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ABSTRACT

A data-driven sparse identification method is developed to discover the underlying governing equations from noisy measurement data
through the minimization of Multi-Step-Accumulation (MSA) in error. The method focuses on the multi-step model, while conventional
sparse regression methods, such as the Sparse Identification of Nonlinear Dynamics method (SINDy), are one-step models. We adopt sparse
representation and assume that the underlying equations involve only a small number of functions among possible candidates in a library.
The new development in MSA is to use a multi-step model, i.e., predictions from an approximate evolution scheme based on initial points.
Accordingly, the loss function comprises the total error at all time steps between the measured series and predicted series with the same
initial point. This enables MSA to capture the dynamics directly from the noisy measurements, resisting the corruption of noise. By use of
several numerical examples, we demonstrate the robustness and accuracy of the proposed MSA method, including a two-dimensional chaotic
map, the logistic map, a two-dimensional damped oscillator, the Lorenz system, and a reduced order model of a self-sustaining process in
turbulent shear flows. We also perform further studies under challenging conditions, such as noisy measurements, missing data, and large
time step sizes. Furthermore, in order to resolve the difficulty of the nonlinear optimization, we suggest an adaptive training strategy, namely,
by gradually increasing the length of time series for training. Higher prediction accuracy is achieved in an illustrative example of the chaotic
map by the adaptive strategy.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0114542

Governing equations are fundamental to physical systems. The
rapid-development data-driven approaches provide a powerful
tool to discover the governing equations from data even for the
complex systems or behaviors that are difficult to derive by using
conventional approaches from the physical principles. However,
many conventional data-driven methods only use one-step mod-
els, such as regression-based methods, which leads to difficultly
deal with the noisy data from measurements. Furthermore, inac-
curate predictions due to noise result in a failure for extrapolation
or long-time predictions, especially for the predictions around
the bifurcation points in the chaotic systems. To address this
issue, in this work, a data-driven sparse identification method
to discover the underlying governing equations from noisy data,
called the Multi-Step-Accumulation (MSA) method, is proposed.
We take into account multi-step error accumulation and suggest
an adaptive training strategy to overcome the difficulty in the

multi-step optimization, especially for a long duration of time.
The proposed method is numerically shown to be robust and
accurate and presents a highly accurate prediction for discovering
chaotic systems around the bifurcation points from noisy data.

I. INTRODUCTION

Governing equations provide fundamental models in a math-
ematical way for physical systems. With the rapid development of
data science, data-driven approaches provide a powerful tool to
discover the unknown governing equations from data.1 Consider
governing equations of the general form in a discrete map

xk = f(xk−1) (1)

Chaos 32, 123134 (2022); doi: 10.1063/5.0114542 32, 123134-1

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0114542/16501222/123134_1_online.pdf

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0114542
https://doi.org/10.1063/5.0114542
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0114542
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0114542&domain=pdf&date_stamp=2022-12-16
http://orcid.org/0000-0001-8291-6124
http://orcid.org/0000-0002-7387-5743
http://orcid.org/0000-0003-4738-0816
mailto:hgw@lnm.imech.ac.cn
https://doi.org/10.1063/5.0114542


Chaos ARTICLE scitation.org/journal/cha

or in continuous dynamical system

ẋ = f (x(t)) , (2)

where ẋ denotes the derivative with respect to time t, and the explicit
form of f(x) is priorly unknown. Data-driven modeling of dynamics
aims to discover unexplored function f(x) from data only. How-
ever, experimental data or measurements with large noises remain
a big challenge for these methods. On the one hand, many methods
only focus on the local relationship of dynamics, such as regression-
based methods,2–4 which, thus, has a weak ability to resist the noise.
In particular, many denoising techniques are based on the continu-
ity of data, and, hence, these techniques might not work well for
the data in a discrete map due to the discontinuity. On the other
hand, inaccurate predictions can occur for extrapolation or long-
time predictions and even might lead to errors in a trajectory along
a wrong bifurcation branch in the chaotic systems. To address the
above issues, the objective of the present study is to develop a data-
driven model of nonlinear dynamical systems, which is robust and
accurate in predictions.

Recently, with the development of data science, the data-driven
models for discovery of nonlinear dynamics, such as classical linear
approaches,2,3 nonlinear autoregressive models,5 a stepwise regres-
sion variational system identification method and a Bayesian infer-
ence approach,6 dynamic mode decomposition,7–9 reservoir com-
puting approaches,10 and neural networks,11–15 have been proposed.
The above methods are successfully used to reconstruct the equa-
tions in an approximate form. However, an extrapolation or a long-
time prediction of complex nonlinear systems with bifurcations
or even with chaos remains challenging for these approximations.
Notably, a novel data-driven method based on sparse represen-
tation, named the Sparse Identification of Nonlinear Dynamics
method (SINDy),4 was proposed and able to provide the explicit
form of f(x). SINDy assumes that f(x) is a linear combination of pos-
sible candidate functions, and the corresponding coefficients are the
unknown parameters to be identified. This provides opportunities to
yield function forms that are the same as the original systems, which
benefit the extrapolation and long-time predictions. Uncomplicated
implementations and good performances make SINDy widely used
and developed in many fields, such as slow timescale dynamics,16

disease dynamics,17 vortex-induced vibration,18 algebraic Reynolds-
Stress model,19 multiscale nonlinear dynamics,20 rapid model recov-
ery from abrupt system changes,21 chemical processes,22,23 and so
on. However, when considering noisy measurements in practice,
SINDy has two limitations: the method focuses on the local rela-
tionship between two neighboring snapshots, which leads to a weak
resistance to the noise; the gradients are obtained by the finite differ-
ence scheme numerically, which is heavily influenced by the noise.
Due to these, in spite of denoising technique used in the imple-
mentation of the SINDy, the results are still sensitive to the noise
level. Xu et al.24,25 combined the neural network to generate addi-
tional meta-data and calculate derivatives for better robustness,
while the neural network requires large datasets and numerical
cost. In addition, these denoising techniques might not be proper
for the discrete map due to the discontinuity of data. As a result,
when dealing with the chaotic systems around the bifurcation points
from the noisy measurements, a small deviation of predictions due
to noises likely leads to errors in a trajectory, as illustrated in

Sec. III with examples of the logistic map, the Lorenz system, and
a reduced order model of a self-sustaining process. Thus, it is nec-
essary to find a robust and accurate identification approach in such
cases.

To address this, we propose a multi-step model consider-
ing error accumulation, called the Multi-Step-Accumulation (MSA)
method. We generate the predicted data based on the approximate
dynamical systems with the form of sparse representation with a
library of possible candidate functions. Our loss function accounts
for the total error between measured series and predicted series
with the same initial point. In another word, the prediction at a
step is obtained from an approximate evolution scheme until this
step instead of the previous one-step measurements. Compared with
SINDy, which only focuses on the regression relationship between
two neighboring steps, the proposed MSA method considers multi-
step error accumulation over the prediction horizon and, thus, has a
better chance to achieve accurate multi-step (long-time) predictions
and resists the corruption of noise. Combined with time integration
scheme, MSA has no need to compute gradients and avoids the error
from numerical gradients.

Multi-step optimization has been used for different purposes.
The paper26 used it to construct the neural network for learning.
Neural networks combining with multi-step optimization are pro-
posed to model system dynamics from observations in Ref. 27.
However, the number of steps in Ref. 27 is usually small, and the
author pointed out that “the training did not converge for using
lookahead = 30” for the chaotic Lorenz attractor (“lookahead” refers
to the number of steps in Ref. 27). As a comparison, we achieve
200-step optimization via an adaptive training strategy for the con-
tinuous dynamical system including the Lorenz system, as illustrated
in numerical examples. The multistep neural networks proposed in
Ref. 12 choose a multi-step integration scheme considering multi-
step states in one integration time step to calculate the loss. The
difference of the present method from multistep neural networks
is as follows: in multistep neural networks, the error for a single
time step is used for optimization, while a multi-step time-stepping
scheme is used for the evolution of systems; in the present method,
the accumulated error for multiple time steps is used for optimiza-
tion, while a multi-step or one-step time-stepping scheme is used for
evolution.

The MSA method presents a highly accurate prediction for dis-
covering chaotic systems around the bifurcation points. We shall
illustrate this with numerical examples including the logistic map,
and a reduced order model of a self-sustaining process in turbulent
shear flows. However, the multi-step model of nonlinear dynamics
leads to the difficulty of optimization in the numerical implemen-
tations. We, thus, adopt an adaptive training strategy to address
this issue. To test our method, we further consider several cases,
including discrete maps and continuous dynamical systems, noisy
measurements, and missing data.

The rest of the paper is organized as follows. Section II presents
the proposed MSA method for discrete map and continuous dynam-
ical systems, and then the adaptive training strategy. Numerical
examples under several conditions are given in Sec. III, including a
two-dimensional chaotic map, the logistic map, a two-dimensional
damped oscillator, the Lorenz system, and a reduced order model of
a self-sustaining process in turbulent shear flows.
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II. THE MULTI-STEP-ACCUMULATION (MSA) METHOD

Inferring dynamical systems from data is a useful tool to repre-
sent and understand the new physical phenomenon. We propose a
class of sparse identification methods considering multi-step error
accumulation to discover governing equations from noisy mea-
surement data, called the Multi-Step-Accumulation (MSA) method,
which performs good robustness and accuracy. We first introduce
our method for discrete maps in Sec. II A. Then, we combine
the Runge–Kutta scheme and extend the method to continuous
dynamical systems in Sec. II B. Finally, an efficient adaptive training
strategy is given in Sec. II C to facilitate the implementation.

A. Discovering governing equations of discrete maps

Consider a discrete map of form (1). We obtain a set of time-
series data X = [x1, x2, . . . , xS]

T with initial point x1, where S is the
length of the time series.

To infer the unknown f(x) from data, the key idea in MSA is
to generate approximate series based on the sparse representation,
i.e., to assume that f(x) is approximated by a linear combination of
specific basis functions from a prescribed library 2(x) with lots of
candidate functions,

f(x) = 2(x)ξ . (3)

For example, the library might consist of constant, polynomial,
trigonometric, exponential functions, etc.,

2(x) = [1, x, x2, x3, . . . , xp, sin(x), cos(x), . . . , exp(x), . . .]. (4)

The coefficient vector ξ is sparse, that is to say, most entries are zero,
meaning only a few candidate functions are selected (active).

Thus, the approximate dynamical system reads

ok = 2(ok−1)ξ , (5)

with the same initial point

o1 = x1. (6)

This gives an S-step approximate time series O = [o1, o2, . . . , oS]
T.

The discovery of equations then becomes a sparse regression prob-
lem to determine the sparse coefficient vector ξ . Considering the
time-history, we define the accumulated error between approximate
time series and real ones as the loss function with respect to ξ ,

loss =
1

S− 1
‖O− X‖2

L2 =
1

S− 1

S
∑

k=2

(ok − xk)
2. (7)

For example, when S = 3, the loss reads

loss =
1

2

S=3
∑

k=2

(ok − xk)
2

=
1

2

(

(o2 − x2)
2 + (o3 − x3)

2
)

=
1

2

(

(2(o1)ξ − x2)
2
+ (2(o2)ξ − x3)

2
)

=
1

2

(

(2(x1)ξ − x2)
2
+ (2(2(x1)ξ)ξ − x3)

2
)

. (8)

For a general S, the loss reads

loss =
1

S− 1

(

(2(x1)ξ − x2)
2
+ (2(2(x1)ξ)ξ − x3)

2

+ · · · + (2(2(· · ·2(2(x1)ξ)ξ · · · )ξ)ξ − xS)
2
)

. (9)

Generally, there exist nonlinear terms in the library 2. Thus, the
optimization problem is nonlinear, and (9) shows that the complex-
ity of the form of the loss increases with S increasing, which is the
main difficulty in the optimization. The last term in (9) performs
like an S-layer neural network with 2 as the activation functions.
Here, S is equivalent to the depth of neural networks. A large-
number composition of non-linear functions leads to the issue of
vanishing or exploding gradients in optimization, which makes the
learning of long-term dependencies particularly difficult.28 In the
numerical implementations, we found that the training hardly con-
verges for large S without the following adaptive training strategy in
Sec. II C. Furthermore, Ref. 27 also pointed out that “the training
did not converge for using lookahead = 30” for the chaotic Lorenz
attractor (“lookahead” refers to the number of steps S).

The system property is another factor to influence the opti-
mization. In this paper, we focus on chaotic systems, especially the
issue to discover the dynamics near the bifurcation points. The tra-
jectories are, thus, sensitive to the parameters, which increases the
difficulties to identify correct parameters via optimization. In con-
trast, if a system is stable,27 it pointed out that the training of such
multi-step optimization should converge for any choice of S. In the
following numerical examples, when taking S = 40, we can apply
MSA to the identification of damped oscillators directly without the
following adaptive strategy but fail to deal with other chaotic systems
at the same S directly.

As a comparison, the loss of SINDy4 for the same time series
X = [x1, x2, . . . , xS]

T is

lossSINDy =
1

S− 1

(

(2(x1)ξ − x2)
2
+ (2(x2)ξ − x3)

2

+ · · · + (2(xS−1)ξ − xS)
2
)

. (10)

The corresponding optimization problem is a simple least-square
problem without a composition of non-linear functions.

Different from SINDy that focuses on the regression relation-
ship between the states of the current step and the previous step, the
proposed method is a multi-step model. We consider error accumu-
lation over S steps, as key to achieving higher accuracy. On the other
hand, the loss function measures the deviation of the approximate
motion from a multi-step (long-time) view, so the method is able to
capture the long-time dynamical behavior from the measurements,
enabling resistance to the corruption of noise.

Note that we can adopt multiple sets of time series as training
data to further improve the performance. For example, suppose we
have m time series

X
(1) = [x(1)

1 , x(1)
2 , . . . , x(1)

S ]
T
, X(2) = [x(2)

1 , x(2)
2 , . . . , x(2)

S ]
T
, . . . ,

(11)

X
(m) = [x(m)

1 , x(m)
2 , . . . , x(m)

S ]
T
,

with the superscript (l) counting the time-series index and S length
of the time series. The approximate dynamical system (5) induces
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the approximate time series correspondingly,

O
(1) =

[

o(1)
1 , o(1)

2 , . . . , o(1)
S

]T

, O(2) =

[

o(2)
1 , o(2)

2 , . . . , o(2)
S

]T

, . . . ,

(12)

O
(m) =

[

o(m)
1 , o(m)

2 , . . . , o(m)
S

]T

,

with the same initial points as those of original time series X
(l),

l = 1, 2, . . . , m, i.e.,

o(l)
1 = x(l)

1 , l = 1, 2, . . . , m. (13)

The loss function is the mean of the error for each pair {O(l), X(l)},
l = 1, 2, . . . , m,

loss =
1

m(S− 1)

m
∑

l=1

∥

∥O
(l) − X

(l)
∥

∥

2

L2

=
1

m(S− 1)

m
∑

l=1

S
∑

k=2

(

o(l)
k − x(l)

k

)2

. (14)

The coefficient vector ξ is determined by minimizing the above loss
function with consideration of sparsity.

Remark that the resulting optimization problem is not a sim-
ple linear regression but a nonlinear one. This requires a numerical
optimization algorithm, such as gradient-based methods, Newton’s
method, and quasi-Newton methods. In the following, to balance the
accuracy and efficiency, we adopt L-BFGS method, one of the quasi-
Newton methods, to solve this nonlinear optimization problem. For
large S, the optimization becomes difficult, and the algorithm might
be divergent. An adaptive strategy for training will be presented in
Sec. II C.

Furthermore, the calculation of gradients can be implemented
by borrowing the backward-propagation (BP) idea, which consider-
ably enhances efficiency. For details, please refer to the Appendix.
The complexity of the calculation of gradients is of the order
O(NdL), with the number of data points N = m× S, the dimension
d, and the number of active candidate functions L. To improve the
computational efficiency, an alternative way is to reduce L via group
sparsity approaches.

There are several approaches to address the sparsity of ξ , such
as sequentially thresholded least squares (STLSQ),4 least absolute
shrinkage and selection operator (LASSO),29 sparse relaxed regu-
larized regression (SR3),30 stepwise sparse regression (SSR),31 and
Bayesian approaches.32 Here, following the work in Ref. 4, we adopt
the STLSQ algorithm.

When S = 2, MSA reduces to SINDy based on a small part of
the database, i.e., one only uses first two data points of each time
series. In this case, we have

o(l)
2 = 2

(

o(l)
1

)

ξ = 2
(

x(l)
1

)

ξ , l = 1, 2, . . . , m, (15)

and the loss function (14) reduces to

loss =
1

m

m
∑

l=1

(

o(l)
2 − x(l)

2

)2

=
1

m

m
∑

l=1

(

2(x(l)
1 )ξ − x(l)

2

)2

. (16)

Of course, the corresponding optimization problem reduces to the
least-square problem with sparsity.

ALGORITHM 1. STLSQ algorithm for sparsity.

1. Minimize the loss function (14) using the L-BFGS method and

obtain optimal coefficients ξ = [ξ1, ξ2, . . .]
T.

2. Set a small quantity λ.
Loop until the solution ξ does not change:

(a) If the term of the coefficient vector |ξk| < λ, we enforce
ξk = 0, and do not optimize ξk in the following process;

(b) Solve ξ by minimizing the loss function (14) again with
the rest non-zero entries.

B. Discovering governing equations of continuous

dynamical systems with a Runge–Kutta scheme

We then extend the MSA method to the dynamical system of
form (2) with a discrete time scheme given by

x(tk) = F
(

x(tk−1), f(x(tk−1))
)

. (17)

For convenience and clarity, we denote xk = x(tk).
We can adopt the MSA method to infer f(x) from data in the

same manner. First, f(x) is approximated by 2(x)ξ , where 2 is a
library of candidate functions and ξ is the unknown and sparse coef-
ficient vector. Then, we obtain the following approximate dynamical
system in discrete form:

ok = F(ok−1, 2(ok−1)ξ). (18)

We remark that the numerical integration scheme in MSA can be
any explicit numerical solver. For precisely, we choose the fourth
order Runge–Kutta (RK4) time scheme as illustration in the numer-
ical examples due to its good performance and stability.

The loss function is the error between the time-series
data O = [o1, o2, . . . , oS]

T from (18), and the collected data
X = [x1, x2, . . . , xS]

T from (2) with the same initial point o1 = x1.
The process in MSA for continuous dynamical systems is formulated
as

find ξ

min loss =
1

S− 1
‖O− X‖2

L2 =
1

S− 1

S
∑

k=2

(ok − xk)
2

(19)

where ok = F(ok−1, 2(ok−1)ξ), k = 2, 3, . . . , S

and o1 = x1.

C. Numerical implementations for optimization: An

adaptive strategy for training

As mentioned before, the L-BFGS method might fail for large
S. To address this issue, we propose the following adaptive train-
ing strategy to facilitate the optimization, i.e., using the solution for
a small S as the initial guess to optimize with a large one. That is,
we gradually increase the length of the time series in updating the
coefficient vector ξ .

Chaos 32, 123134 (2022); doi: 10.1063/5.0114542 32, 123134-4

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/5.0114542/16501222/123134_1_online.pdf

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

ALGORITHM 2. Adaptive training strategy for MSA.

1. Collect m time series X
(1), X(2), . . . , X(m) of the length M.

(a) Solve coefficients ξ by minimizing loss (14) for small S and
adopt STLSQ algorithm (Algorithm 1) to reduce the number
of non-zero entries simultaneously.

ξ S = argmin
ξ

loss, (STLSQ). (20)

(b) The sparse results are set to be the initial guess ξ 0 for the
next step.

ξ 0 ← ξ S. (21)

2. While S ≤ M do

(a) Minimize the loss (14) with a larger S+1S, 1S ∈ N
+, using

L-BFGS algorithm with an initial guess ξ 0, and obtain better

results ξ S+1S:

ξ S+1S = argmin
ξ

loss,

(L-BFGS with an initial guess ξ 0). (22)

(b) Set ξ 0 ← ξ S+1S;

(c) Set S← S+1S.

End while.

The incremental length of the time series 1S is a positive inte-
ger. We take 1S = 1 in general. Of course, we may try 1S > 1
sometimes to get better efficiency. Furthermore, the group sparsity
approach can reduce the number of non-zero entries for training
and, thus, reduce the difficulty and cost of the optimization. To fur-
ther improve the efficiency, the STLSQ algorithm is implemented
merely on the SINDy (S = 2) or the training with short time series,
not on large S.

III. RESULTS AND DISCUSSIONS

In this section, we present numerical examples to test our
method, including discrete maps and continuous dynamical sys-
tems. We take the classical SINDy4 without denoising as a compari-
son. In the implementations, we may need to normalize the columns
of 2(x) by their standard deviations first to ensure that the restricted
isometry property holds33,34 for SINDy. Remark that we do not need
such normalization for MSA in the following examples.

To demonstrate the robustness of the proposed MSA method,
we perform a numerical study under several conditions, such as
measured data with additional white Gaussian noises, i.e.,

DataMeasure = DataReal + ε, (23)

with DataMeasure the measured data for training, DataReal the real
data from the real systems, and ε an independent identically (i.i.d.)
Gaussian noise,

ε ∼ N (0, σ 2), (24)

with σ the standard deviation. Here, we define the noise level
following Ref. 35,

η =
σ

std
(

DataReal
) , (25)

where std(DataReal) is the standard deviation of real data. Note that
we do not add noises on the initial point of each time series in order
to eliminate the effect of the initial deviation.

A. A chaotic map

The first example is a chaotic attractor generated by a non-
invertible map,36

{

xn+1 = 3.7xn − (xn)
2 − 0.1xnyn,

yn+1 = 3.7yn − 0.15xnyn − (yn)
2.

(26)

We present the plot xn+1 vs xn, yn+1 vs yn, and yn vs xn in Fig. 1,
where the initial point is (x0, y0) = (0.5, 0.5). Note that all the points
are limited in the domain [0.5, 3.5]× [0.5, 3.5]. We collect m = 200
100-step series with random initial points for training.

In the sparse representation, the nonlinear library 2(x)

includes the product of 1D polynomials up to the fifth order with
36 candidate terms and, thus, the approximate dynamical system is







xn+1 = [1, xn, (xn)
2, . . . , (xn)

5, yn, xnyn, . . . , (xn)
5(yn)

5]ξ x,
(27)

yn+1 = [1, xn, (xn)
2, . . . , (xn)

5, yn, xnyn, . . . , (xn)
5(yn)

5]ξ y.

According to the real system (23), the exact solution should be

ξ real
x = [0, 3.7,−1, 0, 0, 0, 0,−0.1, 0, 0, . . . , 0]T,

ξ real
y = [0, 0, 0, 0, 0, 0, 3.7,−0.15, 0, 0, 0, 0,−1, 0, . . . , 0]T.

(28)

To measure the accuracy, we define the error

1ξ x = ξ num
x − ξ real

x , 1ξ y = ξ num
y − ξ real

y , (29)

where ξ num
x , ξ num

y are the coefficients obtained by SINDy or MSA

methods.
To demonstrate the ability of the present method in the model

selection aspect, we first take short time series with a length S = 20
and then increase the length S to 100 with the adaptive strategy for
training to observe the improvement in accuracy.

We compare our method with existing methods such as SINDy
and Entropic Regression (ER)37 under different noise levels. In
SINDy, we normalize the data first and then use STLSQ method with
a threshold λ = 0.03 to guarantee the sparsity of the coefficients. As
shown in the supplementary material and Table I, for small noises
(η = 1.44%), all of three methods successfully capture the correct
terms. However, when increasing noises to the level η = 14.4%,
incorrect terms occur in SINDy, while ER is still valid. However, for
large noises (η = 72.0%), both SINDy and ER fail to identify correct
equations. As a comparison, MSA gives good performance for the
model selection even for large noises.

In the implementations, to reduce the computational cost, we
usually take a small batch (e.g., m = 50) of time series using the
MSA method to identify a small number of correct candidate func-
tions first, especially for large noises or big libraries. For example,
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(a) (b)

(c)

FIG. 1. 105 data points generated by the Ushiki map with the initial point (x0, y0) = (0.5, 0.5): (a) xn+1 vs xn; (b) yn+1 vs yn; (c) yn vs xn. All the data points are limited in the
domain [0.5, 3.5]× [0.5, 3.5]. (a) xn+1 vs xn; (b) yn+1 vs yn; (c) yn vs xn.

TABLE I. Error in coefficients of SINDy, ER, and the proposed MSA method under different noise levels. We define the maximum error for coefficients, i.e., L∞ norm of 1ξ x

and 1ξ y, to measure the accuracy. The measurements are corrupted by additional Gaussian noise ε ∼ N (0, σ 2) with σ being the standard deviation. Here, note that MSA

uses a given length S= 20 of time series for training. Here, take m= 200 and p= 5.

Noise level η SINDy ER37 MSA (S= 20)

η= 0 ‖1ξ x‖L∞ = 8.88× 10−16 ‖1ξ x‖L∞ = 8.88× 10−16 ‖1ξ x‖L∞ = 8.88× 10−16

(No noise) ‖1ξ y‖L∞ = 3.11× 10−15 ‖1ξ y‖L∞ = 3.11× 10−15 ‖1ξ y‖L∞ = 3.11× 10−15

η= 1.44% noise ‖1ξ x‖L∞ = 4.20× 10−4 ‖1ξ x‖L∞ = 4.20× 10−4 ‖1ξ x‖L∞ = 9.45× 10−7

‖1ξ y‖L∞ = 2.55× 10−4 ‖1ξ y‖L∞ = 2.55× 10−4 ‖1ξ y‖L∞ = 1.76× 10−6

η= 14.4% noise ‖1ξ x‖L∞ = 0.472 ‖1ξ x‖L∞ = 0.054 ‖1ξ x‖L∞ = 6.87× 10−6

‖1ξ y‖L∞ = 3.761 ‖1ξ y‖L∞ = 0.153 ‖1ξ y‖L∞ = 3.48× 10−5

η= 72.0% noise ‖1ξ x‖L∞ = 2.359 ‖1ξ x‖L∞ = 3.700 ‖1ξ x‖L∞ = 3.62× 10−5

‖1ξ y‖L∞ = 3.323 ‖1ξ y‖L∞ = 3.700 ‖1ξ y‖L∞ = 6.99× 10−5
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(a) (b)

FIG. 2. History of coefficients with increasing S. Here, We take SINDy results as the initial guess and choose randomly a small batch (m = 50) of time series in the same
data set (η = 72.0% noise) for training. Wrong terms are represented by dashed lines. (a) History of coefficients in ξx . (b) History of coefficients in ξy .

we test MSA method with merely m = 50 time series for train-
ing, and illustrate a history of coefficients of candidate terms with
S increasing in Fig. 2. SINDy provides additional incorrect terms
for large noises (η = 72.0% noise) (see the supplementary material).
We take SINDy results as the initial guess, and choose randomly
m = 50 time series in the same data set for training. As shown
in the figure, correct terms (solid lines) are identified successfully,
and wrong terms (dashed lines) vanish with S increasing. This
clearly shows the importance of parameter S in the model selection
aspect.

As shown in Table I, MSA shows a high accuracy with three
or four orders of magnitude less error than SINDy and seems
insensitive to the noise level. Although facing strong noise, the
present method still maintains a good accuracy with a 10−5 error.

1. Discussions about hyperparameters S, m, and p

There exist three hyperparameters in MSA including length
of time-series (number of steps) S, number of training time-series
m, and the size of library K. For convenience, we focus on the

FIG. 3. Accuracy and computational time with increasing S. S is the length of time series used in the training (m = 1000, σ = 0.01, η = 1.44%). The accuracy of MSA
improves exponentially with increasing time series length S, until the error saturates to 10−14, which is the tolerance set for the L-BFGS algorithm. When S < 64, the error
decays with a rate about 10−0.15S. The computational time of MSA, thus, increases with S increasing. Compared with SINDy, MSA achieves higher accuracy with more
computational cost. (a) ‖1ξx‖L2 vs S. (b) Computational time vs S.
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FIG. 4. The error of different prediction trajectories for different sizes of time
series used with the same initial point. xrealn represents the nth point of the real
time series, and xnumn represents the prediction by SINDy or MSA, where the sub-
script n is the counting index for steps of the predicted trajectory. The prediction
accuracy improves with increasing S.

polynomials and denote the order of 1D polynomials as p. In
particular, the library for 2D problem is

2(x, y) =
[

1, x, x2, . . . , xp, y, xy, x2y, . . . , xpyp
]

, (30)

with a size K = (p+ 1)2. The problem is solved with a single CPU
core of Intel Core i7-11700F in Matlab.

In the previous cases, a good accuracy is achieved under a
length S = 20 of time series. Here, we adopt the adaptive strategy
for large S and study the performance of the proposed method with
S increasing. Take m = 1000 and p = 5. The noise level is σ = 0.01

and η = 1.44%. We gradually increase the length S of time series
using the adaptive strategy for training. The error ‖1ξ x‖L2 vs S
is shown in Fig. 3(a). The accuracy improves exponentially with
increasing time series length S, until the error saturating to 10−14,
which is the tolerance set for the L-BFGS algorithm. Meanwhile, the
computational time also increases with S. A significant increase of
computational time occurs at S = 32. As a comparison, the error
for coefficients of SINDy remains about 10−3 − 10−4, while the cost
increases slowly. In fact, the computational time of SINDy is almost
linear with S. MSAs are able to achieve higher accuracy than SINDy
although with more computational cost.

In Fig. 4, we plot the prediction error of a time series for dif-
ferent methods including SINDy and MSA with different S, with
the same initial point (x0, y0) = (0.5, 0.5). xreal

n represents the nth
point of the real time series, and xnum

n represents the prediction
by SINDy or MSA. As shown in the figure, the range of success-
ful long-time predictions (|xnum

n − xreal
n | < 10−3) directly reflects the

prediction accuracy of the parameters with the length of series S
increasing. Note that the SINDy results trained by real data (without
noise) can reach a very high accuracy with a 10−16 error as shown in
Table I, representing by the black crosses in Fig. 4. This error mostly
comes from the machine precision. However, the exact predictions
with clear measurements cannot remain over about 120 steps due
to the chaotic property. The adaptive strategy for MSA does not
improve the accuracy significantly when the error approaches 10−16

(the machine precision). It is the limit of the accuracy, and we sug-
gest stopping the optimization before S = 68 in this problem to
avoid additional cost.

Next, we fix S = 20, and observe the performance of meth-
ods with m altered. As shown in Fig. 5, both MSA and SINDy
hardly improve the accuracy when m ≥ 350. The computational
time also increases with m increasing. Comparing Fig. 5 with Fig. 3,
we can observe that S dominates the performance of MSA, and its
increase leads to a significant improvement of accuracy and growth
of computational cost.

(a) (b)

FIG. 5. Accuracy and computational time with increasing m. m is the number of time series for training (here, S = 20, σ = 0.01, η = 1.44%). Both MSA and SINDy hardly
improve the accuracy when m ≥ 350. The computational time increases with m increasing. (a) ‖1ξx‖L2 vs m. (b) Computational time vs m.
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FIG. 6. Computational time with increasing p. p is the order of polynomials in the

library. The library size is (p+ 1)2.

Finally, we present the computational time with increasing
order of polynomials p, i.e., increasing size of library. As shown in
Fig. 6, the increase of the computation time is about 10%–20%. The
reason is that we identify correct terms via sparsity algorithms for
small S. Hence, although the size of the library increases, the active
terms remain the same for large S.

Additionally, the dimension of systems d also affects the com-
putational cost of the proposed method. On the one hand, for the
same order of polynomials p, the size of the library K increases

exponentially with the dimension d, i.e., K = (p+ 1)d. On the other
hand, the complexity of the calculation of gradients is of the order
O(NdL) (details refer to the Appendix), with the number of data
points N = m× S, the dimension d, and the number of active candi-
date functions L. The dimension d directly affects the computational
cost of optimization.

2. Missing data case

Next, we consider a challenging case with missing data. In
practice, we might not get a complete time series. The following
numerical results show that MSA still works well in this case.

Drop about 30% data in each time series (m = 200), as illus-
trated in Fig. 7. Each row represents a time series with blocks
representing data and blank as missing data. The numerical results
show that 30% missing data does not influence the identification of
candidate terms of MSA, so we just list the error in coefficients in
Table II. Compared with Table I, under the same noise level, the
proposed method maintains high accuracy, only slightly influenced
by the missing data.

3. Colored noise

In the previous study, the noises are i.i.d. Here, we test our
method with colored noises, defined by

εColor
k =

1

2
εWhite

k +
1

2
εWhite

k−1 , (31)

FIG. 7. Illustration for missing data of each time series. There are ten time series
with about 30% missing data as illustrated in the figure. Each row (solid line) rep-
resents a time series with black blocks representing data and blank as missing
data.

with

εWhite
k ∼ N (0, σ 2), (32)

and k denoting counting index for steps in a time series. The error
in coefficients with different noise levels η is listed in Table III.
Compared with white Gaussian noises case in Table I, there is no
significant difference for MSA with white noises and colored noises.

B. Logistic map and bifurcations

In this subsection, we take the logistic map to exhibit the
importance of highly accurate predictions for chaotic systems
around a bifurcation point. The logistic map is a classical model that
exhibits a cascade of bifurcations.

The logistic map is given by

xn+1 = rxn(1− xn). (33)

Here, r is the parameter, which directly influences the dynamical
behavior of the system, as shown in Fig. 8. Set r = 3.626 and addi-
tional Gaussian noise ε ∼ N (0, 0.012) with noise level η = 4.61%.

TABLE II. Accuracy of MSA when facing 30% missing data in each time series. The

measurement is corrupted by a Gaussian noise ε ∼ N (0, σ 2) with σ the standard

deviation. Here, take m= 200, S= 20, and p= 5.

Noise level MSA (S= 20)

η= 1.44% noise ‖1ξ x‖L∞ = 1.72× 10−6

‖1ξ y‖L∞ = 1.78× 10−6

η= 14.4% noise ‖1ξ x‖L∞ = 6.39× 10−6

‖1ξ y‖L∞ = 4.59× 10−5

η= 72.0% noise ‖1ξ x‖L∞ = 9.39× 10−5

‖1ξ y‖L∞ = 9.80× 10−5
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TABLE III. Error in coefficients of the proposed MSA method for colored noise. We

define the maximum error for coefficients, i.e., L∞ norm of1ξ x and1ξ y, to measure

the accuracy. Here, take m= 200, S= 20, and p= 5.

Noise level MSA (S=20)

η= 1.44% noise ‖1ξ x‖L∞ = 7.10× 10−7

‖1ξ y‖L∞ = 7.93× 10−7

η= 14.4% noise ‖1ξ x‖L∞ = 2.31× 10−6

‖1ξ y‖L∞ = 1.40× 10−5

η= 72.0% noise ‖1ξ x‖L∞ = 7.76× 10−5

‖1ξ y‖L∞ = 7.76× 10−5

There are 1000 100-step series for training. The candidate functions
in the library are chosen as polynomials up to the fifth order. The
predicted results of SINDy is

xn+1 = 3.6196xn − 3.6168(xn)
2, (34)

with λ = 0.02 in the STLSQ method, while that of MSA is

xn+1 = 3.6260xn − 3.6260(xn)
2. (35)

with an error in coefficients less than 10−13 (S = 100).
As shown in Fig. 8, due to the different prediction accuracies of

these two methods, the attracting set of MSA is consistent with that
of the real system, whereas SINDy gives a totally different one. The
SINDy predictions perform like the logistic map at about r ≈ 3.619,
whose behavior is different from the real case due to the bifurca-
tion. Starting from the same initial point (x1 = 0.5), we plot these
three trajectories of real systems, predictions of SINDy, and MSA.
As shown in Fig. 9, our method remains consistent with the real sys-
tem until about the 190th step, while SINDy predictions differ from
the other two curves significantly at about the 15th step.

C. Two-dimensional damped oscillators

Then, MSA applies to the continuous dynamical systems. We
start with a simple two-dimensional damped harmonic oscillator,

FIG. 9. Three trajectories of real systems, predictions of SINDy, and MSA.
The initial point is (x1 = 0.5).

governed by

{

ẋ = −0.1x+ 2y,

ẏ = −2x− 0.1y.
(36)

The eigenvalues of the coefficient matrix are −0.1+ 2i and −0.1
− 2i, which leads to a general solution,

x = e−0.1t (C1 sin(2t)+ C2 cos(2t)) ,
(37)

y = e−0.1t (C1 cos(2t)− C2 sin(2t)) ,

with C1 and C2 constant coefficients determined by the initial points.
The trajectory is a harmonic motion at a frequency 2, and the ampli-
tude decays at a rate e−0.1t. In the case of noisy measurement data, it
is difficult to capture the correct decay rate.

FIG. 8. Attracting sets of the logistic map, predictions of SINDy and MSA: (a) attracting sets of the logistic map vs r ; (b) zoom in r ∈ [3.615, 3.630]; (c) attracting sets of
different prediction models. The attracting sets of MSA are consistent with those of the real systems, whereas SINDy gives a different dynamical behavior.
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TABLE IV. Accuracy comparison of SINDy, SINDy with denoising, and MSA under different noise levels. We use a Gaussian-weighted moving average filter to smooth the data.

In the STLSQ method, we set λ= 0.07 for SINDy.

SINDy SINDy (smooth, λ= 0.04) MSA Reference

1% noise ẋ = −0.101x+ 2.001y ẋ = −0.101x+ 1.995y ẋ = −0.100x+ 2.000y
1t= 0.001 ẏ = −2.001x− 0.100y ẏ = −1.995x− 0.099y ẏ = −2.000x− 0.100y

ẋ = −0.1x+ 2y
ẏ = −2x− 0.1y

10% noise

ẋ = 1.236− 0.233x2 + 2.659y

− 0.114x2y− 0.942y2 + 0.106x2y2

− 0.157y3 + 0.137y4

ẋ = −0.101x+ 2.001y ẋ = −0.101x+ 2.001y

1t= 0.001 ẏ = −2.032x− 0.257y− 0.266xy2 + 0.118x3y2 ẏ = −1.986x− 0.093y ẏ = −1.998x− 0.101y

50% noise

ẋ = −1.978− 0.699x+ 0.151x3 + 1.689y

+ 0.207xy− 0.390x2y+ 0.920y2

− 0.076x2y2 + 0.087x2y3

ẋ = −0.279x+ 2.110y+ 0.082x3

− 0.096x2y− 0.047y3 ẋ = −0.119x+ 1.990y

1t= 0.001

ẏ = −3.794− 1.946x+ 1.713x2 − 0.144x4

− 0.449y+ 0.126x2y+ 1.156y2

− 0.129y4

ẏ = −2.072x− 0.170y+ 0.095x3

− 0.082x2y+ 0.043y3 ẏ = −2.012x− 0.112y

SINDy and MSA reconstruct the system using the following
approximate equations:

{

ẋ = 2(x, y)ξ x,

ẏ = 2(x, y)ξ y.
(38)

with coefficient vectors ξ x and ξ y unknown. The library consists of
the product of 1D polynomials up to the fifth order, i.e.,

2(x, y) = [1, x, x2, . . . , x5, y, xy, . . . , x5y5]. (39)

The exact coefficients are

ξ real
x = [0,−0.1, 0, 0, 0, 0, 2, 0, . . . , 0]T,

(40)

ξ real
y = [0,−2, 0, 0, 0, 0,−0.1, 0, . . . , 0]T.

First, we present a comparison between the proposed method
and SINDy under different noise levels at a small time step size
1t = 0.001. We use 1000 200-step time series to identify the coef-
ficients. The results are shown in Table IV. As expected, MSA
improves the prediction accuracy efficiently and is impressively
robust for the noise compared with SINDy. Even if a large noise
(η = 50%), the present method remains a good accuracy with an
error of the parameters less than 10−2. We also present SINDy

results with a Gaussian-weighted moving average filter to smooth
the data. As shown in the table, although the denoising technique
improves the performance of SINDy, SINDy still gives additional
incorrect terms for data with 50% noises. As a comparison, MSA
remains the correct selection of candidate terms for large noises and
gives more accurate results for small noises.

Next, we test our method with different time step sizes. As
shown in Table V, for a large time step size (1t = 0.5), SINDy
fails to capture dynamics accurately with the limitation of a finite
difference scheme, whereas MSA gives better results. Furthermore,
we put a robust version of SINDy, namely, RK4-SINDy,33 combin-
ing SINDy with RK4 time integration scheme. For small noises,
RK4-SINDy gives the same results with MSA, because the devia-
tion mainly comes from the time integration scheme for a large
time step. Note that RK4-SINDy is still one-step model, so it induces
additional high-order terms in the first equation when facing large
noises (η = 50% noise), although the results seem better than those
of the classical SINDy. The quality of time integration scheme affects
the performance of MSA for a large time step size. To demonstrate
this point, we test the MSA with a simple forward Euler scheme in
Table VI. As the step size increases, the method fails to keep highly
accurate predictions. Thus a better scheme is expected to further
improve the performance of the MSA method.

TABLE V. Accuracy comparison of SINDy, RK4-SINDy,33 and MSA under different noise levels at a large time step size. In the STLSQ method, we set λ= 0.04.

SINDy RK4-SINDy33 MSA Reference

1% noise ẋ = −0.054x+ 1.685y ẋ = −0.090x+ 2.015y ẋ = −0.090x+ 2.015y
1t= 0.5 ẏ = −1.685x− 0.054y ẏ = −2.015x− 0.090y ẏ = −2.015x− 0.090y

ẋ = −0.1x+ 2y
ẏ = −2x− 0.1y50% noise ẋ = 0.943y+ 0.206x2y+ 0.175y3

ẋ = −0.721x+ 1.997y+ 0.056x2y

+ 0.425xy2 + 0.050y3 ẋ = −0.087x+ 2.013y

1t= 0.5
ẏ = −0.939x− 0.044y− 0.178x3

− 0.206xy2 ẏ = −1.971x− 0.553y ẏ = −2.016x− 0.092y
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TABLE VI. Accuracy comparison of MSA with different time integration schemes.

MSA (Forward Euler) MSA (RK4) Reference

1% noise ẋ = −0.101x+ 2.001y ẋ = −0.100x+ 2.000y
1t= 0.001 ẏ = −2.001x− 0.100y ẏ = −2.000x− 0.100y

ẋ = −0.1x+ 2y
ẏ = −2x− 0.1y

1% noise ẋ = −0.120x+ 1.998y ẋ = −0.100x+ 2.000y
1t= 0.01 ẏ = −1.998x− 0.120y ẏ = −2.000x− 0.100y

1% noise ẋ = −0.297x+ 1.967y ẋ = −0.100x+ 2.000y
1t= 0.1 ẏ = −1.967x− 0.297y ẏ = −2.000x− 0.100y

(a) (b)

FIG. 10. Illustration for the Lorenz
system: (a) the trajectory of the Lorenz
system; (b) noisy measurements of the
Lorenz system with η = 10% noise. Data
are collected by solving the dynamical
systems using ODE45 solver in Matlab
with an initial point (x(0), y(0), z(0))
= (−8, 7, 27). The right subplot shows
measurements with η = 10% noise.
(a) The trajectory of the Lorenz system.
(b) Noisy measurements of the Lorenz
system.

(a) (b)

(c)

FIG. 11. Trajectories of real systems,
predictions of SINDy and MSA for data
with 50% noise. The initial point is (x(0),
y(0), z(0)) = (−8, 7, 27). (a) Exact
solution, (b) SINDy, (c) MSA.
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D. Lorenz system

Now, we consider the Lorenz system to explore the data-driven
identification of chaotic systems. The governing equations are











ẋ = σ(y− x),

ẏ = x(ρ − z)− y,

ż = xy− βz.

(41)

Here, we set the standard parameters as σ = 10, ρ = 28, and β = 8
3
.

Data are collected by solving the dynamical systems using ODE45
solver in Matlab. Figure 10 illustrates a trajectory from t = 0 to
t = 20 with an initial condition (x(0), y(0), z(0)) = (−8, 7, 27).

The results by SINDy, ER and MSA under noisy measure-
ments are shown in the supplementary material, with m = 100 and
S = 200. When computing libraries 2 for SINDy, data are nor-
malized by standard deviations first and then a threshold is set as

TABLE VII. Coefficients at α= 1.49, β =π /2, γ = 1.82, R= 182 in the reduced

order model (42).

κm κu κv κw σ m σ u σ v σ w R

1.571 1.820 2.404 2.378 0.240 1.189 0.099 0.331 182

λ = 0.1 for sparsity. The library consists of the product of 1D poly-
nomials up to the fifth order (also see the supplementary material).
For small noises, all of three methods successfully discover the
Lorenz system accurately. However, for large noises, there exist
incorrect terms and coefficients in the predictions of SINDy and ER,
but the coefficients of MSA are still relatively close to the real ones.

The trajectories of predictions of SINDy and MSA for data with
50% noise are plotted in Fig. 11, which directly reflects the pre-
diction accuracy of the governing equations. The numerical results

(a) (b)

(c)

FIG. 12. Prediction trajectories of different methods with the same initial point [M(0),U(0), V(0),W(0)] = [0.1, 0.25, 0.07, 0.15]: (a) the exact solution; (b) the prediction of
SINDy; (c) the prediction of MSA. The exact solution and our method both reduce to the laminar solution ([M,U, V ,W ] = [1, 0, 0, 0]), while the SINDy prediction converges
to another steady solution ([M,U, V ,W ] ≈ [0.139, 0.215, 0.065, 0.145]). (a) Exact solution, (b) SINDy, (c) MSA.
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clearly show the robustness of MSA for large noises and verify the
effectiveness of the proposed method for the Lorenz system.

E. Reduced order model of a self-sustaining process

in turbulent shear flows

Shear flows are a fundamental class of fluid flows. Waleffe38–40

has studied wall-bounded shear flows based on the concept of
the self-sustaining process, where streamwise rolls redistribute the
mean shear to create streaks that break down to recreate the
rolls. He derived a reduced order model of the process from the
Navier–Stokes equations for a sinusoidal shear flow. The reduced
order model is a four-dimensional nonlinear system, given by40























































(

d

dt
+

κ2
m

R

)

M = σmW2 − σuUV+
κ2

m

R
,

(

d

dt
+

κ2
u

R

)

U = −σwW2 + σuMV,

(

d

dt
+

κ2
v

R

)

V = σvW
2,

(

d

dt
+

κ2
w

R

)

W = σwUW− σmMW− σvVW,

(42)

with the amplitudes of the mean shear M, the streaks U, the rolls
V, and the streak eigenmode W. The W (fourth) equation describes
the instability of the streaky flow. All the coefficients are positive,
defined by

κm = β , κu = γ , κv =
√

β2 + γ 2, κw =
√

(2γ 2 + β2 + α2)/2,

σm =
αβ

2

√

γ 2 − α2

(α2 + β2)(α2 + γ 2)
, σu =

βγ
√

β2 + γ 2
,

σv =
α2(γ 2 − β2)

2γ
√

(α2 + β2)(β2 + γ 2)
, σw =

α

2

√

γ 2 − α2

α2 + γ 2
,

depending on three parameters α, β , γ with γ 2 − α2 > 0,
γ 2 − β2 > 0, and R is the Reynolds number. For details, please refer
to Ref. 40.

There exists a critical Reynolds number Rsn (e.g., Rsn = 137.17
with α = 1.49, β = π/2, γ = 1.82) for the reduced order model
where a saddle-node bifurcation introduces two new steady solu-
tions in addition to the laminar solution ([M, U, V, W] = [1, 0, 0, 0]).
Both solutions are typically unstable, with the lower branch corre-
sponding to a saddle point with a single positive real eigenvalue, and
the upper branch corresponding to an unstable node with two real
positive eigenvalues. As R increases, the upper branch becomes a sta-
ble node (e.g., at R ≈ 180 with α = 1.49, β = π/2, γ = 1.82), which
implies a Hopf bifurcation.

We take α = 1.49, β = π/2, γ = 1.82, R = 182, and the corre-
sponding coefficients are listed in Table VII. The system is solved
by Matlab ODE45 solver. One thousand 200-step time series are
sampled with a time step size 1t = 0.5 and imposed by a 1%
noise. We take the library as the polynomials up to the third order.
The threshold for sparsity is λ = 0.01. The identified equations are
given in the supplementary material, and the corresponding pre-
diction trajectories with the initial point [M(0), U(0), V(0), W(0)]

= [0.1, 0.25, 0.07, 0.15] are shown in Fig. 12. Both the exact
solution and that by our method reduce to the laminar solu-
tion ([M, U, V, W] = [1, 0, 0, 0]) after a long-time evolution. By
SINDy results, the trajectory converges to another steady solu-
tion ([M, U, V, W] ≈ [0.139, 0.215, 0.065, 0.145]). This comparison
shows that the accuracy and robustness are crucial for predictions
around the bifurcation points when facing noisy measurements.

IV. CONCLUSION

In this paper, we propose a sparse identification method
considering multi-step error accumulation to discover governing
equations from noisy measurement data, called the Multi-Step-
Accumulation (MSA) method. The key idea is to use multi-step
models instead of single-step models (such as SINDy) and to identify
the parameters accurately by minimizing the total error of measured
series and approximate ones. The accumulated errors for the pre-
vious time steps are used to reconstruct dynamical systems, since
the dynamical states may not only depend on the nearest previous
states, and, thus, one-time-step error is insufficient to account for
the history-dependent behaviors. On the one hand, in the proposed
method, controlling the error accumulation enhances the accuracy
of the predictions, especially for the chaotic systems whose behaviors
are sensitive to the parameters. On the other hand, MSA combines
evolution schemes and, thus, captures the dynamics directly from
the noisy measurements, resisting the corruption of noise. As a
result, the proposed method can be used to identify the dominant
terms which cannot be identified by the use of SINDy, especially for
large noises and discover chaotic systems at bifurcation points from
noisy measurement data.

MSA is numerically shown to be robust for high accuracy pre-
dictions and successfully discovers the chaotic systems around the
bifurcation points from the noisy measurements. The test cases
include a discrete chaotic map, the logistic map, a damped oscillator,
the Lorenz system and a reduced order model of a self-sustaining
process. These examples verify the good robustness and accuracy
of the proposed method for the datasets with large noises. Com-
pared with conventional methods, MSA remains a good selection of
model terms for large noises and realizes highly accurate predictions
of parameters for small noises. The last three examples show that the
strategy combined with Runge–Kutta scheme is still valid for snap-
shots with a large time step size. Furthermore, the examples of the
logistic map and a reduced order model of a self-sustaining process
clearly show that the prediction accuracy significantly influences the
dynamics around the bifurcation points. In these two examples, our
method successfully captures the correct dynamical behaviors from
noisy measurement data.

To resolve the difficulty of optimization of MSA, we propose
an adaptive training strategy. The adaptive strategy uses the solu-
tion for small time steps as the initial estimation to optimize with
large ones and, thus, gradually increases the length of time series for
training. Consequently, this strategy provides the opportunities for
complex nonlinear optimization with long time series and makes the
implementations of MSA not limited to the length of series used.
Furthermore, numerical examples present a significant improve-
ment in accuracy with increasing length of time series used by this
adaptive strategy.
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MSA is possibly extended to the partial differential equations
(PDEs), while it is used for the discrete maps and continuous
dynamical systems in the present study. It is noted that the dis-
covery of PDEs requires a proper solution scheme and an efficient
optimization algorithm. The primary limitation of the extensions of
MSA lies in the necessity of an explicit time integration scheme. The
quality of the time integration scheme directly influences the per-
formance. In this paper, we choose the Runge–Kutta scheme due to
its good performance. We may borrow the idea of multistep neu-
ral networks,12 i.e., using the multi-step time-stepping scheme to
develop the present method and expect it to provide better per-
formance. In addition, the training data used in this paper are
from the known systems, and the implementations of this method
on experimental and real systems should be developed in future
research.

SUPPLEMENTARY MATERIAL

See the supplementary material for more details on the libraries
and additional numerical results for a chaotic map, the Lorenz sys-
tem, and a reduced order model of a self-sustaining process in
turbulent shear flows.
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APPENDIX: CALCULATION OF DERIVATIVES WITH

RESPECT TO COEFFICIENTS ξ

We can borrow the idea of backward-propagation algorithm
to compute the derivatives of the loss function with respect to
coefficients ξ efficiently.

The derivatives are derived recursively from (5) and (7) accord-
ing to the chain rule, namely,

∂ loss

∂ξl

=
2

S− 1

S
∑

k=2

(ok − xk)
∂ok

∂ξl

, (A1)

∂ok

∂ξl

= 2l(ok−1)+
d2(ok−1)

dok−1

ξ
∂ok−1

∂ξl

, (A2)

where 2l is the lth term in the library 2 corresponding to the lth

term ξl of the coefficient vector ξ , and
d2(x)

dx
is the derivatives of

the candidate functions in the library, e.g.,

d2(x)

dx
= [0, 1, 2x, 3x2, . . . , pxp−1, cos(x),− sin(x), . . . , exp(x), . . . ],

(A3)

corresponding to library (4).
Similar to backward-propagation algorithm, the calculation of

derivatives consists of two steps: a forward step and a backward
step. In a forward step, the series ok and corresponding 2(ok) are
obtained according to evolution (5). In a backward step, we derive
∂ok
∂ξl

from the recursive formulation (A2) first and then assemble the

derivatives ∂ loss
∂ξl

according to (A1).

The complexity is linear with the number of derivatives, i.e.,
proportional to NdL, with the number of data points N = m× S,
the dimensions d, and the number of active candidate functions L.
Note that L might be small after a group sparsity approach such as
STLSQ algorithm applied to the SINDy or the training with short
time series.
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