
𝜌𝑢2

𝜕𝑢1
𝜕𝑥2

𝑑𝑆

∫𝑆
𝑓 1𝑑𝑆 =

𝑓 1𝑉
𝑊

=
𝐹𝐷
𝑊

, − ∫𝑆
𝜕𝑝
𝜕𝑥1

𝑑𝑆 = −∮𝑙
𝑝𝑛1𝑑𝑙 = −𝑓𝑑𝑝

∫𝑆
𝜇 𝜕
𝜕𝑥𝑗

(
𝜕𝑢1
𝜕𝑥𝑗

)𝑑𝑆 = ∮𝑙
𝜇
𝜕𝑢1
𝜕𝑥1

𝑛1𝑑𝑙 + ∮𝑙
𝜇
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𝑛2𝑑𝑙 + ∫𝑆
𝜇 𝜕
𝜕𝑥3

(
𝜕𝑢1
𝜕𝑥3

)𝑑𝑆
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𝜇 𝜕
𝜕𝑥3

(
𝜕𝑢1
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𝜌
𝜕𝑢′1𝑢

′
𝑗
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𝜌
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3

𝜕𝑥3
𝑑𝑆 = ∫𝑆

𝜌
𝜕𝑢′1𝑢

′
3

𝜕𝑥3
𝑑𝑆

(A.2)

where 𝑙 denotes the line enclosing the sectional plane; 𝑛 = (𝑛1, 𝑛2, 0) is
the outward pointing unit normal at each point of the boundary lines.
𝐹𝐷 ≡ 𝑓 1𝑉 , owing to the force balance in 𝑥1-direction. Substituting
Eq. (A.2) into Eq. (A.1) and dividing each term by 𝜌𝑈2

𝑏𝐿 give the local
drag coefficient over the diverging line as:

𝑐𝑑 =𝐶𝐷 − 1
𝑈2
𝑏𝐿

∫𝑆
𝑣 𝜕𝑢
𝜕𝑦
𝑑𝑆
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𝑐𝑑1

+ 𝜈
𝑈2
𝑏𝐿

∫𝑆
𝜕
𝜕𝑧
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(A.3)
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