
Citation: Zhang, M.; Yin, B.; Guo, D.;

Ji, Z.; Yang, G. Numerical Study on

the Flow Past Three Cylinders in

Equilateral-Triangular Arrangement

at Re = 3× 106. Appl. Sci. 2022, 12,

11835. https://doi.org/10.3390/

app122211835

Academic Editors: Vasily Novozhilov

and Cunlu Zhao

Received: 29 October 2022

Accepted: 17 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Numerical Study on the Flow Past Three Cylinders in
Equilateral-Triangular Arrangement at Re = 3× 106

Mohan Zhang 1,2 , Bo Yin 1,2,* , Dilong Guo 1,2, Zhanling Ji 1,2 and Guowei Yang 1,2

1 Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics,
Chinese Academy of Sciences, Beijing 100190, China

2 School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: yinbo@imech.ac.cn

Abstract: One of the most common systems in engineering problems is the multi-column system
in the form of an equilateral-triangular arrangement. This study used three-dimensional numerical
simulations to investigate the flow around three cylinders in this arrangement at the super-critical
Reynolds number Re = 3× 106, concentrating on the influence on the spacing ratio (L/D) among
cylinders. The instantaneous vortex structures, Strouhal numbers, fluid force coefficients, and
pressure distributions are analyzed thoroughly. The present study demonstrated that fluid dynamics
is sensitive to L/D, by which five different flow patterns are classified, namely single bluff body flow
(L/D ≤ 1.1), deflected gap flow (1.2 ≤ L/D ≤ 1.4), anti-phase flow (1.5 ≤ L/D ≤ 2.3), in-phase flow
(2.5 ≤ L/D < 3.5), and co-shedding flow (L/D ≥ 3.5). Critical bounds are identified by significant
transitions in the flow structure, discontinuous drop and jump of St, and force coefficients.

Keywords: flow interference; vortex interaction; vortex dynamics; improved delayed-detached eddy
simulation (IDDES)

1. Introduction

Manifold cylindrical structures are often used in mechanic practices and industries,
such as tower groups, chimneys, and offshore platforms. Flow separation, reattachment,
vortex impingement, and flow-induced motion (FIM) may occur in these systems due to
the interaction between the flow and cylindrical structures [1]. Particularly, an equilateral-
triangular configuration comprising three cylinders is widely encountered in marine and
offshore engineering [2–4]. While extensive studies on the flow around two cylinders (with
side-by-side or tandem arrangement) have been reported, the flow around three cylinders,
particularly at high Reynolds numbers, has received less attention. (Re = U0D/υ, where U0
is the velocity of the incoming flow, D is the diameter of the cylinder, and υ is the kinematic
viscosity of the fluid.) In practice, however, turbulent flow is a more frequently encountered
situation than laminar flow at low Reynolds numbers, but research on flow past cylinders in
the super-critical flow regime is scant. In this study, the fluid forces, spectral characteristics,
wake structure and their interactions with three equilateral cylinders are investigated,
which support a thorough comprehension of fluid dynamics of flow around cylinders.

The spacing ratio L/D, where L is the separation between the centers of the two
cylinders and D is the diameter, can be used to categorize the flow patterns for two
cylinders in tandem form [5]. Sumner et al. [6] investigated three flow patterns of the
flow around two tandem cylinders for 1.0 ≤ L/D ≤ 3.0 at 1200 ≤ Re ≤ 3800 by particle
image velocimetry (PIV). When L/D = 1.0, the flow field is comparable to a single bluff
body. When L/D = 1.5 and 2, the shear-layer reattachment flow features are noticed. When
L/D = 2.5 and 3, the flow feature of each cylinder is similar to that in the case of a single
cylinder. For two cylinders arranged side by side, Sumner [7] suggested identifying the flow
regimes into three types. When 1.0 ≤ L/D ≤ 1.1–1.2, the two cylinders act like one bluff
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body. When 1.1–1.2 ≤ L/D ≤ 2–2.2, a biased flow pattern shows up. When L/D ≥ 2–2.2,
cylinders behave more independent and show parallel vortex streets. More details of the
wake flow of two cylinders at variable Re and L/D are summarized by Sumner [7].

For three cylinders in tandem and side-by-side layout, the flow patterns, force co-
efficients, and pressure distributions have been investigated [8–10]. More complicated
than a tandem or side-by-side layout is the flow past through three cylinders arranged
in a triangle. Sayers [11] measured the drag and lift force coefficients of one of the three
cylinders in triangular arrangement at Re = 3× 106 and 1.25 ≤ L/D ≤ 5 with various
incidence angles (α). Only one cylinder was measured, so the interference between the
cylinders is not clear. The vortex-shedding-frequency data of three cylinders in an equilat-
eral triangle configuration at Re = 2.1× 103 and 3.5× 103 at various incidence angles and
L/D were obtained by Lam et al. [12] using a dye-injection approach to visualize the flow.
Bi-stable flow characteristics were observed at L/D < 2.29, α = 0◦ and they depend on
the starting conditions. The static pressures of each cylinder were individually measured
by Tatsuno et al. [13]. The results show that when the spacing ratio is small, the impacts
of the flow interference are obvious. By conducting wind tunnel studies, Gu et al. [14]
categorized the flow pattern of the three cylinders arranged in an equilateral triangle. It
shows that the incidence angle has a huge influence on the pressure distribution on each
cylinder and the flow patterns. Four basic levels of interference (small, transition, medium,
large spacing) are identified according to the spacing ratio. Furthermore, according to the
various incidence angles, the interference type can be identified as proximity effect, shear
layer reattachment effect, and wake effect. Pouryoussefi et al. [15] carried out wind tunnel
experiments with five subcritical Reynolds numbers at the incidence angle 0◦ (one cylinder
in the upstream and others in the downstream). They showed that as L/D increases,
the mean drag coefficient of all cylinders almost increases. When L/D = 1.5 and 2, the
downstream cylinders’ drag coefficients reach their lowest value since there is no vortex
shedding from them. Bansal et al. [16] investigated the influence of the incidence angle
(0◦–60◦) when the L/D = 1.35 and Re = 2100 by PIV and laser Doppler velocimetry. They
found that large-scale vortexes shed at about 5D downstream from the cylinders for all
incidence angles. Yang et al. [17] investigated the effects of L/D (2.8–5.2) and incidence
angle (0◦–30◦) on the flow around an equilateral-triangular-arranged three-cylinder cluster
at Re = 8000. They classified the flow pattern into two categories, short-spacing ratio
shear-layer reattachment regime and big-spacing ratio vortex-shedding regime, respec-
tively. In addition, the influence of the incidence angle is more complex and dependent on
the spacing ratio.

Meanwhile, a number of numerical simulations on this three-cylinder configuration
have been performed over the past decades. Yan et al. [18] investigated the influence of the
spacing ratio (1.5–5) and the incidence angle (0◦, 30◦, 60◦) on the flow patterns at Re = 100
by two-dimensional simulation. Yang et al. [19] investigated the characteristic flow regions
of three cylinders by the lattice Boltzmann method and fluorescence flow visualization
using a laser. They demonstrated that for Re = 200 and S/D = 3, two different types of
flow patterns can be distinguished by T/D, where S is the distance between the centers of
the cylinders in the upstream and downstream, and T is the distance between the centers of
the two cylinders in the downstream. When 1 ≤ T/D ≤ 1.2 and 2.5 ≤ T/D ≤ 3.1, typical
steady flow occurs, when 1.3 ≤ T/D ≤ 2.4 and 3.2 ≤ T/D ≤ 10, typical unsteady flow
occurs. By using the 2D finite volume approach, Zheng et al. [20] examined the effects of the
L/D (1.5–7) and Reynolds number (100–200) on the flow characteristics of three identical
cylinders organized in an equilateral-triangular arrangement at incidence angles of 0◦

and 180◦. By using the immersed boundary approach, Chen at al. [21] carefully explored
the impact of L/D, Reynolds number, and three-dimensionality on the fluid dynamics of
the flow past three circular cylinders arranged in an equilateral-triangular arrangement.
Six flow patterns depending on L/D at Re = 100 were observed: single bluff-body flow
(1.0 ≤ L/D ≤ 1.4), deflected flow (1.5 ≤ L/D ≤ 1.9), flip-flopping flow (2.0 ≤ L/D ≤ 2.5),
anti-phase flow (2.6 ≤ L/D ≤ 2.8 and 3.5 ≤ L/D ≤ 4.1), in-phase flow (2.9 ≤ L/D ≤ 3.4
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and 4.2 ≤ L/D ≤ 4.5), and fully developed in-phase co-shedding flow (4.6 ≤ L/D ≤ 6.0).
In addition, some research of the flow configuration in the sub-critical regime were studied
by the numerical method. Gao et al. [22] simulated the flow past three circular cylinders
with the incidence angle of 30◦ for 200 ≤ Re ≤ 3900 and 1.25 ≤ L/D ≤ 4.0 and five flow
patterns were identified. The vortex shedding’s three-dimensionality grows stronger as the
Reynolds number increases.

From the review of the relevant studies, it can be observed that the majority of the
numerical and experimental research works were carried out in the laminar and sub-critical
flow regime. Nevertheless, the Reynolds number is often between 105–107 in the majority
of real circumstances, such as offshore engineering, which correspond to the super-critical
regime and post-critical regime, respectively [23]. In this paper, we focus on the super-
critical flow regime, the Reynolds number as high as 3× 106. In super-critical flow, a rapid
transition happens from laminar boundary layer to turbulent boundary layer. It is necessary
to conduct a more comprehensive investigation into the flow structure and behavior of
the three cylinders when they are arranged in an equilateral triangle at high Reynolds
numbers. Schewe [24] carried out wind tunnel tests to achieve the force measurements
of single cylinder from the Reynolds number 2.3 × 104 to 7.1 × 106, corresponding to
the sub-critical and post-critical regime, respectively. It was observed that the Strouhal
number (St) increased while the Cd value decreased at Re > 3.5× 105. Hinsberg [25]
measured the unsteady aerodynamic forces and surface pressure of a rough single cylinder
at 1.5× 104 ≤ Re ≤ 1.2× 107. The results showed that the three-dimensional characteristics
of the flow in spanwise direction became strong especially in the critical regime. In addition,
the wake width became narrower and the drag coefficient decreased, which was observed
by Rodriguez et al. [26], too. As for two tandem cylinders, Okajima [27] measured Cd
and St by low-speed wind tunnel tests. It was observed that when the Reynolds number
came to the super-critical regime, the jump of Cd disappeared at L/D = 3.8 and the effect
of L/D on Cd and St became weaker. Hu et al. [23] investigated the tandem cylinders’
flow characteristics in the sub-critical and super-critical regimes. When compared to the
examples in the sub-critical regime, the vortex shedding frequencies are higher in the
super-critical domain. Moreover, the flow separation positions move backward along
the cylinder surface, which causes the reattachment position on the back cylinder to shift
forward in the super-critical regime.

In summary, few systematic study have been conducted on the flow around three
cylinders in equilateral-triangular configuration in the super-critical regime. In the present
paper, a three-dimensional numerical simulation of flow past three cylinders in equilateral-
triangular arrangement in super-critical regimes (Re = 3× 106) is presented at a spacing
ratio of 1.1 ≤ L/D ≤ 3.5, focusing on how fluctuating forces, flow separation, and vortex
shedding frequencies vary with L/D. Five flow patterns are identified by spacing ratio and
the characteristics of each pattern are summarized.

2. Numerical Models
2.1. Numerical Method

Detached-eddy simulation (DES) model was first carried out by Spalart [28] to com-
pensate the lack of Reynolds-Averaged Navier–Stokes (RANS) in unsteady turbulence
prediction and avoid the heavy demand of grid and computation of Large-Eddy Simulation
(LES). Then, for the purpose of solving the modeled stress depletion (MSD), delayed-
detached eddy simulation (DDES) was carried out by Spalart [29]. DDES introduces the
second length scale of turbulence model in its length scale instead of filter scale of LES.
Shur et al. [30] introduced an improved delayed-detached eddy simulation (IDDES), which
combines DDES and LES for wall modeling. In the IDDES method, the model stress loss
issue from the original DES technique is removed using the DDES length scale, and the
boundary layers are predicted using WMLES. In the recent years, this hybrid approach
has been widely utilized to examine separated flows which are unstable and geometrically
associated [31]. Wang et al. [32] used the sst k−ω IDDES method to perform the reverse
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flow past an NACA0012 airfoil and had satisfactory results compared to experimental
measurements. Moreover, in the field of high-speed train aerodynamics simulations which
have complex shapes and usually high Reynolds numbers, the sst k−ω IDDES method
is quite popular among scholars due to its capacity of capturing the train wake flow and
vortex structures [31,33–35]. Hence, sst k−ω IDDES is adopted in the present study.

The key point of IDDES is to modify the dissipation component in the governing
equation for the turbulent kinetic energy equation. The governing equations for the kinetic
energy k are written as

∂(ρk)
∂t

+
∂(ρuik)

∂xi
= τijSij −

ρk1.5

lk−ω
+

∂

∂xi

[
(µl + σkµt)

∂k
∂xi

]
(1)

where lk−ω =
√

k/(β∗ω); ρ is the fluid density; t is the time; ui is the velocity; xi is the
position; τij is the Reynolds stress tensor; Sij is the mean strain rate tensor; µl is the laminar
viscosity coefficient; σk is model coefficient; µt is the turbulent eddy viscosity. The IDDES
model defines the length scale as

lIDDES = f̃d(1 + fe)lk−ω +
(
1− f̃d

)
CDES∆ (2)

where ∆ = min[Cw max(d, ∆), ∆]; d is the distance to the closest wall boundary; ∆ =
max(∆x, ∆y, ∆z) represents the maximum of the local grid scales; Cw = 0.15, CDES is a
constant calculated by the blending function F1

CDES = (1− F1)Ck−ε
DES + F1Ck−ω

DES (3)

with Ck−ε
DES is 0.61 and Ck−ω

DES is 0.78; f̃d is a blending function defined as

f̃d = max[(1− fdt), fb] (4)

with
fdt = 1− tanh

[
(Cdtrdt)

3
]

(5)

rdt =
µt

κ2d2[(S2 + Ω2)/2]0.5 (6)

fb = min
[
2 exp

(
−9α2

)
, 1.0

]
(7)

α = 0.25− d/∆ (8)

where Cdt is 20 and κ is the von Karman constant; fe is elevating function defined as

fe = f2 ·max[( f1 − 1.0), 0.0] (9)

with

f1 =

{
2 exp

(
−9α2), α < 0

2 exp
(
−11.09α2), α ≥ 0

(10)

f2 = 1.0−max( ft, fl) (11)

ft = tanh
[(

C2
t rdt

)3
]

(12)

fl = tanh
[(

C2
l rdl

)10
]

(13)

rdl =
µl

κ2d2[(S2 + Ω2)/2]0.5 (14)

Please consult Shur et al. [30] for more information.
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Numerical simulations are carried out by the STAR-CCM+ 13.06, which is based on
the finite-volume method (FVM). For the temporal discretization, a second-order implicit
scheme is used. Pressure–velocity coupling is based on the density implicit with the
SIMPLE method. A second-order upwind scheme is employed for spatial discretization. In
this study, 128 CPUs with 24 h for each case are used for simulation.

2.2. Boundary Conditions and Grid System

The computational domain and the boundary conditions of the present study are
displayed in Figure 1. The simulation is 2.5D. The cylinder in the upstream is named
Cylinder A and the cylinder in the downstream is named Cylinder B (+y-direction) and C
(−y-direction), as shown in Figure 2a. Cylinder A is located in the middle of the domain
in the y-direction, and the distance from inlet boundary to the center of the Cylinder A is
10D. The computation domain is 35D (D is the diameter of the cylinder, which is 1 m in
the present paper) in the x-direction and 16D in the y-direction. The size of the domain
in the z-direction is 4D, which has been proved long enough to capture the relevant flow
structure [36,37]. The inlet boundary condition is set as velocity inlet boundary. The
outlet boundary is set as a pressure outlet boundary. Periodic boundary conditions are
set at spanwise boundaries (z-direction). As for the inlet boundary, turbulence viscosity is
5 times the molecular viscosity. Because when in the super-critical Reynolds regime, the
transition in the boundary layer is turbulent. No-slip wall boundary conditions are set at
the cylinder surfaces.

The computing mesh of the case when L/D = 2.5 (L is the distance between the
centers of either two cylinders) is shown in Figure 2. A trimmed mesh is adopted in all the
cases. The grids are refined in the region near the cylinder system. The size of each refined
mesh region is illustrated in Figure 2a. The finest grid size is 0.025D. Grid size increases by
a factor of 2. The grid is the same size in x, y, and z-directions. In the spanwise direction,
for the finest grid region, there are 160 cells. The boundary layers are set to be 40 layers
to keep y+ < 1, as shown in Figure 3. The total number of the cells for Re = 3× 106 is
10 million when L/D = 2.5. As the L/D increases, the total number of cells increases,
too. As for temporal discretization, the time-step ∆t is 5× 10−4 to ensure the maximum
Courant number (defined as u× ∆t/∆x) less than 1. Ten internal iterations exist in each
time step. In this paper, the diameter of the cylinder (D) is set to 1 m, the flow velocity
(U0) is 47.02 m/s, fluid density (ρ) is 1.225 kg/m3, and the dynamic viscosity (µ) of fluid is
0.0000192 Pa · s.

Periodic boundary

Figure 1. The boundary conditions and the schematics of the computing field.
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Figure 2. The computational mesh for L/D = 2.5: (a) mesh refinement using multiple sub-domains;
(b) mesh near the cylinders surface.

0 20 40 60 80 100 120 140 160 180
0.0

0.2

0.4

0.6

0.8

1.0

y+

q (deg)

qFlow

Figure 3. The grid resolution near the cylinder wall.

3. Convergence Study and Calculation Validation

A mesh dependency study of a single cylinder is performed at Re = 3× 106. Three
types of meshes (coarse, medium, and fine meshes, respectively) are utilized. The ratio of
cell length between coarse mesh and medium mesh, medium mesh and fine mesh is

√
2 in

three space directions, which was recommended by Spalart [38]. The boundary layer mesh
remains the same. Representative dynamic force coefficients are calculated to evaluate the
mesh convergence. The drag and lift coefficients Cd and Cl are defined as

Cd =
Fd

1
2 ρU2

0 DH
(15)

Cl =
Fl

1
2 ρU2

0 DH
(16)

and the Strouhal number St is defined as

St =
fsD
U0

(17)

where Fd and Fl are the fluid forces on the cylinder in the x-direction and y-direction,
respectively; U0 is the velocity of the fluid, H is the length of the cylinder in z-direction,
fs is the frequency of the vortex shedding, which is obtained from the power spectrum
density (PSD) of the lift force of the cylinder. The pressure coefficient (Cp) is defined as
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Cp =
P− P0
1
2 ρU2

0
(18)

where P0 represents the reference pressure. Cpm is the minimum value of Cp, and Cpb is
the base pressure coefficient of the cylinder. The overline bar means the time average.
The fluctuating lift coefficient C′l is the root-mean-square (RMS) value of Cl . For statistical
accuracy, at least 25 vortex shedding cycles are sampled, which means the flow passes
through the computational domain more than 3 times in the statistical process.

As shown in Table 1, the results from the coarse mesh differ from those of the medium
mesh and fine mesh. St of the three sets of meshes are the same. As can be seen, the
medium mesh and fine mesh yield insignificant changes of C̄d, −Cpm except for Cl

′
and

−Cpb, but the difference is in an acceptable range. Thus, the medium mesh is considered to
be suitable for the following calculations.

Table 1. Grid density sensitivity study results of a single cylinder at Re = 3× 106.

Case Cell Count (million) Cd C′l St −Cpm −Cpb

Coarse Mesh 1.9 0.367 0.032 0.383 2.313 0.424
Medium Mesh 3.8 0.377 0.038 0.383 2.318 0.419

Fine Mesh 7.4 0.378 0.046 0.383 2.326 0.437

In order to validate the present numerical model, Table 2 summarizes the results of the
present simulation with previous experimental and numerical calculations of other scholars
for a single cylinder at Re = 3× 106. Regarding the super-critical regime, the outcomes of
the earlier experiments showed significant scattering. This may be primarily caused by a
variety of experimental challenges, including surface roughness, turbulent intensity of free
flow, cylinder end conditions, wind tunnel blockage ratio, and cylinder aspect ratio, which
make it challenging to precisely measure flow at high Reynolds numbers [39]. Considering
the aforementioned factors, the present simulation results are acceptable.

Table 2. Comparison of present and previous studies for flow past a single cylinder.

Researchers Re Description Cd C′l St −Cpb

Present study 3× 106 k–ω IDDES 0.377 0.033 0.383 0.419
Roshko [40] 1× 106 Experiments 0.30 − − 0.37

1.8× 106 Experiments 0.42 − − 0.62
3.5× 106 Experiments 0.69 − − 0.85

Schmidt [41] (2.6–3.3) × 106 Experiments 0.25–0.44 − − 0.51–0.61
Jones et al. [42] 1× 106 Experiments 0.21 − − 0.53

2.9× 106 Experiments 0.53 − − 0.59
3.7× 106 Experiments 0.56 − − 0.61

Schewe [24] 3× 106 Experiments 0.45 − − −
Shih et al. [43] (3–3.1) × 106 Experiments 0.35–0.38 − − 0.45–0.46

Travin et al. [44] 3× 106 DES 0.41 0.06 0.35 0.53
Catalanoet al. [45] 1× 106 LES 0.31 − 0.35 0.32

Ong et al. [46] 3.6× 106 k–ε URANS 0.457 0.077 0.305 −

In addition, Figure 4 compares the C̄p distribution on a single cylinder with published
numerical studies (Travin et al. [44] at Re = 3× 106 and Catalano et al. [45] at Re = 1× 106)
and experimental studies (Warschauer [47] at Re = 1.2× 106 and Zdravkovich [48] at
Re = 6.7× 105). As shown in Figure 4, the C̄p distribution on a single cylinder agrees
well with previous results. The skin friction coefficient, C f = τ/(0.5ρU2

0), where τ is the
tangential wall shear stress, is presented in Figure 5. The separation point location θ = 116◦
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predicted in the present study agrees well with the previous experimental results [49] and
other numerical results [44,46]. The overprediction of C f for θ < 90◦ in the present study
compared with the experimental values is also observed from other numerical studies
which used wall functions [44–46]. This results from the wall function method’s assumption
of a completely turbulent boundary layer [50].

0 20 40 60 80 100 120 140 160 180
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
 Present 
 DES by Travin (2000)
 LES by Catalano (2003)
 Experiment by Warschauer (1971)
 Experiment by Zdravkovich (1998)

C p

q (deg)

Figure 4. Comparison of pressure distribution on a single cylinder between the present study and
published data [44,45,47,48].

Figure 5. Comparison of skin friction coefficient (C f ) distribution on a single cylinder surface with
the published experimental and numerical data [44,46,49].

In general, the present calculation of flow past a single cylinder is in accordance with
the outcomes of other published papers. Thus, it is reasonable to assume that the calculation
method is also valid for calculating the triangular arrangement of the three cylinders.

4. Results and Discussion
4.1. Flow Patterns

Figures 6–10 show the spanwise normalized vorticities diagrams and the time-averaged
streamline diagrams at midspan plane for flow past three cylinders arranged in an equilateral-
triangle configuration at different spacing ratio L/D at Re = 3 × 106. Clockwise and
counterclockwise vorticities are displayed by red and blue colors, respectively. The flow
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patterns are classified according to L/D based on the careful examination of Figures 6–11
and other parameters such as Cd, Cl, and St. Five different flow patterns were summarized
and categorized. The naming of the flow patterns is partially referenced to Chen [21]
who found them at Re = 50–300. It is worth noting that the specific features and critical
spacing ratios are widely divergent according to results from Chen [21], on account of the
four-orders-of-magnitude difference in Reynolds number.

The specific characteristics of each flow pattern are as follows.

Single bluff body flow
When L/D = 1.1, the shear layers of the upstream cylinder attach to the front surface

of the downstream cylinders and pass through the gap between the cylinders, creating
an extremely unstable shear flow on the gap-side surface of the downstream cylinders.
The free-flow-side of the downstream cylinder has vortex shedding symmetry occurring
simultaneously, with the vortex pairs taking a form similar to the typical Karman vor-
tex street. This is unfamiliar with the single bluff body flow at low Reynolds numbers
(50–300) [21]. At low Reynolds numbers, the shear layers of the upstream cylinder enclose
the downstream cylinders, and when L/D increases, a small amount of fluid will pass
through the gap and blend into the shear layers on the free-flow-side of the downstream
cylinders and come off together. The critical L/D is 1.4 for low Reynolds numbers [21,51].

Figure 6a,b shows the contours of normalized instantaneous spanwise vorticities and
the time-averaged streamlines for single bluff body flow at the middle plane, respectively.
The time-averaged streamlines are symmetric relating to the center line of the wake, which
indicates that the statistical range used in this paper is acceptable. Figure 6b shows that the
recirculation region behind the three cylinders is longish and begins to occur at about one
diameter away behind the downstream cylinders. The flow pattern at this L/D is identical
to a flow through a single bluff body, as seen in Figure 6b.

(a) (b)

1D

Figure 6. (a) Normalized spanwise vorticity ωzD/U; (b) time-averaged streamlines in the plane
z = 2 D at L/D = 1.1.

Deflected gap flow
As L/D increases to 1.2–1.4, the gap flow is deflected towards one of the downstream

cylinders and forms a deflected gap flow pattern. At L/D = 1.2 and 1.4, gap flow is
deflected towards the downstream cylinder C and produces a narrow wake behind it,
and the opposite when L/D = 1.3. Different computation procedures produce random
deflection directions. A switch in the directions of the gap flow is not found throughout the
computation process, which is consistent with the findings by Bansal [16] and Chen [21]. As
regards double cylinders arranged side by side, nevertheless, Kim [52] and Alam et al. [53]
found a shift in the deflection direction of the gap flow. The existence of the upstream
cylinder might limit the direction change of the deflection flow.

Figure 7 demonstrates that the vortex shedding of the downstream cylinder with the
gap flow bias is suppressed. The suppression lessens with the increase of L/D. From the
time-mean streamlines in Figure 7b,d,f, it is observed that the recirculating bubble of the
wider wake downstream cylinder is longer and broader. The cylinder with a wide wake has
a lower drag coefficient compared to the cylinder with narrow wake, which is consistent
with the biased gap flow of the two cylinders arranged side by side [7].
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Normalized spanwise vorticity ωzD/U and time-averaged streamlines in the plane z = 2 D
at: (a,b) L/D = 1.2; (c,d) L/D = 1.3; (e,f) L/D = 1.4.

Anti-phase flow
As L/D increases, the flow pattern becomes anti-phase flow. Anti-phase is referred to

the occurrence of 180◦ phase lag in the time history of lift forces between the downstream
cylinders. Figure 11 presents the relationship of the phase lag φ of the downstream cylinders
with L/D , which is obtained through the FFT analysis of the Cl of two downstream
cylinders. Since there is no significant principal frequency of Cl of the downstream cylinder
when L/D < 1.4, their phase lag data are not shown in the figure.

In the anti-phase flow regime, the vortices on the free-flow-side of the downstream
cylinder shed simultaneously and are symmetrical relative to the wake center line. The
shear layers of the upstream cylinder appear to roll up and produce vortex shedding, with
a weaker intensity compared with the downstream cylinders. They are elongated at the
gap, and finally pair with the the vortices produced by gap-side downstream cylinders and
blend in with the wake flow. The size of the recirculation zone of the upstream cylinder is
way smaller than that of the downstream cylinders, as seen in Figure 8d.

(a) (b)

(c) (d)

(e) (f)Figure 8. Normalized spanwise vorticity ωzD/U in the plane z = 2 D at: (a) L/D = 1.5;
(b) L/D = 1.7; (c) L/D = 2; (d) time-averaged streamlines at L/D = 1.7.
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In-phase flow
Figure 9a–c shows the vorticity contours at L/D = 2.3, 2.5, 3. The flow pattern belongs to

in-phase flow, because the vortex shedding of the downstream cylinder presents an in-phase
fashion. As shown in Figure 11, the phase lag of the two downstream cylinders is near 0 when
L/D > 2. The vortices from free-flow-side shear layers of the cylinder B and the gap-side shear
layers of the cylinder C shed synchronously, which is exactly the opposite for anti-phase flow.

The vortex generated from the upstream cylinder is elongated at the gap and interacts
with the vortex of the gap-side shear layers of the downstream cylinders. As L/D increases,
the vortices shed by the upstream cylinder show an oscillation in the vertical direction in
order to pair with the vortex generated from downstream cylinders. These interactions
bring on the dissipation of vortices’ energy of the upstream cylinder. Figure 9d only shows
the time-averaged streamline for L/D = 2.5 because the difference between each L/D in
in-phase flow is insignificant. Figure 9d indicates that the length of the recirculation zone
of the upstream cylinder is larger than that of anti-phase flow. Such a phenomenon results
from the increased space at the gap, which allows the shear layers of the upstream cylinder
to fully develop.

(a) (b)

(c) (d)

Figure 9. Normalized spanwise vorticity ωzD/U in the plane z = 2 D at (a) L/D = 2.3; (b) L/D = 2.5;
(c) L/D = 3, (d) time-averaged streamlines at L/D = 2.5.

Co-shedding flow
When L/D > 3.5, the vorticity and time mean streamlines of the three cylinders are

shown in Figure 10. Because L/D is large enough, the interaction between the cylinders
is relatively small, and the flow pattern around each cylinder approximates the fashion
of flow past a single cylinder. However, in fact, it can be seen from the vorticity contour
that the vortex shed from the upstream cylinder still has a tendency of pairing with the
corresponding downstream vortex when the flow goes through the downstream cylinder.
Figure 12 shows the normalized time-averaged x-directional flow velocity U/U0 in the tail
region of the three cylinders, with the x-axis denoting the distance from the center of each
cylinder normalized by D. The single cylinder case is also shown for comparison. The
wake flow velocity of downstream cylinders is identical to that of a single cylinder. For the
upstream cylinder, however, the velocity can be seen to be higher when it passes through
the downstream cylinders at about three-quarters of the position, which confirms the vortex-
pairing tendency aforementioned. Additionally, the vortex shedding of the downstream
cylinders occurs in an in-phase fashion. There is a certain phase lag between the vortex
shedding of the upstream cylinder and downstream cylinders, which is determined by L/D.
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(a) (b)

Figure 10. (a) Normalized spanwise vorticity ωzD/U; (b) time-averaged streamlines at L/D = 3.5.
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Figure 11. Phase lag of lift force history between two downstream cylinders.
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Figure 12. Mean velocity (ux) at the center line of each cylinder at L/D = 3.5. The three gray dashed
lines represent the front edge, center line, and end edge of the downstream cylinders, respectively.

With the purpose of understanding the three-dimensional vortex structures, Figure 13
exhibits the instantaneous Q criterion [54] of each flow pattern, for the sake of brevity, only
one L/D is shown at each pattern. Q is defined as

Q = −1
2

(
‖S‖2 − ‖Ω‖2

)
(19)

where S and Ω represent the strain and rotation tensor, respectively. Significant Kelvin–
Helmholtz-type vortex structures are observed. Meantime, instantaneous pressure distribu-
tions in the middle section at different flow pattern regimes are shown in Figure 14.
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(a) Single bluff body flow (b) Deflected gap flow (c) Anti-phase flow

(d) In-phase flow (e) Co-shedding flow

L/D = 1.1 L/D = 1.2 L/D = 1.5

L/D = 2.5 L/D = 3.5

Figure 13. Iso-surface of Q = 1.5 U0
2/D colored by dimensionless streamwise velocity U/U0 at different

flow pattern regimes.

(a) Single bluff body flow (b) Deflected gap flow (c) Anti-phase flow

(d) In-phase flow (e) Co-shedding flow

L/D = 1.1 L/D = 1.2 L/D = 1.5

L/D = 2.5 L/D = 3.5

mirror symmetry

identity

Figure 14. Instantaneous pressure distributions in the middle section (z = 2 m) at different flow
pattern regimes.

The dotted line indicates the central line behind the front cylinder. It is worth noting
that, in anti-phase and in-phase flow regimes, the flow pattern behind the two downstream
cylinders shows obvious different characteristics. A mirror symmetry of the vortex with the
central line is observed in anti-phase flow, while an almost identical vortex shedding form
exists in in-phase flow.

4.2. Fluid Force Coefficients

Figure 15a,b shows the mean and fluctuating drag force coefficients of the three
cylinders, respectively. When L/D = 1.1, the drag forces on the downstream cylinders are
identical and significantly greater than on the upstream cylinder. When L/D = 1.2− 1.4,
two distinct drag force coefficients were obtained for downstream cylinders, which suggests
that this L/D belongs to the deflected gap flow regime. As L/D increases, the drag
coefficients for the downstream cylinders remain identical and slowly converge to the drag
coefficient for the flow past the single cylinder. It is worth noting that at L/D = 2.5, which
belongs to the early onset of in-phase flow, the drag coefficient suddenly increases. The Cd′

shows similar characteristics with Cd as shown in Figure 15b.
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(a) (b)

(c) (d)

Figure 15. Variations of mean force coefficients and fluctuating force coefficients with different
L/D: (a) time mean drag force coefficients; (b) fluctuating drag force coefficients; (c) time mean of
lift force coefficients, green line means the sum of two downstream cylinders; (d) fluctuating lift
force coefficients.

Figure 15c,d presents the mean and fluctuating lift force coefficients for different L/D,
respectively. At L/D = 1.1, Figure 15c illustrates that there is a strong repulsive force
between the two downstream cylinders. It is due to the existence of a pressure difference
between the gap side and free-stream side of the downstream cylinders, which can be
shown distinctly in pressure distributions in the middle section of Figure 14a. As shown
in Figure 14a, in the case of downstream cylinder B, for example, the negative pressure
zone on its free-stream side is shifted forward, while the negative pressure zone on its gap
side is shifted back, which results in an upward lift force. When L/D = 1.2–1.4, the sum
of two downstream cylinders lift force coefficients, which is presented by the green line,
is not zero, and the absolute value of the sum lift coefficient decreases with the increase
of L/D. The direction of the sum lift coefficient is opposite to the direction the deflected
flow is biased towards. When L/D > 2.3, there is a weak attractive force between the
downstream cylinders. As L/D goes to 3.5, the lift force coefficients of all cylinders is close
to zero, which fits the scenario of a single cylinder. As shown in Figure 15d, similarly to
the Cd′, the downstream cylinders undergo a higher Cl′ than that of the upstream cylinder.
At L/D = 1.1, Cl′ of the downstream cylinder reaches a maximum. At L/D = 1.2–1.4,
the downstream cylinder with a wider wake has a larger Cl′. As L/D increases, Cl′ of
the downstream cylinders decreases. Similarly to the Cd and Cd′ distributions, Cl′ of
the three cylinders increases abruptly at L/D = 2.5 and then decreases gradually back
to be consistent with that of a single cylinder. We regarded that the special phase lag
between all three cylinders at L/D = 2.5 causes the higher C̄d, Cd′, and Cl′. A phase lag
of 0π occurring at the early period of the in-phase flow regime enriches the shedding of
vortices. The observation of fluid coefficients suggests that the interactions among the three
cylinders is apparently strong at single bluff body flow, deflected gap flow, and the start of
in-phase flow.
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Figures 16 and 17 show the time history curves of Cd and Cl at several critical L/Ds
for each flow pattern, respectively.

(a) Single bluff body flow (b) Deflected gap flow (c) Anti-phase flow

(d) In-phase flow (e) Co-shedding flow
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Figure 16. Time histories of Cd of cylinders in different flow pattern regimes.
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Figure 17. Time histories of Cl of cylinders in different flow pattern regimes.

It can be seen that the values of both drag and lift fluctuations for the upstream
cylinder are smaller than those for the downstream cylinders. When L/D < 2.3, the reason
for the lift fluctuations in the cylinder A is the motion of the shear layers, but for cylinders
B and C, it is the vortex shedding. It is worth noting that at L/D = 1.1, Cl curve of the
downstream cylinders has some certain periodicity. The period (T = 0.4325s) illustrated
in Figure 17a, which is related to the time interval between the two minimum values of
cylinder B and also the two maximum values of cylinder C, corresponding to St = 0.05,
can be found in Figure 18a in the next section as the main frequency of cylinders B and C at
L/D = 1.1.

This low frequency is due to the developmentally restricted shear layers of cylinder A.
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)

)

Figure 18. Power spectral density (PSD) of Cl of each cylinder at different L/D.

4.3. Vortex Shedding Frequencies

Figure 19 presents the lift coefficients power spectral density of three cylinders at
various L/D, respectively. The Strouhal number St is defined as f D/U0. At L/D = 1.1, the
spectra of downstream cylinders are broad-banded. A dominant frequency of St = 0.053
can be identified for the three cylinders. In addition, a second harmonic frequency of
St = 0.701 occurs. It can be attributed to the interactions of shear layers generated at
cylinder A with those from the front side of cylinders B and C. The existence of a second
harmonic frequency at low L/D at Re = 3× 106 is consistent with that for low Reynolds
numbers (100 − 300) by Chen et al. [21]. At L/D = 1.2, 1.3, only one spectral peak
is identified in the upstream cylinder, St = 0.67 and St = 0.425, respectively. While
downstream cylinders’ power spectral density has multiple peaks and the corresponding
power of these peaks are at similar values, illustrating that drastic vortex interaction
exists. In contrast to the biased-gap flow pattern found for two cylinders placed side
by side [7], which led to the observation that a wider wake cylinder has a lower vortex
shedding frequency than the narrow wake cylinder, the dominate frequency of the two
cylinders with either wide or narrow wake has the same value. This could be because
of the presence of cylinder A. As L/D increases to 1.4, dominant frequency, St = 0.319,
occurs at the downstream cylinders. This implies that the interaction between the shedding
processes weakens as the gap space is greater. However, as displayed in Figure 7e,f, the
gap flow at L/D = 1.4 still has a tendency of bias towards cylinder C. It demonstrates
that L/D = 1.4 is a critical spacing ratio from deflected gap flow to anti-phase flow. As
L/D increases, the St of all cylinders gradually approach that of the flow past a single
cylinder. When L/D = 3.5, all cylinders have the same frequency (St = 0.383), which is
equivalent to that of a single cylinder. This indicates that the disturbance becomes very
weak and that each vortex shedding behind every cylinder behaves like the flow past a
single cylinder. Furthermore, it is notable to highlight that the power density is much
higher at the dominant frequency when L/D = 2.5. This implies that the vortex shedding
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at these frequency is pronounced. This observation is in accordance with the discontinuous
jump in C̄d, Cd′, and Cl′ mentioned in the previous section, as shown in Figure 15.

Figure 19. Strouhal numbers of three cylinders at different L/D.

The fluctuation of St with L/D is seen in Figure 13. As for the situations with multi-
peak spectral densities, the frequency with the largest power density is collected. It is worth
noting that cylinders B and C have the same dominant frequency at all L/D; nevertheless,
only one set of data is shown for clarity. The St of three cylinders is equal in single bluff body
flow, in-phase flow, and co-shedding flow. It reaches the minimum value at L/D = 1.1. In
the in-phase flow regime, the value of St is 0.340, which is 88.7% of that for a single cylinder.
In the co-shedding flow regime, St equals that for a single cylinder, demonstrating that
L/D = 3.5 is a crucial spacing ratio of the two flow regimes.

Figure 20 presents the time-averaged pressure distributions of the three cylinders
in different flow regimes, where the pressure distribution C̄p is defined as C̄p = ( p̄ −
p∞)/(0.5ρU2

0), in which p̄ is the time-averaged local static pressure on the cylinder and
p∞ is the reference pressure. For description convenience, some special parameters, Cpst1,
Cpst2, Cpb, Cpm1, and Cpm2 are defined first, as shown in Figure 21. Cpst1 and Cpst2 are the
pressure coefficients at the upper and lower stagnation points, θpst1 and θpst2, respectively.
Cpb is the base pressure coefficient at θ = 180◦. Cpm1 and Cpm2 are the minimum pressure
coefficients at the upper and lower sides, respectively. θpst1 and θpst2 are the corresponding
θ of Cpm1 and Cpm2.

As shown in Figure 20a, in the single bluff body flow regime, the base pressure of
the upstream cylinder increases compared to that of a single cylinder due to the block-
age effect. Stagnation points of downstream cylinders are pretty obvious (θpst1 = 6.94◦,
θpst2 = 353.06◦). The base pressure of upstream cylinder has two minimal values in the
local area, located at 150◦ and 210◦. Meanwhile, two local minimum pressure coefficients
occur at 30◦ for cylinder B and 330◦ for cylinder C. Those arrestive minimal values occur at
the positions where cylinder A is closest to cylinders B and C, respectively. The pressure
coefficients of downstream cylinders both have a decrease at the gap-side area, and are
nearly mirror-symmetric about θ = 180◦. For the deflected gap flow shown in Figure 20b,
the pressure coefficients of downstream cylinders become asymmetrical because of the jet
flow bias towards cylinder C. In addition, stagnation points of downstream cylinders are
slightly smaller (θpst1 = 4.49◦, θpst2 = 355.55◦). As L/D increases into the anti-phase flow
regime, the base pressure of the upstream cylinder turns into negative because the blockage
effect becomes weak. Cpm1 of cylinder A is smaller than Cpm2 of cylinder B, while the
opposite condition happens on cylinder C. This is because the flow velocity on the gap side
is greater than the flow velocity on the free-flow side. When L/D goes into the in-phase
flow regime, stagnation points of downstream cylinders, θpst1 and θpst2, become zero. In
the co-shedding flow regime, the pressure coefficient distributions of all the cylinders are
similar with that of a single cylinder.
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(a) Single bluff body flow (b) Deflected gap flow (c) Anti-phase flow

(d) In-phase flow (e) Co-shedding flow

L/D = 1.1 L/D = 1.2 L/D = 1.7

L/D = 2.5 L/D = 3.5

Figure 20. Time-averaged pressure coefficient distributions on surfaces of the cylinders at differ-
ent L/D.

Figure 21. Sketch diagram of special parameters analyzing the pressure coefficient distribution.

4.4. Separation Angles

The separation angles of three cylinders are collected in Figure 22, and they are
determined by C f . Because the flow separation points of cylinder A are symmetrical on
the upper and lower sides, only one is shown here for convenience. As shown, when
L/D = 1.1, the separation points on the upstream cylinder, with black square symbol, is
lower than that of a single cylinder. No separation point on the gap-side of the downstream
cylinders (red triangle symbol and blue diamond symbol) is identified, because there is
no regular vortex shedding at the gap. At L/D = 1.2, there is an extremely sharp growth
in the separation point of cylinder A, because the increase of gap space leads to the shear
layers of the upstream cylinder flow through the gap. The separation point of the upstream
cylinder is quite backward because the gap is still small, which limits the separation of
shear layers. As L/D goes up, the separation point of the upstream cylinder moves forward
rapidly, starting to gradually adhere to the value at the single cylinder when L/D = 1.7.
For the separation points on the free-stream-side of cylinders B and C, which are shown as
red circle symbol and blue star symbol, respectively, they are smaller than in the case of
a single cylinder when L/D is small, indicating that the separation position is advanced.
As L/D increases, the separation position gradually leans forward, and when L/D = 1.4,
the separation angle is close to that of single cylinder. For the separation points on the
gap-side of downstream cylinders, they are special in the deflected gap flow regime. When
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L/D = 1.2 and 1.4, the gap-side separation angle of cylinder C is conspicuously large
in contrast to that of cylinder B. This is because at these L/D, the gap flow is deflected
towards cylinder C, resulting in the delayed separation of the shear layers of cylinder C.
The situation is reversed at L/D = 1.3.

Gap-side θ

Gap-side θ

Free-flow-side θ

Free-flow-side θ

Figure 22. Variation of separation angles of cylinders with L/D.

5. Conclusions

The flow past three equilateral-triangular-arranged cylinders is investigated for spac-
ing ratios L/D = 1.1–3.5 at a super-critical Reynolds number Re = 3× 106. Improved
delayed-detached eddy simulation (IDDES) based on SST k−ω model is utilized to solve
the flow field. With the aim to better understand the fluid dynamics of the configuration
of three cylinders, the spanwise vorticity (ωz), force coefficients, and its RMS, Strouhal
numbers (St), and pressure distribution (Cp) are discussed. The following is a summary of
the conclusions:

(i) Five flow regimes are identified depending on the spacing ratios, i.e, single bluff body
flow (L/D = 1.1), deflected gap flow (L/D = 1.2–1.4), anti-phase flow (L/D = 1.5–2),
in-phase flow (L/D = 2–3.5), and co-shedding flow (L/D > 3.5).

(ii) When in deflected gap flow, the downstream cylinder with a wide wake experiences
lower drag and higher lift (absolute value and RMS), compared to the cylinder with
narrow wake. However, their vortex shedding frequencies are identical. In addition,
the sum of lift forces of the three cylinders at the deflected gap flow is not zero, either
a positive or negative lift may exist.

(iii) When L/D < 1.5, the separation points on the free-flow-side of the downstream
cylinders are always lower than that of the single cylinder, indicating that the violent
flow at the gap also causes the flow separation on the outer side of the cylinder to
advance. When L/D > 3.5, the separation point of the cylinder in upper stream
is close to that of single cylinder, indicating that the minimum L/D for negligible
interaction among the cylinders is 3.5.

In conclusion, in this paper, we systematically study the characteristics of different
flow regimes of three cylinders with equilateral-triangular arrangement. Fluid forces,
flow patterns, vortex shedding frequencies, phase differences, and wake interactions are
discussed in detail. Compared with previous studies, this paper focuses on the super-critical
Reynolds number regime and a more detailed L/D division is completed. The results of
this paper deepen the understanding of the fluid interference of flow past cylinders.
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