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Mechanical microenvironment and cellular senescence of trabecular

meshwork cells (TMCs) are suspected to play a vital role in primary open-

angle glaucoma pathogenesis. However, central questions remain about the

effect of shear stress on TMCs and how aging affects this process. We have

investigated the effect of shear stress on the biomechanical properties and

extracellularmatrix regulation of normal and senescent TMCs.We found amore

significant promotion of Fctin formation, a more obvious realignment of F-actin

fibers, and a more remarkable increase in the stiffness of normal cells in

response to the shear stress, in comparison with that of senescent cells.

Further, as compared to normal cells, senescent cells show a reduced

extracellular matrix turnover after shear stress stimulation, which might be

attributed to the different phosphorylation levels of the extracellular signal-

regulated kinase. Our results suggest that TMCs are able to sense and respond

to the shear stress and cellular senescence undermines the mechanobiological

response, whichmay lead to progressive failure of cellular TM functionwith age.
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Introduction

As the second major cause of blindness globally (Bourne, 2006; Cook and Foster,

2012), glaucoma is a group of eye diseases that lead to optic nerve damage and consequent

irreversible visual loss (Tian et al., 2017). Glaucoma is often classified into several types,

among which primary open-angle glaucoma (POAG) is one of the most common ones

(Weinreb and Khaw, 2004). Nowadays, POAG affects approximately 57.5 million people

worldwide (Wiggs and Pasquale, 2017; Allison et al., 2020), and it is predicted that

approximately 111.8 million people will suffer from glaucoma by 2040 (Tham et al., 2014).

Although the molecular mechanism of glaucoma pathogenesis is poorly understood,

elevated intraocular pressure (IOP) resulting from increased resistance to aqueous humor

outflow in the TM conventional outflow pathway is considered one of the main risk
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factors for POAG (Gabelt and Kaufman, 2005;Mcmonnies, 2017;

Buffault et al., 2020; Li and Song, 2020). Located in the anterior

chamber angle of the eye, TM is a mechanosensitive tissue that

mediates 80–90% of aqueous outflow (Yuan et al., 2016;

Yarishkin et al., 2021). TMCs are able to adjust the aqueous

outflow facility through remodeling the actin cytoskeleton (Clark

et al., 2005; Rao et al., 2005; Rao et al., 2017), or changing

extracellular matrix (ECM) turnover and subsequent ECM

replacement rates by modulating matrix metalloproteinases

(MMPs) activity (Bradley et al., 2001; Keller et al., 2009;

Pattabiraman and Rao, 2010; Vranka and Acott, 2017).

Impaired regulation of these cellular functions leads to IOP

dysregulation and has been advocated as a pathogenic factor

of POAG (Last et al., 2011; Vahabikashi et al., 2019). Although

the underlying mechanisms remain elusive, it has been reported

that the extracellular signal-regulated kinase (ERK) pathway is

involved in regulating the production of MMPs in TM

(Alexander and Acott, 2003). Studies indicate that the ERK

pathway can affect the secretion of MMPs in TMCs, which

may lead to an aberrant accumulation of ECM and

consequently elevated IOP that eventually develops glaucoma

(Shearer and Crosson, 2001; Conley et al., 2004).

The bulk flow of aqueous humor driven by IOP imposes

shear stress on the conventional outflow pathway (Wudunn,

2009; Yarishkin et al., 2021). This shear stress is predicted to be in

the range of 2–25 dyn/cm2, which could be higher due to the

elevated IOP in glaucoma (Ethier et al., 2004). Existing studies

suggested that the TMCs could respond to shear stress imposed

by aqueous humor flow (Carreon et al., 2017), thus providing a

means of regulatory feedback to control IOP (Johnstone, 2004;

Yarishkin et al., 2021). Recently, it has been proven that the shear

stress-induced change of TMCs may be involved in the increase

in outflow resistance in glaucoma. For example, Patel et al. found

that impaired TRPV4-eNOS signaling activated by increased

fluid shear stress in TMCs contributes to elevated IOP in

glaucoma (Patel et al., 2021). Meanwhile, Yarishkin et al.

reported that the shear stress could activate Piezo1, leading to

an increased number of focal cell-matrix contacts of human

TMC, a determinant of mechanically induced aqueous humor

outflow which in turn contributes to TM stiffness (Yarishkin

et al., 2021). But the effects of shear stress on the important

cellular functions of TMC, such as cytoskeleton remodeling, cell

migration, and MMP production, remain unknown so far.

The risk of developing POAG clearly increases with age

(Yoshida et al., 2001; Friedman et al., 2004; Cook and Foster,

2012). Aging is a process associated with the accumulation of

damages that brings about a progressive decline in cellular and

physiological function, which can attenuate the cellular capacity

to feel and respond to stress and then increase the risk of

degenerative diseases. According to the oxidative stress theory,

the accumulation of negative effects induced by reactive oxygen

species (ROS) results in progressive loss of functions in aging

(Liguori et al., 2018). The TM is the most sensitive tissue to

oxidative damage in the anterior chamber (Izzotti et al., 2009).

Senescence of the TMCs is assumed as a major risk factor in the

development or progression of POAG (Liton et al., 2008; Liton

et al., 2009). Numerous studies have demonstrated that cell

senescence could alter the morphology (Saccà et al., 2016),

cytoskeleton (Zhou et al., 1999), phenotype (Liton et al.,

2005), and functions (Alvarado et al., 2005; Zhao et al., 2016)

of the TMCs. However, how cell senescence influences the TMCs’

response to shear stress is barely known.

Here, we investigated the effects of senescence on the

responses of porcine trabecular meshwork (PTM) cells to

shear stress. Our results showed that the

mechanotransduction of PTM cells could be altered by cell

senescence. A more remarkable realignment of F-actin fibers,

a more significant promotion of Fctin formation, and a greater

increase in cell stiffness in response to the shear stress were

observed in normal PTM cells compared with senescent PTM

cells. Shear stress enhanced the capability of cell migration of

normal PTM cells whereas decreased that of senescent PTM cells.

Moreover, senescent PTM cells exhibited altered changes in ECM

turnover-related protein after the shear stress stimulation in

comparison with normal PTM cells, which may be associated

with the difference in phosphorylation levels of ERK. Our

findings indicate that the cell senescence compromises the

physiological responses of PTM cells to shear stress.

Materials and methods

Cell culture of primary porcine trabecular
meshwork cells

Primary cultures of PTM cells were prepared from porcine

eyes obtained from the local abattoir within less than 4 h

postmortem. Briefly, the TM was dissected from surrounding

tissue as previously described (Obazawa et al., 2004; Liton et al.,

2008). The tissue was then placed in collagen I-coated 35-mm

dishes and cultivated in a TM culture medium which consists of

low-glucose Dulbecco’s modified Eagle’s medium (DMEM;

Hyclone, United States) supplemented with L-glutamine and

110 mg/L sodium pyruvate, 100 mM nonessential amino acids,

100 U/mL penicillin, 100 mg/ml streptomycin sulfate and 20%

fetal bovine serum (FBS) (Li et al., 2007). All the reagents were

obtained from Invitrogen (Carlsbad, CA). After one passage,

serum was reduced to 10% for routine cultivation. Cells were

maintained and propagated at 37 °C in humidified air with 5%

CO2. When the cells reached confluency, they were subcultivated

1:3. The passages three to four of the PTM cell were used in our

study. More than 20 different porcine cell lines were studied. For

each experiment, we used at least three different cell lines. The

PTM cells used in this study were characterized as previously

described (Polansky et al., 2000; Snider et al., 2015; Keller et al.,

2018). Briefly, cultured cells at passage three were grown to
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confluence and then treated with 100 nM dexamethasone for

7 days before the myocilin mRNA expression level was examined.

Also, cells at passage three were carefully seeded on the prepared

slide and the expression of fibronectin (FN) and laminin (LN)

was evaluated by immunochemical staining.

Experimental model of senescence in PTM
cells

PTM cells were subjected to normobaric hyperoxia

conditions as previously described (Saretzki et al., 1998; Liton

et al., 2008). Confluent cultures of PTM cells at passage three

were grown for 2 weeks at 40% O2 and 5% CO2 in a triple-gas

incubator (China Innovation Instrument, Ningbo, China).

Control cultures were grown under 5% CO2 and atmospheric

oxygen concentration. The senescence β-galactosidase staining

kit (Beyotime, Shanghai, China) was used according to the

manufacturer’s protocol to stain senescent PTM cells. The

staining was visualized with a Nikon Eclipse inverted

microscope system. The percentage of senescent cells was

calculated as the number of cells that contained the blue β-
galactosidase staining divided by the total number of cells in the

field of view.

Cell cycle assay

Cell cycle was determined by flow cytometry as previously

described (Zheng et al., 2016). Cells were incubated with 20 μg/

ml DNase-free RNase A (Beyotime, Shanghai, China) at 37°C,

washed with PBS (phosphate buffer saline) and stained with

propidium iodide (PI) (Beyotime, Shanghai, China). Cell cycle

was analyzed using BD CellQuest Pro software by

FACSCalibur™ (BD, Franklin Lakes, NJ, United States).

Application of shear stress

A parallel plate flow chamber was utilized to produce shear

stress as described previously (Zheng et al., 2016; Huang et al.,

2019). The PTM cells cultured on glass slides were placed in the

flow block that can provide controlled shear stress τ = 6Qμ/(wh2),

where the shear stress (τ) depended on the flow rate (Q), the

viscosity of the culture media (μ), as well as the width (w) and

height 8) of the flow channel. The whole device was incubated at

37°C in a humidified atmosphere of 5% CO2 in the air. A steady

laminar shear flow of 25 dyn/cm2 was loaded.

Fluorescent labeling of actin structures
and image analysis

Cells were fixed in 4% paraformaldehyde, then were

permeabilized with 0.1% Triton X-100 in PBS and blocked in

1% bovine serum albumin. Cells were incubated in Texas red

isothioc2yanate-conjugated phalloidin (Invitrogen, Carlsbad,

CA) for 30 min to stain the F-actin filaments. Then the cells

were incubated with DAPI (Sigma, St. Louis, MO, United States)

TABLE 1 Parameters used for RT-PCR.

Temperature and time

Gene 34–36 cycles

Denaturation Annealing Extension

MYOC 30 s at 94°C 30 s at 58°C 1 min at 72°C

GAPDH 30 s at 94°C 30 s at 56°C 1 min at 72°C

MMP-1 30 s at 94°C 30 s at 57°C 1 min at 72°C

MMP-2 30 s at 94°C 30 s at 57°C 1 min at 72°C

TIMP-1 30 s at 94°C 30 s at 55°C 1 min at 72°C

TIMP-2 30 s at 94°C 30 s at 55°C 1 min at 72°C

COLA-1 30 s at 94°C 30 s at 57°C 1 min at 72°C

COLA-4 30 s at 94°C 30 s at 54°C 1 min at 72°C

β-actin 30 s at 94°C 30 s at 64°C 1 min at 72°C

TABLE 2 Sequence of the primers used for RT-PCR.

Gene Forward Reverse

MYOC AGGGAAGTTTCTAAATGGAATGTGG CCAGTGATTGTCTCGGCTGT

GAPDH CAGCAATGCCTCCTGTACCA GATGCCGAAGTTGTCATGGA

MMP-1 CACACACCTGACCTACAGGATT TGGGACAGCTGAACATCACC

MMP-2 GACGTGACCCCATTACGGTT CTTCACACGCACCACTTGTC

TIMP-1 CACCTGCAGTTTTGTGGCTC GGGATGGATGTGCAGGGAAA

TIMP-2 CGTTTTGCAATGCAGACGTAG CGCGTGATCTTGCACTCACA

COLA-1 AGACATCCCACCAGTCACCT TCACGTCATCGCACAACACA

COLA-4 GTGCATGCGGAGAACATGAC AGGGTGTGTTAGTTACGCGG

β-actin AAGATCAAGATCATCGCGCCTCCA TGGAATGCAACTAACAGTCCGCCT
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for 5 min to label cell nuclear. The fluorescent images were taken

under a confocal microscope (TCS-SP5; Leica, Solms, Germany).

The angle of cell is defined as the angle between the main axis of

the cell and the flow direction. The cell angles and average optical

intensity of F-actin were calculated with ImageJ software (NIH

Image, Bethesda, MD).

FIGURE 1
Hyperoxia as an experimental model of senescence for porcine trabecular meshwork (PTM) cells. Morphology of PTM cells grown for 2 weeks
under control (A) or hyperoxic (40%O2) conditions (B). β-galactosidase staining of PTM cells grown for 2 weeks under control (C) or hyperoxic (40%
O2) conditions (D). PTM cells grown under the control conditions exhibited negligible staining for senescencemarker β-galactosidase, whereas cells
exposed to hyperoxia stained positive for this marker (E) (***p < 0.001). The proportion of cells in the S phase and G2 phase decreased after
hyperoxia exposure compared with the control group (F) (**p < 0.01). Flow cytometry quantification of the cell cycle of PTM cells grown for 2 weeks
under control (G) or hyperoxic (40% O2) conditions (H).
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Cell stiffness measurement

Cell stiffnesswasdeterminedasdescribedpreviously (Ding et al., 2015;

Sancho et al., 2017; Gu et al., 2018) using the atomic force microscope

(AFM, Agilent 5,500, United States) equipped with an inverted

fluorescence microscope (Nikon TE 2000U). Acquisition of F-D curves

was carried out on Picoview SPM System (Agilent 5,500, United States).

We employed a very low loading rate of 0.25 μm/s, and an indentation

depth of 300 nm. The spherical probe was applied here to determine the

overall stiffness of each cell. The calibrated spring constant was given as

0.08N/m. The probe tip was a SiO2 sphere with a diameter of 11.41 μm.

Cells were selected randomly and each of them was compressed three

times.More than 10 cellsweremeasured for each treatment condition and

each experiment was repeated three times. The F-D curves were fitted by

the Hertz model. A MATLAB program was used to process all the data.

Migration assay

The migration of PTM cells was measured with a transwell

migration apparatus as described previously (Hogg et al., 2000;

Kim, 2016). Briefly, cells were trypsinized and resuspended at a

density of 6×105 cells/ml in serum-free media. Then, the PTM

cells were added into the upper wells of a transwell chamber

(Corning, United States). Culture media with 10% FBS were

added into the lower wells. After incubating for 24 h, cells were

fixed and stained with DAPI. Migrated cells attached to the

bottom of the filter were counted under a fluorescent microscope.

Total RNA extraction and reverse
transcription-polymerase chain reaction
analysis

After removing the culture medium, PTM cells were

immediately immersed in RNAlater™ (Qiagen, Valencia, CA)

to preserve RNA integrity. Total RNA was isolated from PTM

cultures using an RNase kit (Qiagen) according to the

manufacturer’s protocol and was treated with DNase. RNA

yields were determined using Ribogreen fluorescent dye

(Molecular Probes). First-strand cDNA was synthesized from

0.5 µg total RNA by reverse transcription using an oligo dT

FIGURE 2
Effect of senescence on cytoskeleton and cell stiffness of PTM cells in response to shear stress. (A) Fluorescence images of normal and
senescent PTM cells under static conditions (no shear stress) or subjected to shear stress of 25 dyn/cm2. Red: phalloidin, Blue: DAPI. (B) Alignment of
the cytoskeleton of normal and senescent PTM cells under static conditions or subjected to shear stress (*p < 0.05). (C) F-actin content of normal and
senescent PTM cells under static conditions or subjected to shear stress (**p < 0.01, ***p < 0.001). (D) Cell stiffness of normal and senescent
PTM cells under static conditions or subjected to shear stress (*p < 0.05). SS stands for shear stress.
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primer and Superscript II reverse transcriptase (Invitrogen)

according to the manufacturer’s instructions. Reverse

transcription-polymerase chain reaction (RT-PCR) analyses

were performed using the PCR parameters shown in Table 1.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or β-
actin was used as an internal standard of mRNA expression.

The sequences of the primers used for the amplifications are

listed in Table 2.

Western blot analysis

Cell lysates were prepared using RIPA solution, and protein

concentration was determined with a BCA protein

determination kit (Ythxbio, China). Equal amounts of

protein samples (25 μg) were separated by SDS-PAGE

(10.0% acrylamide gel slabs) and then transferred to PVDF

membranes (Bio-Rad). The PVDF membranes were blocked

with 5% BSA and incubated overnight with anti-GAPDH

antibody (Beyotime, China), ERK antibody (Santa Cruz,

CA), or p-ERK antibody (Santa Cruz, CA), followed by

incubation with secondary antibodies conjugated to

peroxidase. GAPDH was used as a loading control.

Statistic analysis

These experiments were repeated at least three times

independently with different cell lines, as described above. Data

were represented as the mean ± SD and were analyzed by one-way

analysis of variance (one-way ANOVA). Data analysis was

performed with GraphPad Prism7 (GraphPad Software Inc.,

United States) and SPSS 19.0 (SPSS Inc., United States).

Differences were considered statistically significant at p < 0.05.

Experimental results

Characterization of PTM cells

Morphologically, confluent cultures of cells exhibited the

typical morphology of PTM cells, i.e., long shuttle in shape

(Supplementary Figure S1B) (Mao et al., 2013; Stamer and

Clark, 2017). Measured by immunohistochemical staining, the

cells in this study expressed TM cells biomarker FN and LN

(Supplementary Figure S1C) (Khaw et al., 1994; Ge et al., 2016;

Wang et al., 2017; Huang et al., 2022). Because the neighboring

cells do not respond as robustly, the induced myocilin expression

in response to DEX is widely accepted as a gold standard in

TM cell characterization (Polansky et al., 2000; Snider et al., 2015;

Gu et al., 2018). In this study, 100 nM DEX was added for 7 days

to provoke robust myocilin production, as assessed by PCR

(Supplementary Figure S1D, E). By examining cell

morphology, biomarkers, and myocilin induction, the identity

of TM cells was established.

Hyperoxia-induced cellular senescence
model

In this study, we adopted the normobaric hyperoxia

treatment to induce senescent cells (Gille and Joenje, 1992;

Liton et al., 2008). We found that these cells grown in 40%

O2 exhibited morphology with enlarged cell size (Figure 1B)

compared to normal PTM morphology (Figure 1A). After 2-

week exposure to hyperoxia, PTM cells stained positively for the

cell senescence marker β-galactosidase (Figure 1D), whereas

PTM cells in control have negligible staining for this maker

(Figure 1C), as shown in Figure 1E. Further, flow cytometry

results showed that the proportion of G2/M phase cells appeared

to decrease after exposure to hyperoxia (Figure 1H) compared to

the control group (Figure 1G). Quantitative results were shown

in Figure 1F.

FIGURE 3
Effect of senescence on cell migration of PTM cells in
response to shear stress. (A) Transwell migration assay for normal
and senescent PTM cells under static conditions or subjected to
shear stress (B) Migration activity of normal and senescent
PTM cells under static conditions or subjected to shear stress (*p <
0.05, ***p < 0.001). SS stands for shear stress.
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Effect of senescence on cytoskeleton and
cell stiffness of PTM cells in response to
shear stress

The quantified alignment of PTM cells was depicted as a

proportion of cells within ±30° range with respect to the flow axis.

For normal PTM cells, it was shown in Figures 2A,B that the

percentage of cells aligned with the angle of orientation ranging

from -30° to 30° with respect to the flow axis (0°) was significantly

increased after 12-h exposure to shear stress of 25 dyn/cm2

compared with the static group (no shear stress). In contrast,

for senescent PTM cells, the percentage of cells did not vary

significantly after exposure to sheer stress compared with the

static group (Figures 2A,B). These results suggested that, after

exposure to shear stress of 25 dyn/cm2 for 12 h, normal PTM cells

tended to orient in the direction of the flow, while senescent PTM

cells did not respond in the same way.

As shown in Figure 2C, these senescent PTM cells

demonstrated a significant increase in F-actin content

compared with normal PTM cells. When exposing cells to

shear stress, F-actin content was significantly improved in

both normal and senescent PTM cells. Correspondingly, AFM

results indicated that the senescence of PTM cells led to an

increase in cell stiffness (Figure 2D). After being subjected to

the shear stress, both normal and senescent PTM cells

exhibited increased cell stiffness. Quantitatively, we

observed an increase in stiffness by 67.44% and 36.14% for

normal and senescent PTM cells, respectively, after exposure

to the shear stress. As expected, simultaneously exposing PTM

cells to hyperoxia and shear stress led to the most remarkable

change in cell stiffness compared with the control (Figure 2D).

Our findings are consistent with existing results which

suggested that the cell stiffness is positively correlative to

the F-actin content (Starodubtseva, 2011).

FIGURE 4
Effect of senescence onmatrixmetalloproteinases (MMP), tissue inhibitors ofmetalloproteinases (TIMP), and collagenmRNA expression of PTM
cells in response to shear stress. (A–E) PCR quantification of MMP-1, MMP-2, TIMP-1 and TIMP-2 mRNA expression of normal and senescent PTM
cells under static conditions or subjected to shear stress (*p < 0.05, **p < 0.01). (F, H) PCR quantification of collagen I (COLA-1) mRNA expression of
normal and senescent PTM cells under static conditions or subjected to shear stress. (G, I) PCR quantification of collagen IV (COLA-4) mRNA
expression of normal and senescent PTM cells under static conditions or subjected to shear stress. SS stands for shear stress.
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Effect of senescence on cell migration of
PTM cells in response to shear stress

Transwell assays were performed to determine the

migration ability of normal and senescent PTM cells

subjected to the shear stress. We found that the senescent

PTM cells had a significantly lower migration rate compared

with normal PTM cells. After 12-h exposure to the shear

stress, the migration ability of normal PTM cells significantly

increased compared with the static group. However, the

opposite was true for the senescent PTM cells (Figures 3A,B).

Effect of senescence on MMP, tissue
inhibitors of metalloproteinases (TIMPs)
and collagen mRNA expression of PTM
cells in response to shear stress

Results from RT-PCR indicated that, for normal PTM cells,

the mRNA expressions of MMP-1, MMP-2, TIMP-1, and TIMP-

2 were significantly up-regulated after 12-h exposure to the shear

stress compared to the static group. However, the mRNA

expressions of these specific proteins, except TIMP-1, were

significantly down-regulated for senescent PTM cells (Figures

4A–E). In addition, the mRNA expression of collagen I (COLA-

1) and collagen IV (COLA-4) did not change for both normal

and senescent PTM cells after exposure to the shear stress

(Figures 4F–I).

Effect of senescence on the ERK protein
expression of PTM cells in response to
shear stress

We also studied the expression and phosphorylation of ERK

using Western blot analysis. For normal PTM cells, the p-ERK/

total ERK ratio increased significantly after 12-h exposure to the

shear stress compared with the static group. In contrast, a

significant decrease in p-ERK/total ERK ratio was observed

for senescent PTM cells in response to the 12-h exposure to

the shear stress (Figures 5A,B). To further study the effect of

senescence on the ERK expression and phosphorylation, we

investigated the exposure time-dependence of normal and

senescent PTM cells by considering short-term shear stress.

FIGURE 5
Effect of senescence on the extracellular signal-regulated kinase (ERK) and p-ERK expression of PTM cells in response to shear stress. (A,B)
Western blot analysis of the p-ERK and ERK expression of normal and senescent PTM cells under static conditions or subjected to 12-h shear stress
(*p < 0.05). (C,D) Western blot analysis of the p-ERK/total ERK protein expression of normal and senescent PTM cells under static conditions or
subjected to 10-min and 30-min shear stress (**p < 0.01). SS stands for shear stress.
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As shown in Figures 5C,D, for normal PTM cells, the p-ERK/

total ERK ratio remained roughly unchanged after exposure to

the shear stress for 10 min and 30 min compared to the static

group. However, the p-ERK/total ERK ratio decreased

significantly to the value measured for 12 h after exposure

to the shear stress even for 10 min for the case of senescent

PTM cells (Figures 5C,D). These results indicated that the

alteration in ERK phosphorylation in response to the shear

stress occurred at a different time point in normal or senescent

PTM cells.

Conclusion and discussion

In this study, we investigated the effects of senescence on

the responses of PTM cells to the shear stress. We found for

the first time that mechanotransduction of PTM cells could be

altered by cell senescence. Our studies addressed the possible

correlation of the senescence-induced change in cytoskeletal

rearrangement, F-actin remodeling, migration, and MMP/

TIMP expression in response to shear stress with the

pathogenesis of POAG.

It is commonly accepted that the TMCs can remodel the

cytoskeleton in response to mechanical stress such as mechanical

stretch or ECM stiffness in order to moderate their capability of

draining aqueous humor (Starodubtseva, 2011; Li et al., 2022). In

our study, following exposure to the shear stress of 25 dyn/cm2,

normal PTM cells showed clearly a cytoskeletal rearrangement,

i.e., the F-actin fibers tended to realign along the direction of the

flow, in sharp contrast to the random cytoskeletal arrangement

for cells grown under static conditions. The cytoskeletal

network’s structure is essential for transmitting force

stimulation and perceiving the mechanical microenvironment

cues (Janmey andMcculloch, 2007; Du et al., 2022). It may play a

crucial role in several biological functions of TMCs, such as cell

contraction, cell migration, and phagocytosis (Rottner et al.,

2017; Mylvaganam et al., 2021). Hence, we propose the

cytoskeletal rearrangement of TMCs as an important means

for responding to the shear stress and regulating the aqueous

humor outflow. Existing studies have proved that the shear stress

can cause cytoskeletal arrangement for several different cell types

(Galbraith et al., 1998; Kadi et al., 2007; Huang et al., 2010; Risca

et al., 2012; Cheng et al., 2013; Molladavoodi et al., 2017; Son

et al., 2020), and the changes in cytoskeleton and cellular

functions after shear stress stimulation may be mediated by

FAK (Girard and Nerem, 1995; Fabry et al., 2011; Cheng

et al., 2013; Sun et al., 2018), ERK pathway (Fabry et al.,

2011; Sun et al., 2018), Rho pathway (Tzima et al., 2002), and

transient receptor potential melastatin type 7 (TRPM7) channel

(Liu et al., 2015; Xiao et al., 2015). These uncovered mechanisms

may also hold for the case of TMCs. An exciting result in our

study was that the shear stress-induced reorganization of the

cytoskeleton was weakened for the senescent PTM cells. Existing

studies indicated that the cytoskeletal arrangement of TMCs in

glaucomatous eyes of elderly human is more random and

disordered than that in control eyes (Read et al., 2007; Huang

et al., 2022). Moreover, glaucomatous TMCs derived from POAG

donors are insensitive to shear stress (Patel et al., 2021).

Therefore, we postulate that the impairment of rearrangement

in senescent TMCs under mechanical stimulation may partly

contribute to the aging-related glaucoma pathogenesis.

We further found that the F-actin content of normal PTM

cells increased under shear stress stimulation. This finding

indicated that not only the cytoskeletal organization but also

the formation of F-actin could be actively changed after exposure

to the shear stress. It has been revealed that the TMCs showed

increased stress fibers in response to mechanical stimulation such

as cyclic mechanical stretch (Duffy and O’reilly, 2018). For other

cell types, the F-actin formation had also been shown to correlate

closely with the shear stress (Okuyama et al., 1996; Schleicher

et al., 2008; Mu et al., 2015), depending on themode and intensity

of shearing (Chen et al., 2004). The dynamic regulation of F-actin

polymerization of TMCs in response to the shear stress may be

significant for the maintenance of outflow resistance and IOP

homeostasis. Interestingly, our results showed that the shear

stress stimulation led to moderate but less significant increase

in F-actin content in senescent PTM cells than that in normal

PTM cells. This indicated that the cell senescence impaired the

capability of dynamic regulation of F-actin polymerization. It is

well recognized that the F-actin is a major determinant in

maintaining the cellular elastic stiffness (Fallqvist et al., 2016),

and the enhancement of cell stiffness is associated with F-actin

formation (Sun et al., 2017). Here, we measured the stiffness of

normal and senescent PTM cells after shear stress stimulation

using AFM. Our results indicated that the senescent PTM cells

with more F-actin exhibited higher cell stiffness (Morgan et al.,

2015) and showed a less significant increase in cell stiffness after

exposure to the shear stress. Altogether, cell senescence may

impair the cytoskeleton formation in TMCs after shear stress

stimulation and consequently affect the regulation of cell

stiffness.

The cell migration, a highly dynamic process driven by the

cytoskeleton (Lin et al., 2019), was also found to be affected by the

shear stress and cell senescence. More specifically, the migration

of normal PTM cells increased after shear stress stimulation,

while the opposite is true for the senescent PTM cells. This may

be attributed to the difference in the response of cytoskeleton to

the shear stress for normal and senescent cells. The relationship

between the migration of TMCs and elevated IOP is not clear so

far. For example, Koga et al. suggest that inhibition of migration

activities might be associated with decreased aqueous outflow

(Koga et al., 2006). While, Igarashi et al. suppose that inhibition

of cell migration or proliferation could benefit glaucoma

treatment (Igarashi et al., 2021). Although the relationship

between migration of TMCs and elevated IOP remains to be

established, it is widely believed that migration activities of TMCs
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might be associated with aqueous outflow, suggesting migration

as a potential therapeutic target in treating glaucoma. We

propose that normal PTM cells can sense the shear stress

induced by fluid flow and accordingly moderate their

functions such as migration to regulate IOP. While these

responses in senescent PTMs cells are negated, which might

be associated with dysregulated aqueous humor outflow and IOP.

MMPs, as a family of zinc-dependent enzymes that are involved

in the ECM degradation (Clark, 1998), have been proposed to play a

vital role in regulating the ECM turnover in the TM and the IOP

(Alexander et al., 1991). Among those enzyme family members,

TMCs are known to express MMP-1, MMP-2, and their

endogenous inhibitors TIMPs, which are important for the

modulation of aqueous humor outflow facility by controlling

ECM turnover, cell growth, and cell migration in the TM (Sivak

and Fini, 2002; Pang et al., 2003; Brew andNagase, 2010; Ramer and

Hinz, 2010). It has been demonstrated that mechanical stimulation,

e.g., strain and mechanical stretch, can influence the expression of

MMPs in TMCs (Wudunn, 2001; Bradley et al., 2003). In our study,

we found that the expression of MMP-1 and MMP-2 in normal

PTM cells increased after shear stress stimulation, which was in

contrast down-regulated in senescent PTM cells. This different

response to the shear stress for normal and senescent PTM cells

was also observed in the cell migration as discussed above. Another

finding is that the level of MMPs and TIMPs in senescent cells are

higher than those in normal cells at zero stress, suggesting a higher

ECM turnover rate which is believed as a pathological change in

glaucomatous eyes (Camras et al., 2012; Camras et al., 2014). We

further evaluated the mRNA expression of COLA-1 and COLA-4,

which are vital components of the ECM in TM (Fuchshofer et al.,

2007; Takahashi et al., 2014). Our results showed that cell senescence

and shear stress made no difference to the COLA-1 and COLA-4

mRNA expression of PTM cells under current experimental

conditions. These results together suggested that the cell

senescence and shear stress altered ECM turnover by regulating

MMP expression but not collagen expression. In normal cells, the

increased shear stress induced by the elevated IOP (Ethier et al.,

2004) led to the up-regulation of expression of MMP, which

accelerates ECM degradation and helps to lower the IOP

(Turturro et al., 2013; Kennedy et al., 2019). Our results suggest

that cell senescence disrupted this feedback, which may eventually

contribute to the development of POAG.

To illuminate themechanism underlying the response ofMMPs

to the shear stress and the cell senescence, we further studied the

expression and phosphorylation of ERK for normal and senescent

PTM cells. Our results indicated that the ERK phosphorylation in

normal PTM cells was promoted significantly after 12-h shear stress

exposure, whereas remarkable suppression of ERK phosphorylation

was observed in the senescent PTM cells. This response of ERK

phosphorylation to the shear stress and the cell senescence was

consistent with that of MMPs, suggesting that the ERK pathway

might be involved in modulating MMP expression. In addition,

accumulating evidence regarding shear stress-regulated ERK

phosphorylation indicates that the initiation and duration of ERK

phosphorylation showed cell-type- and stress-type-dependent

behavior (Jo et al., 1997; Go et al., 1999; Lee D. Y. et al., 2010;

Lee M. Y. et al., 2010; Fukada et al., 2017; Choi et al., 2019; Zhou

et al., 2020). For example, Jo et al. found that ERK phosphorylation

was up-regulated by laminar shear stress with a maximum at 5 min

and aminimum at 30 min in bovine aortic endothelial cells (Jo et al.,

1997). Lee et al. observed 2-fold activation of ERK in human

osteoblast-like MG63 cells in response to the oscillatory shear

stress, as measured from 5 min to 24 h (Lee D. Y. et al., 2010).

Our results from short-term exposure to the shear stress indicated

that the changes in ERK phosphorylation of the senescent PTM cells

might occur at a relatively earlier time point after shearing compared

to normal PTM cells.

Additionally, mechanical stress on the outflow pathways

oscillates in the eye due to the fluctuation of IOP (Norouzpour

andMehdizadeh, 2012; Zou et al., 2014; Huang et al., 2015; Sherwood

et al., 2019; Karimi et al., 2022). Although it is difficult to precisely

measure the shear stress on TMCs with the change of IOP, it is

commonly believed that the mechanotransduction properties of

TM cells regulate the rhythmic IOP fluctuations and control the

outflow pathway in response to rapid IOP elevations induced by

stressful situations (Johnstone, 2004; Carreon et al., 2017; Turner

et al., 2019). The most exciting finding in our study is that senescent

PTM cells failed to respond actively to the shear stress. We believe

that the senescence-induced impairment of mechanotransduction in

TMCs limits the ability to modulate the pulsatile flow of the aqueous

fluid while IOP fluctuates, which may eventually lead to

dysregulation of IOP and glaucoma.

In conclusion, pTMCs can sense and respond to the shear stress

by modifying biomechanical properties and physiological functions.

However, cell senescence altered the mechanobiological response

and in most cases, rendered the cells less responsive to the shear

stress, which may lead to progressive failure of cellular TM function

with age. Despite the importance of the mechanobiology of TMCs,

our knowledge about TMCs’ behaviors in response to mechanical

stress in glaucoma or aging is highly limited. This work gives us new

clues to the role of senescence in regulating IOP by affecting TMC

dysfunction, which would deepen our understanding of the

pathophysiology of POAG.
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SUPPLEMENTARY FIGURE S1
Morphology and myocilin (MYOC) gene expression of PTM cells. (A)
Image of primary PTM cells. (B) Image of passage PTM cells. (C) Staining
for fibronectin (FN) and laminin (LN) of PTM cells. (D,E) Myocilin gene
expression in PTM cells after corticosteroid treatment. There was a
substantial increase in myocilin expression after dexamethasone (DEX)
treatment (***p < 0.001).
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